
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

3-D Mesh Geometry Compression
with Set Partitioning in the Spectral Domain

Ulug Bayazit, Umut Konur, and Hasan Fehmi Ates, Member, IEEE

Abstract—This paper explains the development of a highly
efficient progressive 3-D mesh geometry coder based on the region
adaptive transform in the spectral mesh compression method. A
hierarchical set partitioning technique, originally proposed for
the efficient compression of wavelet transform coefficients in high
performance wavelet based image coding methods, is proposed
for the efficient compression of the coefficients of this transform.
Experiments confirm that the proposed coder employing such a
region adaptive transform has a high compression performance
rarely achieved by other state of the art 3-D mesh geometry
compression algorithms.

A new, high performance fixed spectral basis method is also
proposed for reducing the computational complexity of the
transform. Many-to-one mappings are employed to relate the
coded irregular mesh region to a regular mesh whose basis is
used. To prevent loss of compression performance due to the
low-pass nature of such mappings, transitions are made from
transform based coding to spatial coding on a per region basis
at high coding rates. Experimental results show the performance
advantage of the newly proposed fixed spectral basis method
over the original fixed spectral basis method in the literature
that employs one-to-one mappings.

Index Terms—Data compression, data visualization, transform
coding, computer graphics, virtual reality.

I. INTRODUCTION

IN recent years, there has been a marked increase in the
demand to access and visualize 3-D object information

in a wide variety of applications in manufacturing, archi-
tecture, defense, computer aided design and entertainment.
Most applications that employ 3-D models are network-bound.
Consequently, conservation of bandwidth by compressing the
geometry and topology of the surface model has been in the
focus of research efforts since the seminal work of Deering [1]
and gained speed with the development of the MPEG-4 Visual.
Functionality and low complexity as well as compression
efficiency became the key elements of the more recent 3-D
object surface representation and coding algorithms.

Three types of information are coded for the surface mesh
representation of an object. Connectivity information specifies
all pairs of connected vertices. Geometry information provides
the 3-D coordinates of all vertices. Additionally, properties
associated with each face, edge or vertex of an object such as
texture values and material attributes might also be coded.
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Most early geometry compression methods are predictive
schemes that are tightly coupled with the connectivity coding
methods. The vertex traversal order dictated by connectivity
coding is accepted by both the encoder and decoder in such
coders. A wide range of predictive geometry coders [1]–[9] for
single or multi-resolution, lossless or lossy coding based on
scalar or vector quantization have been previously proposed.
Exceptions to the rule of connectivity coding dictating geom-
etry coding may be found in [10], [11].

Since the advent of [13], [14], transform domain mesh
geometry coding has gained acceptance. Most wavelet trans-
form based geometry compression methods [14]–[17] treat the
compression problem as a 3-D object surface approximation
problem which is different from the irregular mesh vertex
approximation problem treated in [13], [18]–[20], [28]. The
methods in [14]–[17] convert irregular mesh connectivity into
subdivision connectivity by a remeshing technique [9] to yield
a multi-level representation. An iterative subdivision process
is carried out on a base level coarse mesh to obtain finer level
meshes at the desired resolutions. In normal mesh compression
[15], a base point is predicted from vertices in the coarse
level and a finer level vertex is determined by intersecting
a line drawn in a normal direction from the base point
with the original surface. Thereby, most of the finer level
vertices are expressed by a single (normal) coordinate in a
local coordinate system. Advanced coding algorithms such
as SPIHT (Set Partitioning in Hierarchical Trees, [21]) or
Estimation/Quantization [16] are then used to compress the
normal and tangential coordinates.

In the progressive compression scheme of [28], the wavelet
decomposition is formulized for an irregular mesh without
altering the original connectivity. The wavelet transform is
realized by an exact integer analysis-synthesis scheme via the
lazy filter-bank modified by the lifting scheme. Starting with a
base mesh, connectivity is iteratively coded by coding for each
face, the positions of the newly inserted vertices, subdivision
orientation and edge flips for some subdivisions into two. The
detail information (wavelet coefficients) of each level is scalar
quantized and entropy coded. In [29], a zerotree based bitplane
coder is substituted for the scalar quantizer of [28].

The transform of [13], the focus of the current work, is
a generalization of the classical 1-D Fourier transform to the
3-D irregular meshes. The transform coefficients are adaptively
computed by projecting the vertex coordinates onto the or-
thonormal Laplacian basis derived from mesh topology. In the
spectral compression method of [13], most of the coefficients
with low presumed energy are discarded, and the rest are
entropy coded. This coder is embedded to some extent because
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Fig. 1. Proposed CSPECK based geometry encoder

increasing the number of coded/decoded coefficients allows
for progressive reconstructions at increasing fidelity levels.
The extensions in [18]–[20] attempt to reduce the transform
complexity or to improve the visual quality.

The current work solely addresses geometry coding since
recent research has largely focused on it and the coordinate
values contribute the greater fraction of the 3-D mesh infor-
mation. The entire connectivity information is assumed to be
coded in advance as in [13], [28], [29] and facilitates the
single resolution, lossy coding of the geometry information
by the proposed coder. The proposed coder primarily supports
triangular faces that are the common denominator of rendering
tools in graphics hardware and software.

