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MATHEMATICAL MODEL FOR THE DISPERSION OF TOXICITY
THROUGH COMMUTERS

NITA H. SHAH', MOKSHA H. SATIA!, §

ABSTRACT. In the proposed paper, we consider three types of vehicle. One is those
vehicles which are used for personal purposes called private vehicles. Second is for public
transportation named as public vehicles. Third one is used for other activities known
as cargo vehicles. These vehicles can be either polluted or non-polluted according to
their fuel category. They produce toxic air pollutants which makes environment toxic.
To compare the dispersion of toxicity through these vehicles, a mathematical model is
formulated. In this model, dynamical system is developed with the help of non-linear
differential equations. Threshold for each vehicle category is acquired and compared.
Threshold and backward bifurcation govern the stability of the model. Simulation is
prepared to brace the output.
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1. INTRODUCTION

In today’s world, an individual has many ways to commute from one place to another.
The form of transformation chosen by an individual is mainly depend upon the param-
eters of time and cost. The individuals who have a time constraint chose to travel by
a private vehicle. In fact, for a long route or for individuals who have cost constraint,
the public vehicle is used. But except human transportation, cargo transportation is also
important for day-to-day life. Cargo vehicle is used for transporting packages or goods
from the manufacturer to the buyer, picking up the waste, etc. Thus, private, public
and cargo vehicles are very useful, every day. Depending upon their fuel category, not
all vehicles have a good impact on the environment. Those which are not harmful to the
environment, are considered as non-polluted vehicles. And vehicles that are harmful, are
measured as polluted vehicles. Polluted vehicles directly have a negative impact on the en-
vironment while non-polluted vehicles have that indirectly. Vehicle pollution is the major
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source of an environmental disturbance. Vehicle pollution splits into two types: primary
pollution and secondary pollution. Pollution which directly goes into the environment is
called primary pollution. Secondary pollution occurs after the chemical reaction between
the released pollutants into the atmosphere. This pollution contains Ozone (Os), Partic-
ulate Matter (PM), Nitrogen Oxide (NOx), Carbon Monoxide (CO), Sulphur dioxide
(SO3), Hazardous air pollutants (toxic) (https://www.ucsusa.org/clean-vehicles/
vehicles-air-pollution-and-human-health/cars-trucks-air-pollution#.XF6NEjMzY2w).
Those hazardous air pollutants alters into toxicity which leads to serious health issues.
Vehicular pollution is a worldwide problem. Therefore, research works regarding this have
been done through many researchers: some review is done for air quality in relation to
motor vehicle transportation using mathematical diffusion modeling techniques by Lamb
et al. (1973). Beaton et al. (1972) have measured the impact of air quality on the high-
way for the factors of motor vehicle emission. Using the system dynamics, Sadovnikove
et al. and Manohar et al. have studied this area. Sadovnikova et al. (2013) analysed
the vehicle and landscaping impact on air quality where Manohar et al. (2014) evaluated
the policies to reduce transportation pollution. Another approach through inventory is
viewed for pollutants emitted through vehicles in Delhi by Goyal et al. (2013). Shah et al.
and Bauver have worked under this real-valued problem using the area of mathematical
modeling. Shah et al. (2018) have proposed the model which measures environmental pol-
lution through vehicles where Bauver (1978) has prepared a model for highways consists
of the spread of air pollutants. To reduce air pollution, the different idea was emerged
through Shah et al. (2016). They have formed a model dynamic for the wrong parking
habits leads to punishment. For environmental growth, graph theory was applied in math-
ematical modeling to support the idea of ‘GO-CLEAN’ by Shah et al. (2018).

In this paper, Mathematical models are designed for three different vehicle types: private,
public and cargo vehicles in section 2 along with the existence of equilibrium points and
their threshold. In section 3, the local and global stability about the equilibrium points
is incorporated. Section 4 contains the existence of bifurcation. Numerical simulation is
done in section 5 using validated data.

2. MATHEMATICAL MODEL

We live in a society where transportation is very essential tool for day-to-day lifestyle.
Some individuals opt for their personal transportation, some go for public transportation.
Moreover, there are some activities such as factories, industries etc. those need some cargo
materials to transport. Therefore, we have prepared three models viz. private vehicle
model, public vehicle model and cargo vehicle model to study the spread of toxicity under
some assumptions:

Assumptions:

(1) Toxicity free equilibrium point exists with non-polluted and polluted vehicles.

(2) Polluted vehicles turn into non-polluted because of advanced technology.

(3) Non-polluted vehicles create toxicity indirectly which is less than that by polluted
vehicles.

