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Abstract: In this work, we extended the application of ”the modified reductive pertur-
bation method” to long water waves and obtained the conventional KdV equation for the
lowest order term and the degenerate (linear) KdV equation with non-homogeneous part
to the next term in the perturbation expansion. Seeking a localized travelling wave solu-
tions to these evolution equations we determined the scale parameter c1 so as to remove
the possible secularities that might occur. The method can be extended to higher order
expansion without any principal difficulty.

Keywords:Modified reductive perturbation method, Water waves, Korteweg-de Vries equa-
tions.

1. Introduction

In collisionless cold plasma, in fluid-filled elastic tubes and in shallow-water waves,
due to nonlinearity of the governing equations, for weakly dispersive case one obtains the
Korteweg-de Vries (KdV) equation for the lowest order term in the perturbation expansion,
the solution of which may be described by solitons (Davidson [1]). To study the higher
order terms in the perturbation expansion, the reductive perturbation method has been
introduced by use of the stretched time and space variables (Taniuti [2]). However, in
such an approach some secular terms appear which can be eliminated by introducing some
slow scale variables (Sugimoto and Kakutani [3]) or by a renormalization procedure of
the velocity of the KdV soliton (Kodama and Taniuti [4]). Nevertheless, this approach
remains somewhat artificial, since there is no reasonable connection between the smallness
parameters of the stretched variables and the one used in the perturbation expansion
of the field variables. The choice of the former parameter is based on the linear wave
analysis of the concerned problem and the wave number or the frequency is taken as the
perturbation parameter (Washimi and Taniuti [5]). On the other hand, at the lowest order,
the amplitude and the width of the wave are expressed in terms of the unknown perturbed
velocity, which is also used as the smallness parameter. This causes some ambiguity over
the correction terms. Another attempt to remove such secularities is made by Kraenkel
et al [6] for long water waves by use of the multiple time scale expansion but could not
obtain explicitly the correction terms to the wave speed.

In order to remove these uncertainities, Malfliet and Wieers [7] presented a dressed
solitary wave approach, which is based on the assumption that the field variables admit
localized travelling wave solution. Then, for the longwave limit, they expanded the field
variables and the wave speed into a power series of the wave number, which is assumed to
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be the only smallness parameter, and obtained the explicit solution for various order terms
in the expansion. However, this approach can only be used when one studies progressive
wave solution to the original nonlinear equations and it does not give any idea about
the form of evolution equations governing the various order terms in the perturbation
expansion. In our previous paper [8], we have presented a method so called ”the modified
reductive perturbation method” to examine the contributions of higher order terms in the
perturbation expansion and applied it to weakly dispersive ion-acoustic plasma waves.

In this work, we extended the application of ”the modified reductive perturbation
method” developed by us [8]to long water waves and obtained the conventional KdV equa-
tion for the lowest order term in perturbation expansion and the degenerate (linear) KdV
equation with non-homogeneous part to the next term in the perturbation expansion.
Seeking a localized travelling wave solutions to these evolution equations we determined
the scale parameter c1 so as to remove the possible secularities that might occur. The
present method is seen to be fairly simple as compared to the renormalization method of
Kodama and Taniuti [4] and the multiple scale expansion method of Kraenkel et al [6].
The method can be extended to higher order expansion without any principal difficulty.

2. Modified reductive perturbation formalism for water waves

We consider a two-dimensional incompressible inviscid fluid of height h0 in a constant
gravitational field g acting in negative z direction. The space coordinates are denoted by
(x, z) and the corresponding velocity components by (u,w). Following Demiray [9], the
equations describing potential flow are given by

∂2φ̂

∂x2
+
∂2φ̂

∂z2
= 0, (1)

with the boundary conditions

∂φ̂

∂z
=
∂ψ̂

∂t
+
∂φ̂

∂x

∂ψ̂

∂x
, on z = ψ̂(x, t). (2)

∂φ̂

∂t
+

1

2
[(
∂φ̂

∂x
)2 + (

∂φ̂

∂z
)2] + gψ̂ = 0, on z = ψ̂(x, t). (3)

∂φ̂

∂z
= 0 at z = −h0. (4)

Here φ̂(x, z, t) characterizes the flow potential and ψ̂(x, t) stands for the free surface
function of the fluid. Of these boundary conditions, the equations (2) and (3), respec-
tively, describe the kinematical and the dynamical boundary conditions on the free surface
z = ψ̂(x, t) and the equation (4) states that the normal velocity should be equal to zero
on the rigid bottom z = −h0.