The geometry coder proposed in this paper is depicted in
Figure 1. Surface partitioning limits the complexity of the
transform of [13] for a large surface mesh and facilitates the
local surface properties to be better captured for compression
purposes since the transform for each region is adaptively
designed. As in [13], the MeTiS software package [23] is also
used here for multilevel graph based mesh partitioning.

We first propose that the transform coefficients for all the
regions be bit plane coded with the CSPECK (Color Set Parti-
tioning Embedded Block Coder) algorithm [22] with a motiva-
tion similar to that of [14], [15], [29]. The CSPECK algoritm
is based on SPECK, the low complexity, high performance
wavelet based greyscale image compression algorithm that
was integrated into the JPEG 2000 standard as SBHP (Sub-
band Block Hierarchical Partitioning). CSPECK processes the
coefficients in an order dictated by their magnitudes using
a set partitioning method and makes implicit bit allocation
to each space coordinate or mesh region possible. The more
accurate bit priorities yield a truly embedded bitstream. In
addition, since the dependencies among the most significant
bits of multiple coefficient magnitudes can be exploited by
coding multiple insignificant bits with a single symbol, high
compression performance can be attained.

A second important contribution of this work is a modifi-
cation of the fixed spectral basis method of [18] toward a low
complexity and high performance coding system. Although
the coding methods in [13]–[15] provide high compression
performance, their front end components such as the adaptive
transform and the semi-regular remesher are computationally
inefficient. Due to the resulting inferior compression perfor-
mance, the use of the original fixed spectral basis method of
[18] in place of the adaptive transform is not a good solution
to the complexity problem. The compression performance
suffers not because of the basis itself, but because of the
way the irregular mesh region vertices are one-to-one mapped

to the regular region vertices prior to the transform. As a
viable solution, we propose that the coordinate values of more
than one irregular mesh region vertex be used to define the
coordinate values of each regular region vertex at the encoder,
and the coordinate values of more than one reconstructed
regular region vertex be used to define the coordinate values of
each reconstructed irregular mesh region vertex at the decoder.

Next section reviews the adaptive transform and the spec-
tral mesh compression method of [13]. Section III describes
the proposed bit plane coding of the transform coefficients,
illustrates the basic operation on a simple example mesh and
elaborates on the entropy coding of the generated symbols.
Section IV reviews the fixed spectral basis method of [18]
and presents the proposed fixed basis method based on many-
to-one mappings between the irregular region vertices and the
regular region vertices. Section V presents the experimental
results for the proposed coder with either the adaptive trans-
form or the proposed fixed spectral basis method, as well as
for the methods of [3], [13], [18], [28] for comparison.

II. THE SPECTRAL MESH COMPRESSION METHOD

In [13], the transform for coordinate γ ∈ {x, y, z} is
performed by projecting sγ , the vector of γ coordinate values
for all vertices in a region, onto the orthonormal basis defined
by the eigenvectors of the Laplacian operator matrix L with

Lij =

 1 i = j
−1/di i and j are neighbors
0 otherwise

as elements where di denotes the valence of the ith vertex of
the region. The Laplacian operator transforms the coordinate
values into their prediction error values.

For regions with largely smooth surfaces, such a basis is
advantageous for compression purposes since it compacts most
of the prediction error information into a small number of
low frequency coefficients corresponding to small eigenvalues.
Figure 2 shows the energy distribution of the coefficients
(sorted by their eigenvalues from small to large) of the
mostly smooth regions of the Bunny model. Prediction error
information in regions of models with high frequency detail
such as sharp edges, corners and crevices can be represented
with a large number of coefficients.

Spectral mesh compression method in [13] keeps a subset
of the coefficients corresponding to small eigenvalues, scalar
quantizes these coefficients and entropy codes the quantization
levels. High rate-distortion performance is not guaranteed due
to inefficient bit allocation to coefficients. For example, a low
bit plane bit of a small eigenvalue coefficient with low energy
may be coded prior to a high bit plane bit of a large eigenvalue
coefficient with high energy.

A practical problem with the spectral mesh compression
method is the size of the alphabet for coding the quantization
levels at high quantization resolutions. A resolution of 16 bits
requires an alphabet of 32768 letters with 1 bit reserved for
the coefficient sign. In adaptive entropy coding, this implies
that a very large number of symbols (>> 32768) need to be
coded before the probability model approximates the actual
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Fig. 2. A sharp decline in the energies of coefficients (sorted in the ascending
order of their eigenvalues) is observed.

probability mass distribution of the levels. The long warm-up
period implies a substantial increase of rate over entropy.

III. BIT-PLANE CODING WITH CSPECK

The SPECK algorithm [22] recursively partitions sets of
wavelet coefficients to locate the large magnitude coeffi-
cients and code their most significant bits with priority in
the bitstream. Unlike its predecessor SPIHT, which exploits
the correlation between the magnitudes of spatially related
coefficients both across and within subbands, SPECK exploits
the correlation between the magnitudes of spatially related
coefficients only within a subband for image compression gain.

