ON PROPER HAMILTONIAN-CONNECTION NUMBER OF GRAPHS

R. SAMPATHKUMAR ${ }^{1}$, S. ANANTHARAMAN ${ }^{1}$, §

Abstract

A graph G is Hamiltonian-connected if every two vertices of G are connected by a Hamilton path. A bipartite graph H is Hamiltonian-laceable if any two vertices from different partite sets of H are connected by a Hamilton path. An edge-coloring (adjacent edges may receive the same color) of a Hamiltonian-connected (respectively, Hamiltonian-laceable) graph G (resp. H) is a proper Hamilton path coloring if every two vertices u and v of G (resp. H) are connected by a Hamilton path $P_{u v}$ such that no two adjacent edges of $P_{u v}$ are colored the same. The minimum number of colors in a proper Hamilton path coloring of G (resp. H) is the proper Hamiltonian-connection number of G (resp. H). In this paper, proper Hamiltonian-connection numbers are determined for some classes of Hamiltonian-connected graphs and that of Hamiltonian-laceable graphs.

Keywords: Hamiltonian-connected graph, Hamiltonian-laceable graph, proper Hamilton path coloring, proper Hamiltonian-connection number.

AMS Subject Classification: 05C15, 05C45.

1. Hamiltonian-CONNECTED GRAPHS

We refer the book [1] for graph theory notation and terminology not described here. A Hamilton path in a graph G is a path containing every vertex of G. A graph G is Hamiltonian-connected if for every pair u, v of distinct vertices of G, there is a Hamilton $u-v$ path in G. Let G be an edge-colored connected graph, where adjacent edges may be colored the same. A path P in G is properly colored or P is a proper path in G if no two adjacent edges of P are colored the same.

For a Hamiltonian-connected graph G, an edge-coloring $c: E(G) \rightarrow\{1,2, \ldots, k\}$ is a proper Hamilton path k-coloring if any two vertices of G are connected by a proper Hamilton path in G. An edge-coloring c is a proper Hamilton path coloring if c is a proper Hamilton path k-coloring for some positive integer k. The minimum number of colors in a proper Hamilton path coloring of G is the proper Hamiltonian-connection number of G, denoted by $\operatorname{hpc}(G)$.

Since every proper edge-coloring of a Hamiltonian-connected graph G is a proper Hamilton path coloring of G and there is no proper Hamilton path 1-coloring of G, we have $2 \leq$ $\operatorname{hpc}(G) \leq \chi^{\prime}(G)$, where G is of order at least 3 and $\chi^{\prime}(G)$ is the chromatic index of G.

[^0]In [2], Bi, Byers and Zhang introduced the concept of proper Hamiltonian-connection number for Hamiltonian-connected graphs and proved that: for every integer $n \geq 4$, $h p c\left(K_{n}\right)=2$, where K_{n} is the complete graph on n vertices; for each odd integer $n \geq 3$, $h p c\left(C_{n} \square K_{2}\right)=3$, where C_{n} is the cycle on n vertices and \square denotes the Cartesian product. Also, they conjectured that: if G is a Hamiltonian-connected graph, then $h p c(G) \leq 3$.

Let G be a Hamiltonian-connected graph of order $n \geq 4$. Then, G is 3 -connected, and so $\delta(G) \geq 3$, where $\delta(G)$ is the minimum degree of G. This implies that the minimum possible size of G is $\left\lfloor\frac{3 n+1}{2}\right\rfloor$. In [4], Moon proved that for each integer $n \geq 4$, there exists a Hamiltonian-connected graph of order n and size $\left\lfloor\frac{3 n+1}{2}\right\rfloor$.

For each integer $k \geq 2$, consider $P_{k} \square K_{2}$. The two disjoint paths in $P_{k} \square K_{2}$ of order k with $x_{i} y_{i} \in E\left(P_{k} \square K_{2}\right)$ for $i \in\{1,2, \ldots, k\}$ are $P_{k}=x_{1} x_{2} \ldots x_{k}$ and $P_{k}^{\prime}=y_{1} y_{2} \ldots y_{k}$. Let H_{k} be the cubic graph of order $2 k+2$ obtained by adding two adjacent vertices u and v to $P_{k} \square K_{2}$ and joining the vertex u to x_{1} and y_{1}; the vertex v to x_{k} and y_{k}. Graph H_{k} is Hamiltonian-connected and has the minimum size $3(k+1)$ among the Hamiltonianconnected graphs of even order $2 k+2$. For $k \geq 3$, the graph F_{k} of odd order $2 k+1$ is constructed from $P_{k} \square K_{2}$ by adding a new vertex u and joining u to each vertex in $\left\{x_{1}, x_{k}, y_{1}, y_{k}\right\}$. Graph F_{k} has $2 k$ vertices of degree 3 and one vertex of degree 4 ; it is a Hamiltonian-connected graph and has the minimum size $3 k+2$ among the Hamiltonianconnected graphs of order $2 k+1$. In [2], Bi et al. proved that, for each integer $k \geq 2$, $h p c\left(H_{k}\right)=3$ and for each integer $k \geq 3, h p c\left(F_{k}\right)=3$.