Now, we shall consider the long wave in shallow-water approximation to the above
equations by applying the modified reductive perturbation method developed by us (Demi-
ray [8]). According to this method, we introduce the following coordinate stretching

ξ = ε1/2(x− c0t), τ = ε3/2cx, (10)
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where ε is a small parameter characterizing the smallness of certain physical entities, c0
and c are two constants to be determined from the solution.

We expand the functions φ̂ and ψ̂, and the constant c into a suitable power series in
the parameter ε :

φ̂ = ε1/2(φ0+εφ1+ε2φ2+ε3φ3+.), ψ̂ = ε(ψ0+εψ1+ε2ψ2+ε3ψ3+.), c = 1+εc1+.... (11)

Introducing the expansions (11) into equations (1)-(4)and setting the coefficients of alike
powers of ε equal to zero, the following set of differential equations are obtained:

O (1) equations
∂2φ0
∂z2

= 0, (12)

and the boundary conditions

∂φ0
∂z
|z=−h0

= 0,
∂φ0
∂z
|z=0 = 0,

∂φ0
∂ξ
|z=0 + gψ0 +

1

2
(
∂φ0
∂z

)2|z=0 = 0. (13)

O(ε) equations
∂2φ1
∂z2

+ c20
∂2φ0
∂ξ2

= 0, (14)

and the boundary conditions

∂φ1
∂z
|z=−h0 = 0,

∂φ1
∂z
|z=0−

∂ψ0

∂ξ
= 0, [

∂φ1
∂ξ

+
∂φ0
∂z

∂φ1
∂z

+
c20
2

(
∂φ0
∂ξ

)2]|z=0+gψ1 = 0. (15)

O(ε2) equations
∂2φ2
∂z2

+ c20
∂2φ1
∂ξ2

− 2c0
∂2φ0
∂ξ∂τ

= 0, (16)

and the boundary conditions

∂φ2
∂z
|z=−h0

= 0, [
∂φ2
∂z

+ ψ0
∂2φ1
∂z2

]|z=0 −
∂ψ1

∂ξ
− c20

∂φ0
∂ξ
|z=0

∂ψ0

∂ξ
= 0

[
∂φ2
∂ξ

+ ψ0
∂2φ1
∂z∂ξ

+
1

2
(
∂φ1
∂z

)2 +
∂φ0
∂z

∂φ2
∂z
− c0

∂φ0
∂ξ

(−c0
∂φ1
∂ξ

+
∂φ0
∂τ

)]|z=0 + gψ2 = 0. (17)

O(ε3) equations

∂2φ3
∂z2

+ c20
∂2φ2
∂ξ2

− 2c0
∂2φ1
∂ξ∂τ

− 2c0c1
∂2φ0
∂ξ∂τ

+
∂2φ0
∂τ2

= 0, (18)

and the boundary conditions

∂φ3
∂z
|z=−h0

= 0, [
∂φ3
∂z

+ ψ0
∂2φ2
∂z2

+ ψ1
∂2φ1
∂z2

]|z=0 −
∂ψ2

∂ξ
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+c0(−c0
∂ψ1

∂ξ
+
∂ψ0

∂τ
)
∂φ0
∂ξ
|z=0 + c0

∂ψ0

∂ξ
(−c0

∂φ1
∂ξ

+
∂φ0
∂τ

)|z=0 = 0, (19)

2.1. Solution of the field equations

From the solution of the sets (12) and (13) we have

φ0 = ϕ(ξ, τ), ψ0 = −1

g

∂ϕ

∂ξ
, (20)

where ϕ(ξ, τ) is an unknown function of its argument whose governing equation will be
obtained later.

Similarly, from the solution of the equations (14) and (15) one obtains

φ1 = −c
2
0

2

∂2ϕ

∂ξ2
(z2 + 2h0z) + ϕ1(ξ, τ), ψ1 = −1

g

∂ϕ1

∂ξ
− c20

g
(
∂ϕ

∂ξ
)2, c0 = (gh0)−1/2, (21)

where ϕ1(ξ, τ) is another unknown function whose governing equation will be obtained
from the higher order expansions.

The solution of O(ε2) equations, (16) and (17), yields the following results

φ2 =
c40
24

∂4ϕ

∂ξ4
(z4 + 4hz3) + (c0

∂2ϕ

∂ξ∂τ
− c20

2

∂2ϕ1

∂ξ2
)z2 − (3

c20
g

∂ϕ

∂ξ

∂2ϕ

∂ξ2
+

1

g

∂2ϕ1

∂ξ2
)z + ϕ2,

ψ2 = −1

g

∂ϕ2

∂ξ
− c20h0

g2
∂ϕ

∂ξ

∂3ϕ

∂ξ3
− c40h

2
0

2g
(
∂2ϕ

∂ξ2
)2 +

c0
g

∂ϕ

∂ξ

∂ϕ

∂τ
− c20

g

∂ϕ

∂ξ

∂ϕ1

∂ξ
, (22)

where ϕ2(ξ, τ) is another unknown function whose governing equation will be obtained
later. The use of the last boundary condition and setting ∂ϕ/∂ξ = −gψ0, yields the
following Korteweg-deVries equation