In the color image coding method of [22], the SPECK
operations for the 2-D wavelet transform coefficients of the
color planes are interleaved in each pass. Similarly, we adopt
CSPECK for coding 1-D coefficient vectors of arbitrary size
by interleaving the SPECK operations for the three 1-D
coefficient vectors of the three coordinates in each pass.

A. CSPECK for coding 1-D coefficient vectors

Prior to the application of CSPECK, the spectral transform
is applied on the vertices of each region to compute the
coefficients. For each coordinate γ ∈ {x, y, z}, the coefficients
are ordered by their eigenvalues (small to large) to make up the
components of a coefficient vector cγ of arbitrary size. Such
an ordering that generally arranges the coefficients from high
to low energy, is the configuration with the largest correlation
between adjacent coefficient magnitudes that does not need to
be specified to the decoder with overhead bits.

Both SPECK and CSPECK consist of multiple coding
passes. When SPECK that operates on a single set is extended
to CSPECK for coding the three 1-D coefficient vectors for
the three space coordinates, the (sub)sets belonging to different
vectors are processed largely independently of each other, in
an interleaved manner.

Let tγ,i denote the ith component of a vector (set) tγ of
coefficients for coordinate γ. The significance of the vector at
bitplane n is defined as

Πn(tγ) =

{
1 2n ≤ max

i
{|tγ,i|} < 2n+1

0 otherwise

Let the most significant bitplane nmax be such that
Πnmax

(cγ) = 1 for at least one γ and Πnmax+1(cγ) = 0
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Fig. 3. Left: Initial partitioning of the coefficient vector. Right: Generic
partitioning schemes for sets of type S (top) and type I (bottom).

for all γ. As CSPECK is initialized, nmax is coded. In
(nmax − n + 1)th pass bitplane n is processed. In the first
pass, each of the three coefficient vectors is partitioned into
a type S set S0 and a type I set I0 as shown in Figure
3. In each following pass, CSPECK recursively partitions
significant sets down to significant coefficients or smaller
insignificant sets. When partitioned, a generic type I set Ir
yields a smaller type I set Ir+1 and a type S set Sr+1 so that
Ir = Ir+1 ∪ Sr+1. In this case, |S0| = 2l for some small
integer l and |Sr| = min(

∑r−1
k=0 |Sk| , |Ir−1|) with I−1 = cγ .

When a generic type S set S of arbitrary size is partitioned,
two type S sets, S′ and S′′ are formed where |S′| = b|S| /2c
and |S′| = d|S| /2e.

The location information for a significant coefficient or an
insignificant set gets implicitly coded as a consequence of
coding the set significance decisions.

CSPECK maintains, LIS, a list of type S sets deemed
insignificant for the most recent bitplane, and LSC, a list of
coefficients deemed significant for the most recent bitplane.

In the first step of each pass called the sorting step, the type
S sets in the LIS are recursively processed. This is followed by
the recursive processing of the type I sets (if any). A type S set
is processed by coding its significance state and partitioning
it into two type S sets as described above when it is deemed
significant and contains more than one coefficient. The type
S sets in the LIS are processed in the order of increasing
cardinality since fewer bits are coded for small type S sets
for about the same distortion reduction as large S sets. Due
to recursion in processing, all significant coefficients in these
sets are encountered in the same sorting step. A type I set is
processed by coding its significance state and partitioning it
into a type S set and a smaller type I set as described above
when it is deemed significant. Insignificant type S or type
I sets are added to the LIS. Finally, the signs of significant
coefficients are coded in the sorting step. These coefficients
are added to the LSC by recording their first reconstructions
(representing the most significant bits) as ĉγ,i = ±(1.5)2n and
the reconstruction errors as eγ,i = cγ,i − ĉγ,i.

In the refinement step, the less significant bits of those
coefficients deemed significant before the last sorting step
are output as bγ,i = (eγ,i > 0). The reconstructions and
the errors are updated as ĉγ,i = ĉγ,i + (2bγ,i − 1)2n−1 and
eγ,i = cγ,i − ĉγ,i.

Finally, in the quantization step, the bitplane index n is
updated as n ← n − 1. The three steps of each pass are
iteratively executed until the desired rate is reached.
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B. A simple example

In this section, some of the critical details of the cod-
ing procedure are highlighted on a sample triangle mesh
with 4 vertices and 4 triangular faces. For the sample

mesh, G =


−3 2 2

7 −1 9
2 8 7
8 3 5

 and N =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


(ijth entry indicates whether vertices i and j are con-
nected) are the geometry and adjacency matrices, respec-
tively. The corresponding Laplacian operator matrix is

L =


1.000 −0.333 −0.333 −0.333
−0.333 1.000 −0.333 −0.333
−0.333 −0.333 1.000 −0.333
−0.333 −0.333 −0.333 1.000

 whose col-

umn eigenvectors are stacked into the matrix

Ψ =


−0.500 −0.216 0.866 0.089
−0.500 0.839 −0.289 −0.345
−0.500 −0.146 −0.289 −0.520
−0.500 −0.478 −0.289 0.776

 in the order

of increasing eigenvalues which are 0, 1.333, 1.333 and 1.333.
The transform coefficients for each coordinate, computed

by projecting the geometry onto the eigenvectors, make up
the rows of the matrix

C = GTΨ =

 −7.000 2.408 −7.506 2.491
−6.000 −3.868 −1.155 −1.311
−11.500 3.712 −4.330 −2.685

.