A circulant graph, denoted by $\operatorname{Circ}\left(n:\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}\right)$, where $0<a_{1}<a_{2}<\cdots<a_{k}$ $\leq\left\lfloor\frac{n}{2}\right\rfloor$, has vertices $v_{0}, v_{1}, v_{2}, \ldots, v_{n-1}$ and edge $v_{i} v_{j}$ if, and only if, $|j-i| \equiv a_{t}(\bmod n)$ for some $t, t \in\{1,2, \ldots, k\}$. If ' n is even and $a_{k} \neq \frac{n}{2}$ ' or ' n is odd', then it is $2 k$-regular; otherwise, it is ($2 k-1$)-regular. In circulants, subscripts in v_{i} are reduced modulo n.

2. Graphs with $h p c=2$

The only known graph with $h p c=2$ is K_{n}, where $n \geq 4$. Let G be a Hamiltonianconnected graph of order at least 4. To show that $h p c(G)=2$, we must show that G has a proper Hamilton path 2-coloring; that is, a 2-edge-coloring of G with the property that for every two vertices u and v of G, there is a proper Hamilton $u-v$ path in G. In this section, we find more graphs in the class of graphs with $h p c=2$.
Lemma 2.1. For every integer $n \geq 7, \operatorname{hpc}(\operatorname{Circ}(n:\{1,2,3\}))=2$.
Proof. We consider two cases, according to whether n is even or odd.
Case 1. n is even.
Let $n=2 k, k \geq 4, G=\operatorname{Circ}(2 k:\{1,2,3\})$ and $F=\left\{v_{i} v_{i+1}: i \in\{1,3,5, \ldots, 2 k-1\}\right\}$, where $v_{2 k}=v_{0}$. Then, F is a 1 -factor of G. Define an edge-coloring c of G by assigning color blue to each edge of F and color red to the remaining edges of G. We show that for every two vertices v_{i} and v_{j} of G, there is a proper Hamilton $v_{i}-v_{j}$ path in G. As the edge-colored G is vertex-transitive, we verify for $i=0$.
(Observe that, in the following paths, the first and the last edges are colored blue.)
$v_{0}-v_{1}$ path: $v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} \ldots v_{4} v_{3} v_{2} v_{1}$;
$v_{0}-v_{2}$ path: $v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} \ldots v_{4} v_{3} v_{1} v_{2}$;
$v_{0}-v_{3}$ path: for $k \geq 5, v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} \ldots v_{5} v_{2} v_{1} v_{4} v_{3}$; for $k=4, v_{0} v_{7} v_{6} v_{5} v_{2} v_{1} v_{4} v_{3}$;
$v_{0}-v_{4}$ path: for $k \geq 5, v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} \ldots v_{5} v_{2} v_{1} v_{3} v_{4}$; for $k=4, v_{0} v_{7} v_{6} v_{5} v_{2} v_{1} v_{3} v_{4}$;
$v_{0}-v_{2 i-1}$ path: $v_{0} v_{2 k-1} v_{1} v_{2} v_{3} v_{4} \ldots v_{2 i-2} v_{2 i+1} v_{2 i+2} v_{2 i+5} v_{2 i+6} v_{2 i+9} v_{2 i+10} \ldots$
$v_{2 k-13} v_{2 k-12} v_{2 k-9} v_{2 k-8} v_{2 k-5} v_{2 k-4} v_{2 k-2} v_{2 k-3} v_{2 k-6} v_{2 k-7} v_{2 k-10} v_{2 k-11} v_{2 k-14} v_{2 k-15}$
$\ldots v_{2 i+12} v_{2 i+11} v_{2 i+8} v_{2 i+7} v_{2 i+4} v_{2 i+3} v_{2 i} v_{2 i-1}$