(4) For the analytical purpose, escape rate from each compartment is taken as con-
stant.


https://www.ucsusa.org/clean-vehicles/vehicles-air-pollution-and-human-health/cars-trucks-air-pollution#.XF6NEjMzY2w
https://www.ucsusa.org/clean-vehicles/vehicles-air-pollution-and-human-health/cars-trucks-air-pollution#.XF6NEjMzY2w
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TABLE 1. Notation, description and its parametric values

Bp, | Bp, | Bey, | The growth rate of respective vehicles 0.02 | 0.015 | 0.005
Brr | Bpy | Bcy | The respective vehicles which are non-polluted | 0.80 | 0.50 | 0.20
dps | 0Py | 0cy | The respective vehicles which are non-polluted | 0.30 | 0.60 | 0.70

N €1 ~v1 | The transfer rate of polluted vehicles into 0.40
polluted for respective vehicle category

72 €9 v | The transfer rate of non-polluted vehicles into 0.20
polluted for respective vehicle category

73 €3 ~v3 | The rate at which toxicity spread through non- 0.10
polluted vehicles for respective vehicle category

N4 €4 v4 | The rate at which toxicity spread through 0.80

polluted vehicles for respective vehicle category
ipg | Py | oy | The respective vehicles which are non-polluted | 0.19 \ 0.15 \ 0.07

2.1. Private vehicle model. Figure [I| represents the transmission diagram of private
vehicle model to analyse the spread of toxicity.

Hp,
n
3 T,
m, Hp,
un
Hp,

FIGURE 1. Transmission diagram of private vehicle model

Using figure[I|and accordingly parameter mentioned in the table[T} the system of non-linear
differential equation is formulated:

dP,
dN
Tt‘/ = BppPr —mNv + 1Py —n3NvTx — ppp Nv

(1)
dPy
e dppPr +m Ny —n2Py — naPyTx — pp, Py
dT
Tf =m3NvTx +mbPyvTx — puprTx

From above system, we have
4 (Pg+ Ny + Py +Tx) = Bp, — pup, (Pg + Ny + Py + Tx)
So that, lim sup (Pg + Ny + Py + Tx) < 228
t—00 HPR
Hence, that feasible region of the model is
Ap, = {(PR,NV,PV,TX) . Pr+ Ny + Py +Tx < %%;PR >0,Ny >0,Py>0,Tx > o}.

Now, we take 8p, + dp, + P, = xp, and get new modified system
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dPr
W == BPR - xPRPR

dN

TtV = BprPr — MmNy + 2Py — 3Ny Tx — pupy, Nv &)
2

dP

ditv = 0py Pr+mNv —mPy —mPyTx — pup, Py

dTx

- n3sNvTx +naPyTx — ppyTx
In this case, both the systems and their feasible regions are equivalent. So, we are consid-
ering Ap, as feasible region for the system .

2.2. Public vehicle model. Figure[2denotes the transmission diagram of public vehicle
model to study the toxicity spread.

Hp,

FIGURE 2. Transmission diagram of public vehicle model

From figure [1] and respective parameters displayed in the table (1] the system of non-linear
differential equation is developed:

dP,

d—tB = Bp, — Bpy P — 0Py P — pipg

dN

Tt‘/ = Bp, P — e1Ny + e2Py — e3NyTx — pupy, Ny

(3)
APy
T dpy P + e Ny — 2Py — eaPyTx — ppy Py

dT

Tt){ =eaNyTx +esPyTx — pupyTx
System [3| represents,
4 (Pg+ Ny + Py +Tx) = Bp, — upy (Pg + Ny + Py + Tx)
So that, lim sup (P + Ny + Py + Tx) < 228

t—00 HPp

Hence, that feasible region of the model is
Ary = { (Ps. Ny, Py, Tx) : Pg+ Ny + Py + Tx < 522 Pg > 0,Ny > 0, Py > 0,Tx > 0}.

Now, substituting Sp, + dp, + ptpy = TPy, We get a new system shown below:
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dPp
dt

d N

Tt‘/ = Bpy P — e1Nv + 2Py — e3NyTx — pup, Ny @

4

dP

d—tv =0psPp+eNv — Py —eaPyTx — ppy Py

dT'x
dt

= BPB — QSPBPB

=e3NyTx +eaPyTx — pupyTx

System and system @ are equivalent. So, we are considering Ap, as feasible region
for the system in the invariant region.