Since the maximum coefficient magnitude is 11.500, we have
nmax = blog2 11.500c = 3. The proposed coder works in
a normalized domain for magnitudes where the maximum
magnitude is 1.4375 so that 2nmax × 1.4375 = 11.5.

In this example, each cγ is initially partitioned into a
single coefficient type S set S0 and a type I set I0 of three
coefficients. When I0 is significant, it is partitioned into
another single coefficient type S set S1 and a type I set I1
of two coefficients. When I1 is significant, it is partitioned
into two single coefficient type S sets S2 and S3. When Si is
significant its sign is coded and it is added to the LSC.

Even though actual coding with CSPECK takes place until
the desired bit rate is reached, let us examine only the first five
passes in our example. For each pass, the bitplane index n,
the magnitude threshold 2n in that pass, and the significance
states, the coded signs and the reconstructions of all coefficient
magnitudes after that pass are shown in Table I.

The coded refinement decisions at each step (not shown in
Table I) can be inferred. For example, in pass 1, no refinement
code is produced whereas in pass 2, those coefficients that
were significant in pass 1 are refined. Observing the recon-
structed magnitudes of the coefficients at the end of each pass
reveals what the refinement decisions are.

At the end of the fifth pass, the matrix of coefficient re-

constructions is Ĉ =

 −7.25 2.25 −7.75 2.25
−6.25 −3.75 −1.25 −1.25
−11.75 3.75 −4.25 −2.75

.

The geometry matrix of reconstructed coordinates is then
determined as

TABLE I
THE BITPLANE INDEX n, THE MAGNITUDE THRESHOLD Tn , THE

SIGNIFICANCE STATES OF THE COEFFICIENTS AND SIGNS OF SIGNIFICANT
COEFFICIENTS AND THE RECONSTRUCTIONS OF THE COEFFICIENTS AT

EACH PASS.

Pass 1 Significance x 0 0 0 0
n = 3 State/ Sign y 0 0 0 0

Threshold z 1 /- 0 0 0
=8 Reconst. x 0 0 0 0

Magnitudes y 0 0 0 0
z 12 0 0 0

Pass 2 Significance x 1 /- 0 1 /- 0
n = 2 State/ Sign y 1 /- 0 0 0

Threshold z 1 /- 0 1 /- 0
=4 Reconst. x 6 0 6 0

Magnitudes y 6 0 0 0
z 10 0 6 0

Pass 3 Significance x 1 /- 1 /+ 1 /- 1 /+
n = 1 State/ Sign y 1 /- 1 /- 0 0

Threshold z 1 /- 1 /+ 1 /- 1 /-
=2 Reconst. x 7 3 7 3

Magnitudes y 7 3 0 0
z 11 3 5 3

Pass 4 Significance x 1 /- 1 /+ 1 /- 1 /+
n = 0 State/ Sign y 1 /- 1 /- 1 /- 1 /-

Threshold z 1 /- 1 /+ 1 /- 1 /-
=1 Reconst. x 7.5 2.5 7.5 2.5

Magnitudes y 6.5 3.5 1.5 1.5
z 11.5 3.5 4.5 2.5

Pass 5 Significance x 1 /- 1 /+ 1 /- 1 /+
n = −1 State/ Sign y 1 /- 1 /- 1 /- 1 /-

Threshold z 1 /- 1 /+ 1 /- 1 /-
=0.5 Reconst. x 7.25 2.25 7.75 2.25

Magnitudes y 6.25 3.75 1.25 1.25
z 11.75 3.75 4.25 2.75

Ĝ = Ψ−T ĈT =


−3.0818 2.0455 2.2004

6.9332 −0.7341 9.1449
2.5827 7.9998 7.1164
8.0660 3.1889 5.0383


C. Lossless Coding of Symbols

Since the sign distribution of the coefficients is expected to
be uniform, the sign symbols of the significant coefficients are
binary-coded. Due to the high probability of the insignificance
decision, the significance decision symbols are entropy coded
to realize a coding gain. Similarly, as in [26], a modest coding
gain is realized by entropy coding the refinement symbols
since the refinement towards the small magnitude has slightly
larger probability than the refinement towards large magnitude.
Since the symbol alphabets are small and skewed, arithmetic
coding [25] is preferred. The symbol letter probabilities are
adaptively estimated from the observed frequencies during the
actual coding pass as in [25].