if ' $k \geq 10$ is even and $i \in\{3,5,7, \ldots, k-7, k-5, k-3\}$ ' or ' $k \geq 11$ is odd and $i \in\{4,6,8$,
$\ldots, k-7, k-5, k-3\}$;
for $k=9, v_{0} v_{17} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{9} v_{10} v_{13} v_{14} v_{16} v_{15} v_{12} v_{11} v_{8} v_{7}$, $v_{0} v_{17} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} v_{10} v_{13} v_{14} v_{16} v_{15} v_{12} v_{11} ;$
for $k=8, v_{0} v_{15} v_{1} v_{2} v_{3} v_{4} v_{7} v_{8} v_{11} v_{12} v_{14} v_{13} v_{10} v_{9} v_{6} v_{5}$, $v_{0} v_{15} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{11} v_{12} v_{14} v_{13} v_{10} v_{9} ;$
for $k=7, v_{0} v_{13} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{9} v_{10} v_{12} v_{11} v_{8} v_{7}$;
for $k=6, v_{0} v_{11} v_{1} v_{2} v_{3} v_{4} v_{7} v_{8} v_{10} v_{9} v_{6} v_{5}$; and
$v_{0} v_{2 k-1} v_{1} v_{2} v_{3} v_{4} \ldots v_{2 i-2} v_{2 i+1} v_{2 i+2} v_{2 i+5} v_{2 i+6} v_{2 i+9} v_{2 i+10} \ldots v_{2 k-15} v_{2 k-14} v_{2 k-11} v_{2 k-10}$
$v_{2 k-7} v_{2 k-6} v_{2 k-3} v_{2 k-2} v_{2 k-4} v_{2 k-5} v_{2 k-8} v_{2 k-9} v_{2 k-12} v_{2 k-13} \ldots v_{2 i+12} v_{2 i+11} v_{2 i+8} v_{2 i+7}$
$v_{2 i+4} v_{2 i+3} \quad v_{2 i} v_{2 i-1}$
if ' $k \geq 10$ is even and $i \in\{4,6,8, \ldots, k-6, k-4, k-2\}$ ' or ' $k \geq 9$ is odd and $i \in\{3,5,7, \ldots$, $k-6, k-4, k-2\}^{\prime} ;$
for $k=8, v_{0} v_{15} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{9} v_{10} v_{13} v_{14} v_{12} v_{11} v_{8} v_{7}$,
$v_{0} v_{15} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} v_{10} v_{13} v_{14} v_{12} v_{11}$;
for $k=7, v_{0} v_{13} v_{1} v_{2} v_{3} v_{4} v_{7} v_{8} v_{11} v_{12} v_{10} v_{9} v_{6} v_{5}, v_{0} v_{13} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{11} v_{12} v_{10} v_{9}$;
for $k=6, v_{0} v_{11} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{9} v_{10} v_{8} v_{7}$;
for $k=5, v_{0} v_{9} v_{1} v_{2} v_{3} v_{4} v_{7} v_{8} v_{6} v_{5}$; and
$v_{0}-v_{2 i}$ path: $v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} \ldots v_{2 i+1} v_{2 i-2} v_{2 i-3} v_{2 i-6} v_{2 i-7} v_{2 i-10} v_{2 i-11} \ldots$
$v_{13} v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{3} v_{4} v_{7} v_{8} v_{11} v_{12} \ldots v_{2 i-13} v_{2 i-12} v_{2 i-9} v_{2 i-8} v_{2 i-5} v_{2 i-4} v_{2 i-1} v_{2 i}$
if ' $k \geq 10$ is even and $i \in\{4,6,8, \ldots, k-6, k-4, k-2\}$ ' or ' $k \geq 11$ is odd and $i \in\{4,6,8, \ldots$, $k-7, k-5, k-3\}^{\prime}$;
for $k=9, v_{0} v_{17} v_{16} v_{15} v_{14} v_{13} v_{12} v_{11} v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{3} v_{4} v_{7} v_{8}$,
$v_{0} v_{17} v_{16} v_{15} v_{14} v_{13} v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{3} v_{4} v_{7} v_{8} v_{11} v_{12}$;
for $k=8, v_{0} v_{15} v_{14} v_{13} v_{12} v_{11} v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{3} v_{4} v_{7} v_{8}$,