2.3. Cargo vehicle model. Figure (3 shows the transmission diagram of toxicity spread
through cargo vehicle.

7

}/2 ﬂCV
Va

He,
FIGURE 3. Transmission diagram of cargo vehicle model

Figure 3| and parameters assumed in the table [I| gives the system of non-linear differential
equation.

dCy
dt
dN
Tltv = Bey, Cv — Ny + 2Py — 13NvTx — pey Nv )
)

= B¢y, — By Cv — d¢, Cv — pc, Cv

dP

ditv =00y, Cv + Ny — Py —uPvTx — poy, Pv
dT'

Ttx =Ny Tx +uPvTx — poy Th

Adding system ,

%(Cv—i-Nv—l—Pv—i-Tx) :BCV — UCy (Cv+Nv+Pv+Tx)

So that, lim sup (CV + Ny + Py + Tx) < Doy
t—00 HCy

Hence, that feasible region of the model is

Acy, = {(CV,NV7PV7TX) Cy+ Ny +Pyr+Tx < %;C\/ >0,Ny >0,Py >0Tx > 0}.

Now, substituting B¢, + dcy + pcy, = o, We get a new system shown below:



NITA H. SHAH, MOKSHA H. SATIA: MATHEMATICAL MODEL FOR THE DISPERSION OF 273

dCy
dt
dIN
Ttv = By Cv — 1Ny + 2Py — 3Ny Tx — poy, Ny -
6

= BCV - xCVCV

dP

Ttv =dc, COv + Ny — 2Py — uPvTx — pcy, Pr
dT’

d—;( =13 NyvTx +vPvTx — poy Ty

System and system @ are equivalent and their dynamical behaviour. So, we are
considering feasible region noted as A¢,, for the system @

2.4. Existence equilibrium points. In this section, equilibrium points of the models
are carried out and also found their existence. Equilibrium points are obtained when each
equation of the model is set to zero.

2.4.1. Equilibrium points for private vehicle model. For private vehicle model, we get two
equilibrium points.
(1) Toxicity free equilibrium point for private vehicle model
Ey (Pg) = (P, Ny, P),0) where
po _ Bpp NO — Bpp, (Brg (n2+ipy )+0pan2) po Bpg (Brrm+3dp, (m+upg))
R zpp 'V TppHPR (T)1+772+MPR) v TppPp (771+7)2+MPR)
This equilibrium point exists trivially.
(2) Interior equilibrium point for private vehicle model

E Bp KPR —13T1
* * * * * * R * * R
(Pr) = (PR, Ny, Py, T ) where P, = IPR,]\fV—rl,PV_i774 ,
BppBrgnat(nenpy—(nzms+na(m+ppy ) )r)zp
* rPPR R R R
Iy = and

TPRM3NATL

r1 =rootof{[(ns — )z pnsire) 2> + [(Bry + 6pr) Bransia + ((n2 — ppg)ns + (m
+ /’LPR)n4)xPRMPR]Z — HPg [BPRBPR + xPR774,UPR]}

The equilibrium point exists when
(a) r1 is positive.
(b) %:U“PR > n2n3 + na(m + ppy)

2.4.2. Equilibrium points for public vehicle model. Solving the system for public vehicle
model, we find two equilibrium points.

(1) Toxicity free equilibrium point for public vehicle model
Ey(Pg) = (P, Ny, PY,0) where
po Bpg NO — Bpy (Brg (e2+1py )+py€2) po — Bpy (Brge1+dpy (c1+upy))
B zpp 'V Tpg Py (€1+€2+MPB) v TpgliPg (61+62+,up3)
This point occurs trivially.
(2) Interior equilibrium point for public vehicle model

E* (Pg) = (P}, N, Py, T%) where Py = 228 N¥ = py Py = MEn—5372

T wp €4

T — BPBBPB€4+(€2HPB*(€2€3+€4(61+HPB))7"2)1PB
Y=

and
l‘pB €3€47T92

T2 :TOOtOf{[(E?) - 64)37131363/“33]22 + [(BPB + 5PB)BPB€364 + ((62 - #PB)E?)
+ (61 + MPB)64):CPBMPB]Z — HPp [BPBBPB + xPB€4MPB]}

The equilibrium point exists when
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(a) ro is positive.
(b) 2upy > e2e3 + ealer + ppy)

2.4.3. Equilibrium points for cargo vehicle model. On solving system for cargo vehicle
model, we get

(1) Toxicity free equilibrium point for cargo vehicle model
Ey(Cy) = (C‘O,,N‘(},PS,O) where
0 — Bg,, NO — Bey, (Boy (va+ioy, )+6cy,72) PO — Bey, (Bey mi+doy (+uoy, )
V7 ao, TV zoy toy (mtretuc,) TV zoy poy (Mm+retrey, )
The toxicity free equilibrium point exists unconditionally.
(2) Interior equilibrium point for cargo vehicle model