Conditional entropy coding is used to exploit the depen-
dencies between the decision symbols for adjacent sets. In
simple conditional entropy coding, the significance decision
symbols for two adjacent sets are individually entropy coded.
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If these sets are subsets of a partitioned set, the second symbol
is entropy coded only if the first one is significant since a
partitioned set has at least one significant subset.

In order to further improve the coding performance, a
context adaptive conditional entropy coding method for sig-
nificance and refinement symbols has also been developed.
Let Z be the context of the coded significance decision or
refinement symbol X . When the coefficients are ordered by
their eigenvalues, the context Z that minimizes the conditional
entropy H(X|Z) = H(X)−I(X;Z) (or maximizes I(X;Z))
is from the immediate neighborhood of X . The energy distri-
bution in Figure 2 shows the statistical dependency between
the magnitudes of adjacent coefficients.

For each space coordinate, separate adaptive probability
models are trained and used in the arithmetic coding of
significance and refinement symbols. Thereby, the different
surface characteristics along the three coordinate axes can
be captured. For instance, a region on the leg of the horse
model has smaller curvature along the z-axis than along the
x or y-axis. Hence, the energy distribution of the z-coordinate
coefficients is more skewed towards small eigenvalues than
the energy distributions of the x or y-coordinate coefficients.

Different probability models are used for coding the signif-
icance of single coefficient sets and sets with multiple coeffi-
cients. When the significance decision of a single coefficient
set is coded, the (combination of the) significance state(s)
of the (two) single coefficient neighbor set(s) is used as the
context. Similarly, when the significance decision of a set
with multiple coefficients is coded, the (combination of the)
significance state(s) of the (two) neighbor set(s) of size 32
coefficients is used as the context. This empirically determined
size maximizes the average coding performance.

Let TR and TL be the right and left neighbor sets of set T
whose significance decision is coded. The significance state of
Ta (a ∈ {R,L}) is defined as

Φsn(Ta) =



0 2n > max
i:i∈Ta

{|cγ,i|}
(i.e insignificant in this pass)

1 2n ≤ max
i:i∈Ta

{|cγ,i|} < 2n+1

(i.e significant in this pass)

2 max
i:i∈Ta

{|cγ,i|} < 2n+1, 2n
?
> max
i:i∈Ta

{|cγ,i|}
(i.e insignificant in previous pass)

Let p1γ(Πn(T )|z) and pmγ (Πn(T )|z) be the probability models
used in arithmetic coding for the single coefficient sets and
multiple coefficient sets, respectively. If both neighbor sets
exist, z = 3 × Φsn(TL) + Φsn(TR), else if only TR exists
z = Φsn(TR) + 9, else if only TL exists z = Φsn(TL) + 12.

The context used for refinement symbol coding is deter-
mined using the refinement state(s) of the (two) neighbor
coefficient(s) of the refined coefficient. Let prγ(b|z) be the
probability model used for the arithmetic coding of the re-
finement symbol b of coefficient cγ,i. In this case,

z =

 0 2n+1 > |cγ,i|
1 2n+1 ≤ |cγ,i| and (2n+1 ≤ |cγ,L| or 2n+1 ≤ |cγ,R|)
2 2n+1 ≤ |cγ,i| and 2n+1 > |cγ,L| and 2n+1 > |cγ,R|

Marginal returns (Fandisk 14Kbits-24Kbits)
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Fig. 4. The marginal returns with the proposed CSPECK based coder have
much lower variability (variance=6.39E-10) than those with the spectral mesh
compression method (variance=1.35E-7).

 

Fig. 5. A small regular hexagonal mesh with 16 vertices.

is used as the context where cγ,R and cγ,L are the right and
left neighbor coefficients of the refined coefficient.

D. Rate allocation efficiency of the CSPECK based coder

The marginal return between the k’th and k − 1’th op-
erating rate-distortion points of n’th source is λ(n, k) =∣∣∣Dn,k−Dn,k−1

Rn,k−Rn,k−1

∣∣∣. For optimal bit allocation to independently

coded sources, the distortion-rate tradeoffs at operating points
must be approximately equal in the sense that operating point
m(n) for n’th source satisfies λ(r,m(r) − l) > λ(n,m(n))
and λ(r,m(r) + l) < λ(n,m(n)) for r 6= n and l > 0 where
Rn,m−1 < Rn,m. In the current work, each coordinate vector
of each region constitutes a source. In general, the marginal
returns for coding the regions with the proposed coder exhibit
a much smaller variability than those for coding the regions
with the spectral mesh compression method.

In Figure 4, the marginal returns for the coding of the
Fandisk model with the proposed coder and the spectral mesh
compression method between 14000-24000bits are presented.

IV. FIXED SPECTRAL BASIS

The fixed spectral basis method, formulated in [18] by
computing the spectral basis for regular regions beforehand
and using them to code the regions of an irregular mesh, offers
a low complexity alternative to the adaptive transform. Figure
5 shows an example of a small hexagonal (regular) region with
N ×N = 16 vertices.