$v_{0} v_{15} v_{14} v_{13} v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{3} v_{4} v_{7} v_{8} v_{11} v_{12}$;
for $k=7, v_{0} v_{13} v_{12} v_{11} v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{3} v_{4} v_{7} v_{8}$;
for $k=6, v_{0} v_{11} v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{3} v_{4} v_{7} v_{8}$; and
$v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} \ldots v_{2 i+1} \quad v_{2 i-2} v_{2 i-3} \quad v_{2 i-6} v_{2 i-7} \quad v_{2 i-10} v_{2 i-11} \ldots$
$v_{15} v_{12} v_{11} v_{8} v_{7} v_{4} v_{3} v_{1} v_{2} v_{5} v_{6} v_{9} v_{10} v_{13} v_{14} \ldots v_{2 i-13} v_{2 i-12} v_{2 i-9} v_{2 i-8} v_{2 i-5} v_{2 i-4} v_{2 i-1} v_{2 i}$ if ' $k \geq 10$ is even and $i \in\{3,5,7, \ldots, k-7, k-5, k-3\}$ ' or ' $k \geq 9$ is odd and $i \in\{3,5,7, \ldots$, $k-6, k-4, k-2\}^{\prime}$;
for $k=8, v_{0} v_{15} v_{14} v_{13} v_{12} v_{11} v_{10} v_{9} v_{8} v_{7} v_{4} v_{3} v_{1} v_{2} v_{5} v_{6}$, $v_{0} v_{15} v_{14} v_{13} v_{12} v_{11} v_{8} v_{7} v_{4} v_{3} v_{1} v_{2} v_{5} v_{6} v_{9} v_{10}$;
for $k=7, v_{0} v_{13} v_{12} v_{11} v_{10} v_{9} v_{8} v_{7} v_{4} v_{3} v_{1} v_{2} v_{5} v_{6}, v_{0} v_{13} v_{12} v_{11} v_{8} v_{7} v_{4} v_{3} v_{1} v_{2} v_{5} v_{6} v_{9} v_{10}$;
for $k=6, v_{0} v_{11} v_{10} v_{9} v_{8} v_{7} v_{4} v_{3} v_{1} v_{2} v_{5} v_{6}$;
for $k=5, v_{0} v_{9} v_{8} v_{7} v_{4} v_{3} v_{1} v_{2} v_{5} v_{6}$;
$v_{0}-v_{2 k-3}$ path: for $k \geq 5, v_{0} v_{2 k-1} v_{1} v_{2} v_{3} \ldots v_{2 k-5} v_{2 k-4} v_{2 k-2} v_{2 k-3}$; for $k=4, v_{0} v_{7} v_{1} v_{2} v_{3} v_{4} v_{6} v_{5}$;
$v_{0}-v_{2 k-2}$ path: for $k \geq 5, v_{0} v_{2 k-1} v_{1} v_{2} v_{3} \ldots v_{2 k-5} v_{2 k-4} v_{2 k-3} v_{2 k-2}$; for $k=4, v_{0} v_{7} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$;
(Observe that, in the following path, the first and the last edges are colored red.)
$v_{0}-v_{2 k-1}$ path: $v_{0} v_{1} v_{2} v_{3} \ldots v_{2 k-4} v_{2 k-3} v_{2 k-2} v_{2 k-1}$.
Case 2. n is odd.
Let $n=2 k-1, k \geq 4, G=\operatorname{Circ}(2 k-1:\{1,2,3\})$ and $C=v_{0} v_{1} v_{2} \ldots v_{2 k-2} v_{0}$. Then, C is a Hamilton cycle of G. Define an edge-coloring c of G by assigning color red to each edge of C and color blue to the remaining edges of G. As the edge-colored G is vertex-transitive, we show that for every vertex $v_{j}, j \neq 0$, of G, there is a proper Hamilton $v_{0}-v_{j}$ path in G.
$v_{0}-v_{1}$ path: for $k \geq 7, v_{0} v_{2 k-3} v_{2 k-2} v_{2 k-5} v_{2 k-4} v_{2 k-7} v_{2 k-6} \ldots v_{5} v_{6} v_{3} v_{4} v_{2} v_{1}$;
for $k=6, v_{0} v_{9} v_{10} v_{7} v_{8} v_{5} v_{6} v_{3} v_{4} v_{2} v_{1}$;
for $k=5, v_{0} v_{7} v_{8} v_{5} v_{6} v_{3} v_{4} v_{2} v_{1}$;