∂ψ0

∂τ
− 3c30g

2
ψ0
∂ψ0

∂ξ
− c30h

2
0

6

∂3ψ0

∂ξ3
= 0. (23)

In order to see the novelty of the present method we should study the O(ε3) equations.
In order to save the space the detail of the solution will not be given here. From the solution
of equations (18) and (19), the following evolution equation can be obtained for the second
order term in the perturbation expansion

∂ψ1

∂τ
− 3c30g

2

∂

∂ξ
(ψ0ψ1)− h20c

3
0

6

∂3ψ1

∂ξ3
= S(ϕ), (24)

where S(ϕ) is defined by

S(ϕ) =
c50h

4
0

60g

∂6ϕ

∂ξ6
+
c20h

2
0

6g

∂4ϕ

∂ξ3∂τ
− 3c50h

2
0

4g

∂2ϕ

∂ξ2
∂3ϕ

∂ξ3
− c50h

2
0

12g

∂ϕ

∂ξ

∂4ϕ

∂ξ4
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+
c1
g

∂2ϕ

∂ξ∂τ
− 3c20

g

∂ϕ

∂ξ

∂2ϕ

∂ξ∂τ
− c20

g

∂2ϕ

∂ξ2
∂ϕ

∂τ
+

3c50
g

(
∂ϕ

∂ξ
)2
∂2ϕ

∂ξ2
− 1

2c0g

∂2ϕ

∂τ2
. (25)

The equation (24) is the degenerate(linearized) KdV equation with non-homogeneous term
S(ϕ). It is seen that this non-homogeneous term contains the unknown coefficient c1, which
is to be determined from the removal of some possible secularities that might occur. This
will be investigated in the following sub-section.

2.2. Progressive wave solution

In this section we shall present a localized travelling wave solutions to equations (23)
and (24). For that purpose we shall seek a solution to these equations in the following
form

ψ0 = U(ζ), ψ1 = V (ζ), ζ = α(ξ + βτ), (26)

where α and β are two constants to be determined from the solutions. As is well known
the conventional KdV equation assumes the solution of the form

U = a sech2ζ, (27)

where a is the amplitude of the solitary wave and the other quantities are found to be

α =
1

2h0
(3ag)1/2, β =

c0a

2h0
. (28)

Here, we note that the wave speed is proportional to the amplitude of the wave. Introducing
the solutions (26)2 and (27) into the evolution equations(24) and (25) we have

V ′′ + (12sech2ζ − 4)V = (
11

5

a2

h0
+ 4ac1)sech2ζ +

6a2

h0
sech4ζ +

6a2

h0
sech6ζ. (29)

Here, we shall propose a solution for V of the following form

V = A sech4ζ +B sech2ζ, (30)

where A and B are two constants to be determined from the solution. As is seen from
equations (29) and (30) there will not be any term in V to balance sech2ζ on the right
hand side of (29). Thus, in order to remove this secularity the coefficient of sech2ζ must
vanish, which yields

c1 = −11

20

a

h0
. (31)

Here c1 is the first order correction term to the wave speed. Substitution of (30) into (29)
gives

A = −3a2

4h0
, B =

5a2

2h0
, (32)

Thus, the total solution takes the following form

ψ = ψ0 + εψ1 = asech2ζ + ε(−3a2

4h0
sech4ζ +

5a2

2h0
sech2ζ), (33)
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with

ζ =
(3ag)1/2

2h0
{ε1/2[t− c0(1− a

2h0
ε+

11

40

a2

h20
ε2)x]}. (34)

The propagation speed can, now, be defined by

vp =
dx

dt
=

1

c0

1

(1− a
2h0

ε+ 11a2

40h2
0
ε2)
≈ (gh0)1/2(1 +

a

2h0
ε− a2

40h20
ε2 + ...). (35)

Concluding Remarks

The study of the effects of higher order terms in the perturbation expansion of field
quantities through the use of classical reductive perturbation method leads to some sec-
ularities. To eliminate such secularities various methods, like renormalization method of
Kodama and Taniuti [4], the multiple scale expansion method by Kraenkel et al[6], have
been presented in the current literature. The results of present work and of those given in
reference [8] proved that the ”modified reductive perturbation method” presented by us
is the most simplest and the effective one. By use of this method, any order of correction
term may be obtained without any principal difficulties.
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