In [18], the transforms for such regular regions of various
sizes (i.e.) are designed offline as described in Section II.
The smallest regular region with at least as many internal
and boundary vertices as the coded irregular mesh region is
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Fig. 6. Partitioning of the points (x-marks) on the unit disc.

selected. Vertices are then inserted to the irregular mesh region
to make the number of its internal vertices and the number of
its boundary vertices equal to those of the regular region.

A one-to-one mapping between the vertices of the coded
irregular mesh region and the vertices of the regular region
is established next. A geometric 2-D embedding method is
proposed in [18] for determining this mapping. In this method,
the boundary vertices of the regular region are represented
as points on the unit circle with equal angular spacing. The
internal points of the regular region are randomly initialized
on the unit disc and an iterative procedure that sets each
2-D coordinate of each point equal to the mean of the
corresponding coordinates of its connected neighbors is run to
determine the final point positions on the unit disc. The point
positions on the unit disc that represent the vertices of the
irregular mesh region are determined by a similar procedure.

The points on one disc are one-to-one mapped to the points
on the other disc to minimize the total squared distance. Since
the geometric mapping of a large number of points between
two unit discs is computationally expensive, a divide and
conquer approach is followed. The points of each disc are
recursively partitioned into two equal size sets by alternating
horizontal and vertical lines as shown in Figure 6. The points
of each smallest subset of one disc are one-to-one mapped to
the points in the corresponding subset of the other disc.

In [18], the one-to-one mapping between the points in the
two corresponding subsets is designed by a greedy assignment
technique. A better design alternative is to use the Hungarian
method, the best solution to the assignment problem.

Prior to the transform, the components of sγ are permuted
by the one-to-one mapping M(.) to yield the vector s̃γ
with components s̃γ,j = sγ,M(j). By projecting s̃γ onto the
spectral basis of the selected regular region, the coefficient
vector cγ is obtained for the γ coordinate which may be
coded with the spectral mesh compression method of [13]
or with the proposed CSPECK based coder. After decoding,
the inverse transform on the reconstructed coefficient vector
ĉγ yields the vector ˆ̃sγ . The components of ˆ̃sγ are permuted
to yield the reconstructed coordinate vector with components
ŝγ,j = ˆ̃sγ,M−1(j).

The inserted vertices and their reconstructions are neglected
in the distortion computation, but the presence of these vertices
inside sγ has a modest contribution to the rate.

A. The proposed fixed spectral basis method

Even when the total squared distance between the points
of the corresponding subsets of the unit discs is minimized,

the one-to-one mapping is suboptimal. This can be illustrated
with a simple example. Let point p representing vertex v in the
regular region have about equal Euclidean distance to points q1
and q2 (with distance to q2 slightly larger) representing vertices
u1 and u2, respectively, in the irregular mesh region. In this
case, p is one-to-one mapped to q1, but q2 does not take part in
determining the coordinate values of v on which the transform
operates. It would be more reasonable here to determine the
coordinate values of v by averaging the coordinate values of
u1 and u2 rather than using the coordinate values of only u1.

The many-to-one mapping suggested above can be
generalized. Let point pj represent vertex s̃j in the
regular region. Let points qM(j,1), . . . , qM(j,K), repre-
senting vertices in the irregular mesh region, be the
K nearest to the point pj with Euclidean distances
δj,k =

∥∥pj − qM(j,k)

∥∥
2
. Here M(j, k) is the proposed many-

to-one mapping applied before the transform. Normalization
of the inverse distances yields a set of weights given as

wj,l =
(
δj,l
∑K
k=1 δ

−1
j,k

)−1
. The j’th component of the vector

of γ coordinates of the regular region vertices is computed
as the weighted average of the γ coordinates of the mapped
vertices in the irregular mesh region,

s̃γ,j =

K∑
k=1

wj,ksγ,M(j,k). (1)

Figure 7 shows the proposed mapping between the two discs.
After the transform, CSPECK encoding/decoding and the

inverse transform, the reconstructed coordinates of the regular
region vertices are used to reconstruct the irregular mesh
region coordinates by means of another similar mapping.

Let point qj represent vertex sj in the irregular mesh

region. Let points pM̃(j,1), . . . , pM̃(j,K), representing vertices
in the regular region, be the K nearest to the point pj with

Euclidean distances εj,k =
∥∥∥qj − pM̃(j,k)

∥∥∥
2
. Here M̃(j, k) is

the proposed many-to-one mapping applied after the inverse
transform. Normalization of the inverse distances yields a

second set of weights given as w̃j,l =
(
εj,l
∑K
k=1 ε

−1
j,k

)−1
. The

j’th component of the vector of reconstructed γ coordinates
of the vertices in the irregular mesh region is computed as the
weighted average of the reconstructed γ coordinates of the
mapped vertices in the regular region,

ŝγ,j =

K∑
k=1

w̃j,kˆ̃sγ,M̃(j,k). (2)

In order to map the regular region and irregular mesh region
boundaries to each other, when j is the index of a boundary
vertex of the regular (irregular mesh) region, K is set to 2
and M(j, k) (M̃(j, k)) is forced to be the index of a boundary
vertex of the irregular mesh (regular) region. For many-to-one
mapping of internal vertices, the coding performance increases
with K, but gains are rather marginal for K > 5.