Bc HCy, —Y373
* _ * * * * * 1% * ko %

E* (Cy) = (C},, Ny, Py, T ) where CY, = wo o Ny =13, P = —r—,
T — Bey Bey vat(v2noy —(evstya(mtucy, ) )rs)zey, and

X TCy, V3V4AT3

T3 ZTOOtOf{[(73 - 74)'7;1313'73#0\/]22 + [(BCV + 5CV)BCV7374 + (('72
— poy )3 + (M + poy )va)Toy boy]Z — pey [Boy Boy + Toyvapoy ]}

2.5. Computation of the threshold quantity. Here, the threshold quantity for each
vehicle model is computed. It is worked out using next generation matrix method (Diek-
mann et al., 2010). The threshold quantity is to study the density of commuters which
creates concentration of toxicity into the environment. If threshold quantity is less than
one then the model is stable otherwise the concentration is achieving epidemic state.

2.5.1. Threshold for private vehicle model. The threshold for private vehicle model (RéD R
is the ratio of newly infected toxic air pollutants created by private vehicles affected by
a single infectious toxic air pollutants created by private vehicles during its lifespan of
spreading toxicity. It is calculated as follows:

3Ny +mbPy 0 n3Tx naTx

0 0 0 0
Fry = 0 0 0 0
0 0 0 0
pp, 0 0 0
0 Trp 0 0
and Vp, = R
Pr N3Ny —Bp, m +n3Tx + ppy —12
mPy  —dp, —m n2 +muTx + ppy

Here, Vp, is non-singular matrix.
The threshold of private vehicles is the spectral radius of matrix Fp, VP_R L

P _ Bre (13 (Brg (12 + pipg) + Opan2) + 14 (Bpai + Opg (1 + Hpe))) )
’ 13 (1 + 12+ 11y

2.5.2. Threshold for public vehicle model. The threshold for public vehicle model <R§B>

is the ratio of newly infected toxic air pollutants created by public vehicles affected by
a single infectious toxic air pollutants created by public vehicles during its lifespan of
spreading toxicity computed as in section 2.5.1.

The threshold of private vehicles is the spectral radius of matrix Fp, Vo, L
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Bp, (€3 (Bpg (e2 4+ ppy) + 0pgea) + 4 (Bryer + 0py (€1 + pipy))) (8)

R}P =
M%:BHCPB (e1+¢e2+4 ppy)

2.5.3. Threshold for cargo vehicle model. The threshold for cargo vehicle model (ROCV) is
the ratio of newly infected toxic air pollutants created by cargo vehicles affected by a sin-
gle infectious toxic air pollutants created by cargo vehicles during its lifespan of spreading
toxicity that is computed as 2.5.1.

The threshold of private vehicles is the spectral radius of matrix Fg,, Vchl

BCV (73 (BCV (’72 + ”CV) + 5Cv72) + V4 (ﬁCV'Yl + 6CV (’Yl + MCV))) (9)

R§V =
pg, woy (71472 + poy)

3. STABILITY ANALYSIS OF THE EQUILIBRIUM POINTS

In this section, local and global stability are established to understand the behaviour of
each equilibrium points.

3.1. Local stability analysis. Here, local stability analysis is worked for each model
about their equilibrium points. It is established using Routh-Hurwitz criteria (Routh,
1877).

3.1.1. Local stability of private vehicle model. The Jacobian matrix for private vehicle
model is derived from system , which has four distinct eigenvalues from that one is
—xp,. Hence, the characteristics polynomial of Jacobian matrix is Cp,(A) = (zp, + A) Qpg(N),
where QQp, () is the characteristics polynomial of resultant matrix:

—m —m3Tx — ppy 72 —n3Ny
J(Pr) = m N2 —naTx — ppy —1aNy (10)
n3Tx naT'x N3Ny + Py — ppg

Therefore, the local stability is calculated using above matrix.

Theorem 3.1. The toxicity free equilibrium point for private vehicle Eo(Pr) is locally
asymptotically stable iff RSDR < 1.

Proof. From at Eo(Pr) and assuming 71 + pup, = a11,72 + ppy = ag2, —n3Ny, —
n4Py, + ppgass, then Jacobian has the characteristics polynomial

A3 -l-)(an + aga +asz) A3 + (ass (ag2 + a11) + ppy, (a2e + arn — ppy)) M+ assppy (a2 + a1 —
Hpr

Satisfying Routh-Hurwitz conditions, the toxicity free equilibrium point for private vehicle
Ey(Pg) is locally asymptotically stable if age + a11 — pp, > 0 (obvious) and asz > 0 (if

Réj % < 1). Hence, the theorem. O

Theorem 3.2. The endemic point for private vehicle model E*(Pg) is locally asymptoti-
cally stable.

Proof. From about E*(Pg) and taking n1 + n3T% + pp, = bit,m2 + mTx + pp, =
b2, N3Ny +na Py — pp, = b3z = 0, we have the characteristics polynomial

A3 4 (bi1 + ba2) A3 + (N3 T3 + PyTent + baobin — mm2)A2 + (n3N7(baans + mma) +
N4 Py (b11mg + 1m2m3)) 1'%

Here, from characteristics equation, E*(Pgr) is locally asymptotically stable if boobi; —
mmn2 > 0 which is obvious because it satisfies the conditions for Routh-Hurwitz criteria. [
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3.1.2. Local stability of public vehicle model. From the system , the Jacobian matrix for
public vehicle model is studied. The Jacobian matrix has four distinct eigenvalues. One
of them is —xp,. Hence, the characteristics polynomial of Jacobian matrix is Cp, () =
(xpy + A) Qpy(X) where Qp, is the characteristics polynomial of resultant matrix J(Pp):

—e1 —e3T'x — ppy €2 —e3Ny
J(PB) = €1 €2 —e4Tx — ipg —eg Py (11)
e3T'x e4T'x €3Ny + 4Py — pupy

Therefore, the local stability is calculated using above matrix.

Theorem 3.3. The tozicity free equilibrium point for private vehicle Eo(Pg) is locally
asymptotically stable iff R(]]DB <1.

Proof. Using for Ey(Pp) and assuming €; + up, = ci1,€2 + pipy, = c22, —€3Ny;, —
€4 Py, + ppy = c33, the characteristics polynomial of the matrix is
A3+ (c11+ a2+ e33) A3 + (e33(coz +c11) + ppy (caz + c11 — fipy )) A3 + casfipy (co2 + 11 — Hpp )
According to Routh-Hurwitz criteria and its conditions, the toxicity free equilibrium point
for public vehicle Ey(Pr) is locally asymptotically stable if cao 4+ ¢11 — pp, > 0 (obvious)
and cs3 > 0 if (if Réj 5). Hence, the theorem.

]

Theorem 3.4. The endemic point for public vehicle model E*(Pg) is locally asymptoti-
cally stable.

Proof. From at E*(Pp) and assuming €1 + e37% + pp, = di1,€2 + e4Tx + pp, =
da2, 3Ny, + €4 Py, — pp, = dzz = 0, we get the characteristics polynomial which is

M+ (di14do2) N+ (N3 T €3+ P T €3 +daodin —ere2) Aa+ (€3 Ny (doses+erea) +ea P (direa+
e2eq))Tx

Here, from characteristics equation, E*(Pp) is locally asymptotically stable if daadi; —
€169 > 0 which is obvious according to the conditions of Routh-Hurwitz criteria. O

3.1.3. Local stability of cargo vehicle model. The Jacobian matrix for cargo vehicle model
is studied from the system @ This has four distinct eigenvalues. One of them is —z¢,, .
Hence, the characteristics polynomial of Jacobian matrix is Ccy, (A) = (z¢, + A)Qcy, (A)
where Q¢,, is the characteristics polynomial of resultant matrix J(Cy)

-7 —3Ix — pey V2 —73Ny
J(Cv) = 7 —v2 —uTx — ey —v4Py (12)
v3Tx YaTx 3Ny + 4Py ey,

Therefore, the local stability is calculated using above matrix.

Theorem 3.5. The tozicity free equilibrium point for private vehicle Eo(Cy ) is locally
asymptotically stable iff Rgv < 1.

Proof. Using about Ey(Cy) and assuming v + puc, = €11,72 + poy, = €22, —13 Ny, —
vaPv, + oy, = e33. The characteristics polynomial of that matrix is

A2+ (e11+e22+e33) A2+ (ess(eaa +e11) + ey (€22 +e11 — pey ) ) As +esspicy, (€22 +e11 — pey, )
Accepting the Routh-Hurwitz criteria and its conditions, the toxicity free equilibrium point
for cargo vehicle Ey(Cy0) is locally asymptotically stable if eas + €11 — pcy, (obvious) and

eg3 > (if Rg‘/ < 1). Hence, the theorem. O

Theorem 3.6. The endemic point for private vehicle model E*(Cy ) is locally asymptoti-
cally stable.
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Proof. From about E*(Cy) and taking v1 + v3T% + pey, = fi, 2 + uTx + pey =
f22, 3Ny, + 4Py — ey, = f33 = 0, we have the characteristics polynomial which is

S+ (fuir + fo) N + (NPT + PpTini + foofir — 2)de + (v Ny (fazys + y17a) +

Ya Py (f117a + 7274)) T
Here, Routh-Hurwitz conditions lead that from characteristics equation, E*(Cy/) is locally

asymptotically stable if foo f11 — 71772 > 0 which is obvious. g

3.2. Global stability. Global stability around each equilibrium points is calculated in
this section. It is intended using Lyapunov function followed by Lasalle’s Invariance Prin-
ciple (La Salle, 1976).