Similar to the original fixed basis method, the transforms
for regular regions of various sizes (i.e. N = 5, . . . , 30) are
designed offline in the proposed method. For each irregular
mesh region, the smallest regular region with more vertices is
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Fig. 7. The dashed lines indicate the many-to-one mapping ( N = 5, K = 3
) of the points representing the irregular region to the points representing the
regular region. Position of point pj on the left is lightly marked on the right.
The solid lines indicate connected neighbor vertices

used. Insertion of vertices into the irregular mesh region is not
needed since the mappings are not one-to-one.

The weighted averagings in Equations 1 and 2 are low-
pass filtering type operations that result in the loss of high
frequency information such as edges, corners, crevices. The
CSPECK based coder employing the adaptive transform codes
low frequency information at low bit rates and high frequency
details at higher rates for an overall high performance. On the
other hand, while the CSPECK based coder with the proposed
fixed basis method also has a high performance at low rates
due to coding of low frequency information, it has inferior
performance at high rates due to continued coding of low
frequency instead of filtered out high frequency information.

As a solution to this problem, a transition is made from
transform domain coding of coordinate values to spatial do-
main coding of coordinate errors for each region when it is
predicted in a CSPECK pass that the distortion gain for that
pass and subsequent passes will be below a certain level.

Since the magnitudes of the coefficients are known prior
to CSPECK coding, the reconstructed vertex coordinates in
both the regular and irregular regions can be determined. If the
distortion reduction ∆Dk = Dk−Dk+1 between passes k and
k+1 satisfies ∆Dk < 0.3Dk, k = N,N+1, . . . , the transform
based coding of an irregular mesh region is terminated due to
inadequate distortion gain for passes N + 1 and larger.

Let ddesired be a user specified fidelity criterion. After
CSPECK based coding is completed, the coordinate errors in
each irregular mesh region with DN > ddesired are coded in
the spatial domain by successive approximation scalar quanti-
zation. The threshold δ used in the first spatial domain coding
pass is set equal to half the largest vertex coordinate error
magnitude which is binary coded with 32 bits. The threshold
value at each subsequent pass is set equal to half the one in
the previous pass. All coordinate errors are initially deemed
insignificant. At each generic pass, the significance decisions
for previously insignificant errors are entropy coded. The first
reconstructions of significant coordinate errors are made as
±1.5δ by adding ±1.5δ to the coordinate reconstructions. At
each pass, reconstructions of the coordinate errors deemed
significant in previous passes are refined. According to the
sign of the binary coded remaining error, ±0.5δ is added to the
reconstructed coordinate value. The number of spatial domain
coding passes needed to reach ddesired is also binary coded
by using 6 bits for each region.

In the CSPECK coder employing the fixed basis methods,

the irregular mesh region is required to be simply connected
since the mapped regular region is simply connected. A single
application of MeTiS sometimes generates irregular mesh
regions that are not simply connected. In this work, such mesh
regions are recursively partitioned into two by MeTiS until all
resulting smaller mesh regions are simply connected.

V. EXPERIMENTS AND DISCUSSION

The simulations were conducted on the Venus Head (50002
vertices, 100 partitions), the low resolution Venus Head (8268
vertices, 16 partitions), the Bunny (34835 vertices, 70 par-
titions), the Horse (19,851 vertices, 40 partitions), and the
Fandisk (6475 vertices, 13 partitions) models.

The visual error metric of [13] is preferred (see [20]) for
assessing the vertex coordinate reconstruction quality, since
it is based on similarities between perceptive features like
local smoothness values at corresponding surface points. Let
V and V̂ be the sets of N vertices of the original and recon-
structed models, M and M̂ , respectively. The metric is defined
as dvis(M, M̂) = 1

2N

(∥∥∥V − V̂ ∥∥∥
2

+
∥∥∥GL(V )−GL(V̂ )

∥∥∥
2

)
where GL(vi) = vi −

(∑
j∈n(i) l

−1
ij

)−1∑
j∈n(i) l

−1
ij vj

is the geometric Laplacian operator for vertex vi ,∥∥∥V − V̂ ∥∥∥
2

=
(∑

vi∈V ‖vi − v̂i‖
2
2

)1/2
and n(i) is the index

set of the neighbors of vi.
Hausdorff and Root Mean Square (RMS) distances

are the proper measures for assessing the approximation
quality of the original mesh surface with the reconstructed
surface. These distances are popular for evaluating geometry
compression performance under topology change that occurs
due to remeshing or simplification. The RMS distance
between the surfaces S and S′ is defined as drms(S, S′) =

max

((
1
|S|
∫
p∈S d(p, S′)2dp

) 1
2

,
(

1
|S′|
∫
p∈S′ d(p, S)2dp

) 1
2

)
where d(p, S′) = min

p′∈S′
‖p− p′‖ is the point to surface

distance.
In Figure 8, the performance curves for two different vari-

ations of the proposed CSPECK based coder employing the
adaptive transform, 12, 14 and 16 bit quantization variations
of the spectral mesh compression method of [13], and the
predictive compression method of [3] are presented. The
spectral mesh compression method is superior to the predictive
compression method at low rates, but suffers at high rates due
to inefficient bit allocation to regions and coordinates. The
proposed coder maintains the superior low rate performance
and is competitive with the predictive compression method at
high rates due to better bit allocation and the joint coding of
the zero bits of multiple coefficients with a single symbol.