3.2.1. Global stability of private vehicle model.

Theorem 3.7. The toxicity free equilibrium point of private vehicle model is globally
asymptotically stable.

Proof. Let us consider a Lyapunov function LéDR(t) = Ny (t) + Py(t) + Tx(t), then
Ly™ = Ny (t) + Pir(t) + Tx (t) = Bp, — ey (PR + Nv + Py) — pp, Tx

Now, P < 2 Ny BPR (BPR (712+uPR)+5PRT)2) P, < Bpp, (5PR?71+5PR (711+HPR))
R = - TppiPR (771+V]2+MPR) V= TPrHPR (771+772+,LLPR)
B
Threfore, PR + NV + Py < T
R
Hence, L Pr < —up,Tx <0
P Pp

dL
< 0 whereas

Weget =0 only if Tx = 0.
Hence, usmg LaSalle’s Invarlance Principle, we get EéD % is globally asymptotically stable.
0

Theorem 3.8. The interior equilibrium point E*(Pgr) is globally asymptotically stable.
Proof. Consider L}, (t) = 5[(Pr—Pj)+ (Nv — Ny) + (P — Pp) + (Tx — T%))? and then
Pr(t) =[(Pr — Pg) + (Nv — Ny) + (Pv — PV) + (Tx — TX)] [Bp, — itpaPr — 1tpy Nv

— ppp Py — ppyTx]
* * * *\12
=—ppy [(Pr — Pg) + (Nv = Ny) + (Py — Pp) + (Tx = Tx)]" <0

where Bp, = pupy P+ pipe Ny + ppp Py + ppp Ty
Therefore, the interior point for private vehicle model E*(Pg) is globally asymptotically
stable. g

3.2.2. Global stability of public vehicle model.

Theorem 3.9. The toxicity free equilibrium point of public vehicle model is globally asymp-
totically stable.

Proof. Let us consider a Lyapunov function L(I)DB (t) = Ny (t) + Py (t) + Tx(t), then
Ly = N{(t) + P{:(t) + Tk (t) = Bp, — ptps (Pr + Ny + Py) — pp, Tx

Now, Pp < PB Ny BPB (Bpg (e2+1py )+opyea) Py < Bpy (Brge1+dpy (e1t+upy))
zppiipg(a+eatupy) = apyupg(ateatupy)

Threfore, Pr + NV + Py < —& Bry
#PB
Hence, L P < —np;Tx <0

PB Pp
We get

< 0 whereas dL =0 only if Ty = 0.
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Hence, using LaSalle’s Invariance Principle, we get Eéj B is globally asymptotically stable.
0

Theorem 3.10. The interior equilibrium point E*(Pg) is globally asymptotically stable.
Proof. Consider L}, (t) = $[(Ps—Pp)+ (Ny — Ny) + (Py — Pp) + (Tx — T%))? and then

s (t) =[(Ps — Pp) + (Nv — N{) + (Pv — Py) + (Tx — Tx)] [Bpy — 1Py P — g Nv
— upy Py — ppsTx]
= — upy [(Pe — Pp) + (Nv = Ny) + (Py — P) + (Tx = TX)* <0
where Bpy = pipy Pp + p1pp Ny, + ppg Py + ppp T
Therefore, the interior point for private vehicle model E*(Pg) is globally asymptotically
stable. 0
3.2.3. Global stability of cargo vehicle model.

Theorem 3.11. The toxicity free equilibrium point of cargo vehicle model is globally
asymptotically stable.

Proof. Let us consider a Lyapunov function LOCV (t) = Ny(t) + Py (t) + Tx (t), then

Ly = Ny (8) + P (t) + T (t) = Bey, — poy (Pr+ Nv + Py) — oy Tx

Now, Cy < Be,, Ny < Bey, (ﬂcv (v2+hcy, )+5CV v2) Py < Bey, (5CV 11+dcy, (m +pcey, )
oy zey poy (M+retiey, ) zey poy (+Hretrey, )

Threfore, Cy + Ny + Py < Boy

— HCy
Hence, LZ)CV < —pc, Tx <0
We get 420" < 0 whereas 0" = 0 only if Tx = 0
e get —0— < 0 whereas —— = 0 only if Tx = 0.

Hence, using LaSalle’s Invariance Principle, we get Eg; v is globally asymptotically stable.
O

Theorem 3.12. The interior equilibrium point E*(Cy) is globally asymptotically stable.

Proof. Consider L, (t) = 3[(Cv —Cy) + (Nv — Nj) + (Py — Py) + (Tx — T%)] and
then
Gy () =[(Cv = CV) + (Nv = Nyy) + (Py — Py) + (Tx — TX)] [Boy — poy Pe — oy Nv
— poy Py — pey, Tx)
=— ey [(Cv = Cy) + (Ny = Ny) + (Py — Py) + (Ix = T%))? <0
where BCV = MCVC\*/ + MCVN{; + IUCVP{; + MCVT;(

Therefore, the interior point for private vehicle model E*(Cy/) is globally asymptotically
stable. 0

4. BIFURCATION ANALYSIS

In this section, backward bifurcation is analysed for non-polluted vehicles (Khan et al.
(2014), Wangari et al. (2016)).
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4.1. Bifurcation analysis for private vehicle. The backward bifurcation exists when
non-polluted vehicles are at least non-zero. On solving system for Ny, we have

fi(N{) = A\NY? + BINy +C1 =0 (13)

where A1 = (113 — 7)03/1p,@ Py

By = (Bpr + 0pr) Brgnsta + ((m + ppg) sy + (02 — ppg)nsiipg )T py

O = u‘}R(nzHPROCPRJrTMBPRﬁPR)(m+772+NPR2)£EPR (1 B RPR)
(((2+ppg)ns+mna) By (n2n3+(m+1pgr)n1)dpg ) Brp —kp, (Mm+n2+upg )2 Py 0
The coefficient A; must be always positive and C; should depend upon the value of
R(I;R, if RgR < 1 then C is positive and if RéDR < 1 then C is negative. For A; > 0,
the positive result depends upon the sign of B; and C;. The equation have two
roots; from that one is positive and other is negative for R(]; ® > 1. Now, if Réj =1
then C; = 0 and we obtain a non-zero solution of equation as *ABll which is pos-
itive if and only if By < 1. For By < 1, there exists a positive interior equilibrium

poin or = al means € equlllbria continuous epends upon , 1ndai-
int for Re® = 1 that the equilibria conti ly depend R{®, indi

cating that there exists an interval for ROPR which have two positive equilibria If R =

—B1—+/B?—4A:C —B1++/B2—4A,C . . . .
! 3 All = Ié) R 3 A11 =1 For, backward bifurcation putting the discrim-

inant B? — 44;C; = 0 and then solving for the critical points of R(I)DR gives RgR =
B (((r2+1pg)ns+mna) Bpp +(n2n3+(m+1pg )na)dpp ) Brp ) — 1% (m+1m+ipg )T py If RER < RPr

AA1p} 2Py (M2ipp @ Py +1a By Brg) (m+n2+iry) : C 0
then B% — 4A1C7 > 0 and for the point of RéD R backward bifurcation exists such that
REF < RE® < 1.

1 —

4.2. Bifurcation analysis for public vehicle. To find backward bifurcation, we take
non-polluted vehicles non-zero. Let us solve system for Ny, then we get

f2(N{) = AgNy? + BoNy +Cy =0 (14)

where Ay = (€3 — es)e3pip,Tpy,

By = (Bpy + 0pg)Bryeses + (€1 + ppg)eapipy + (€2 — fipg)espips )Ty

Co— NBPB (e2uppzpyteaBpy Bpg)(e1teatupy)rpy <1 _ RPB>
2 (((e2+1pp Jes+erea) Bpy (e2es+(er+upy )ea)dpy) Brp —tip, (e1teatipg )py 0
Using the cocept of section 4.1, we have
RPE —1_ B%((((€2+,U«PB)E3+EIE4),BPB+(52€3+(61+#PB)54)5PB)BPB)_,U‘%:B (e1t+e2+pupy)

c - 4A2M‘;’>B:EPB (e2pppzrpgteaBpg Bpg)(e1teat+upy)

Réj B then B% —4A5C5 > 0 and for the point of R(I; B backward bifurcation exists such that
REP < RJP < 1.