The context adaptive conditional entropy coding method
yields a slight gain of 0.2-0.4 bpv at high rates over the
simple conditional coding method. Unlike wavelet based im-
age coding, the correlations between adjacent coefficients are
not strong enough for the coder to largely exploit when the
coefficients are sorted in the order of their eigenvalues.

The RMS error vs. total no. bits curves for the proposed
coder and the different versions of the wavemesh coder [28],
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Fig. 8. The visual error vs. geometry coding rate curves for the proposed
coder with the adaptive transform, the spectral mesh compression method and
the predictive compression method of [3]. a) Bunny b) Horse c) Venus Head

[29] are plotted in Figure 9. The proposed coder is superior to
the wavemesh coder with the bitplane coding option at all rates
and the wavemesh coder with the scalar quantization option
at rates above the connectivity coding rate.

The reconstructions of Bunny and Fandisk in Figure 10
and Figure 11 suggest that the proposed coder codes high
frequency features such as the edges with high priority,
whereas the wavemesh coder codes the smooth regions with
high priority.

In Figure 12, the performance gap between the original
fixed basis method and the adaptive transform is observed
to be more with the spectral mesh compression method than
with the CSPECK based coder. The CSPECK based coder is
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Fig. 9. The RMS vs. total no. bits curves for the proposed coder using the
adaptive transform and the wavemesh coder. a) Fandisk b) Horse c) Venus
Head

more robust against the high frequency energy content of the
spectrum being large with the original fixed basis method. The
proposed fixed basis method partially closes this gap.

Finally, we verify the complexity advantage of the CSPECK
based codec with the proposed fixed basis. Runtime measure-
ments that exclude the time for I/O operations were taken
on an Intel Core2 T7200 system with 2 GB memory and
Windows XP Media Center Edn. SP 2. For the CSPECK
based coder with the adaptive transform employing context
adaptive conditional entropy coding, the non-optimized C-
code implementations code and decode Venus Head (50002
vertices) at 16.3bits/sec. in an average of 922sec. and 1037sec,
respectively. For the CSPECK based coder with the fixed basis,
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Fig. 10. Original Bunny (top left). Reconstructions: The proposed coder
with the adp. transform and context adp. cond. entropy coding [top right
(RMSE=1.58E-4, total 90703 bits)], Spectral mesh compression at 14 bits
quant. [bottom left (RMSE=2.15E-4, total 90942 bits)], Wavemesh coder of
[28] at 10 bits quant.[bottom right (RMSE=1.97E-4, total 119760 bits)]

 

 

Fig. 11. Original Fandisk (top left). Reconstructions: The proposed coder
with the adp. transform and context adp. cond. entropy coding [top right
(RMSE=6.4E-3, 31984 total bits)], Spectral mesh compression at 14 bits
quant. [bottom left (RMSE=11.2E-3, 31911 total bits)], Wavemesh coder of
[28] at 10 bits quant. (note the large faults along the edges) [bottom right
(RMSE=11.7E-3, 45736 total bits)]

the corresponding averages are 34.8sec. and 16.8sec.

VI. CONCLUSION

The distortion vs. rate performance of the proposed
CSPECK based coder with the adaptive transform is sub-
stantially better than that of the original spectral compression
method at all geometry coding rates and generally surpasses
that of the wavemesh coder at rates above the connectivity
coding rate.
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Fig. 12. The visual error vs. geometry coding rate curves for the proposed
CSPECK based coder with the original fixed basis, the proposed fixed basis
and the adaptive transform. The curves for the spectral mesh compression
method (convex hull of the 12,14, 16 bits quantization points) with the original
fixed basis and the adaptive transform, and the predictive compression method
are also shown. a) Bunny b) Horse c) Venus Head

Replacing the adaptive transform with a fixed spectral basis
reduces the computational complexity considerably. However,
when integrated with the powerful CSPECK based coder, the
visual error for the original fixed spectral basis method is three
times that for the adaptive transform. The newly proposed
spectral basis method effectively closes this performance gap.

In the future, we wish to exploit the efficient rate allocation
property of the proposed coders further by pursuing the
problem of joint coding of multiple models with a single
CSPECK based coder. The coder is expected to allocate the
available bits efficiently among different models as well as
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regions of each model. How close the performance with such
an implicit bit allocation can approach the performance with
independent coding of each model with explicit rate-distortion
based bit allocation is an issue of interest.

The substitution of the diffusion wavelet basis of [24] in
place of the Laplacian basis will also be investigated.
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