s 1t REP <

4.3. Bifurcation analysis for cargo vehicle. For cargo vehicle model backward bifur-
cation exists when compartment of non-polluted vehicles is non-zero. Let us solve system
@ for Ny, then we get

f3(N{) = A3Ny? + B3Ny +C3 =0 (15)

where A3 = (3 — v4) 310y Ty
B3 = (Boy + dcy ) Boyysya + (71 + poy )vapioy + (72 — poy )v3iey )Toy
O — 1e,, (2ticy vy +raBoy Boy ) (nt+r2tucy, )zoy, (1 B RCV)
37 \ (((zFrey yst7174)Bey, (2vs+(iticy, )74)dcy, ) Boy, —ug, (ntr2tpcy )Toy, 0
Here, the cocept of section 4.1 is applied which results
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F(((2tney )13+174)Boy +(1213+ (N +aey )1a)dcy ) Boy ) —ug,, (it+y2tucy,
A4z, woy (enoy Ty 1 Boy, Boy ) (n+r2ticy,)

Rg v then Bg —4A3C5 > 0 and for the point of Rg V' backward bifurcation exists such that

RLY < RSV < 1.

B
RY =1- ev 11 RSy <

Backward bifurcation

Cargo Vehicles

Private Yehicles

Public Vehicles

FIGURE 4. Backward bifurcation

The backward bifurcation interprets that cargo vehicles are at low risk.

5. NUMERICAL SIMULATION

In this section, numerical analysis is carried out to support the model results and to
compare the spread of toxicity through private vehicles, public vehicles and cargo vehicles.

|
2% 457 21% 4
Public vehicles Public vehicles
0% 3% 0% 3%

ﬁ’o]luled vehicles| Non-polluted

vehicles
5%*—j l L’S%
5% 5%

1% 1%
——@ 20% Toxicity e 20%
~
22% 459

Cargo vehicles

0% 2%

Non-polluted
vehicles

Non-p_ollmcd Polluted vehicles|
vehicles

Polluted vehicles!

FIGURE 5. Simulation results from the model

Some observations are made from the simulations as shown below:

(1) Need for public and cargo vehicle is more in comparison to private vehicles.
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(2) Private vehicle can be non-polluted but public and cargo vehicles cannot be non-
polluted because of their fuel category.

(3) Private and cargo vehicles are less polluted as compared to public vehicles. Because
cargo vehicles move on highways and its entry to the city are prohibited in day
time.

(4) Statistics shows that there is an excessive possibility to become polluted private
vehicle from non-polluted ones. This is a result of individuals’ tendency to live a
comfortable and luxurious life.

(5) There are more chances of becoming non-polluted private vehicles than that of
public and cargo vehicles. The transfer rate of non-polluted into polluted vehicles
is equivalent in the case of public and cargo vehicles. This happens because both
these types of vehicles run on diesel.

(6) Toxicity is spreading with the uniform rate for public and cargo vehicles and it is
higher than that of public vehicles.

(7) The scrapped rate of public and cargo vehicle is low/negligible which creates high
toxicity compared to private vehicles.

Toxicity through private vehicles
Toxicity through public vehicles

FIGURE 6. Concentration of toxicity with respect to growth rate

Figures propose that when the growth rate is increased by 10% then the significant change
is observed in toxicity. For private, public and cargo vehicles, toxicity is increased by
14.94%, 9.82% and 1.89%, respectively. This suggests private vehicles are responsible for
more toxicity because of its density. Also, this analysis indicates that there is a dire need
to curb the growth rate of each vehicle category.

6. CONCLUSIONS

In this paper, three consequent models are compared for toxic commuters. Here, private,
public and cargo vehicles are assumed as toxic commuters. The models are developed
to compare the dispersion of toxicity through these vehicles. The threshold quantity is
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computed to calculate the density of vehicles affecting toxicity. The observed threshold
for private, public and cargo vehicle is 0.2364, 0.3255 and 0.5443, respectively. This says
that only 23.64% non-polluted private vehicles exist which is les than among the density of
public and cargo vehicles. On the threshold quantity, backward bifurcation is dependent.
The critical threshold is observed for three of the models. The critical threshold is 0.46,
0.255 and 0.134 for private, public and cargo vehicle. This suggest that cargo vehicles are
at low risk for polluting environment. The stability of the models suggest that the ratio
of newly infected toxic air pollutants created by vehicular pollution should be less than 1.
This research advocates that the growth rate of each types of vehicles should be under
controlled, especially for private vehicles. Vehicles should be run on that fuel or with
the technology which is less harmful to the environment. To support this idea, advanced
technology should be adopted. With the advanced technology, electric public transport
and trucks are made just like electric private transport.
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