for $k=4, v_{0} v_{5} v_{6} v_{3} v_{4} v_{2} v_{1}$;
$v_{0}-v_{2}$ path: for $k \geq 7, v_{0} v_{2 k-3} v_{2 k-2} v_{2 k-5} v_{2 k-4} v_{2 k-7} v_{2 k-6} \ldots v_{5} v_{6} v_{3} v_{4} v_{1} v_{2}$;
for $k=6, v_{0} v_{9} v_{10} v_{7} v_{8} v_{5} v_{6} v_{3} v_{4} v_{1} v_{2}$;
for $k=5, v_{0} v_{7} v_{8} v_{5} v_{6} v_{3} v_{4} v_{1} v_{2}$;
for $k=4, v_{0} v_{5} v_{6} v_{3} v_{4} v_{1} v_{2}$;
$v_{0}-v_{3}$ path: for $k \geq 8, v_{0} v_{2} v_{1} v_{2 k-3} v_{2 k-2} v_{2 k-5} v_{2 k-4} v_{2 k-7} v_{2 k-6} \ldots v_{7} v_{8} v_{5} v_{6} v_{4} v_{3}$;
for $k=7, v_{0} v_{2} v_{1} v_{11} v_{12} v_{9} v_{10} v_{7} v_{8} v_{5} v_{6} v_{4} v_{3}$;
for $k=6, v_{0} v_{2} v_{1} v_{9} v_{10} v_{7} v_{8} v_{5} v_{6} v_{4} v_{3}$;
for $k=5, v_{0} v_{2} v_{1} v_{7} v_{8} v_{5} v_{6} v_{4} v_{3}$;
for $k=4, v_{0} v_{2} v_{1} v_{5} v_{6} v_{4} v_{3}$;
$v_{0}-v_{4}$ path: for $k \geq 8, v_{0} v_{2} v_{1} v_{2 k-3} v_{2 k-2} v_{2 k-5} v_{2 k-4} v_{2 k-7} v_{2 k-6} \ldots v_{7} v_{8} v_{5} v_{6} v_{3} v_{4}$;
for $k=7, v_{0} v_{2} v_{1} v_{11} v_{12} v_{9} v_{10} v_{7} v_{8} v_{5} v_{6} v_{3} v_{4}$;
for $k=6, v_{0} v_{2} v_{1} v_{9} v_{10} v_{7} v_{8} v_{5} v_{6} v_{3} v_{4}$;
for $k=5, v_{0} v_{2} v_{1} v_{7} v_{8} v_{5} v_{6} v_{3} v_{4}$;
for $k=4, v_{0} v_{2} v_{1} v_{5} v_{6} v_{3} v_{4}$;
$v_{0}-v_{2 i-1}$ path: $v_{0} v_{2 k-2} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} \ldots v_{2 i-6} v_{2 i-7} v_{2 i-4} v_{2 i-5} v_{2 i-2} v_{2 i-3} v_{2 i} v_{2 i+1}$
$v_{2 i+4} v_{2 i+5} v_{2 i+8} v_{2 i+9} \ldots v_{2 k-12} v_{2 k-11} v_{2 k-8} v_{2 k-7} v_{2 k-4} v_{2 k-3} v_{2 k-5} v_{2 k-6}$
$v_{2 k-9} v_{2 k-10} \quad v_{2 k-13} v_{2 k-14} \ldots v_{2 i+11} v_{2 i+10} \quad v_{2 i+7} v_{2 i+6} v_{2 i+3} v_{2 i+2} v_{2 i-1}$
if ' $k \geq 10$ is even and $i \in\{4,6,8, \ldots, k-6, k-4, k-2\}$ ' or ' $k \geq 11$ is odd and $i \in\{3,5,7$, $\ldots, k-6, k-4, k-2\}^{\prime} ;$
for $k=9, v_{0} v_{16} v_{2} v_{1} v_{4} v_{3} v_{6} v_{7} v_{10} v_{11} v_{14} v_{15} v_{13} v_{12} v_{9} v_{8} v_{5}$,
$v_{0} v_{16} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{7} v_{10} v_{11} v_{14} v_{15} v_{13} v_{12} v_{9}$,
$v_{0} v_{16} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{7} v_{10} v_{9} v_{12} v_{11} v_{14} v_{15} v_{13}$;
for $k=8, v_{0} v_{14} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{9} v_{12} v_{13} v_{11} v_{10} v_{7}, v_{0} v_{14} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{7} v_{10} v_{9} v_{12} v_{13} v_{11}$;
for $k=7, v_{0} v_{12} v_{2} v_{1} v_{4} v_{3} v_{6} v_{7} v_{10} v_{11} v_{9} v_{8} v_{5}, v_{0} v_{12} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{7} v_{10} v_{11} v_{9}$;
for $k=6, v_{0} v_{10} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{9} v_{7}$; and
$v_{0} v_{2 k-2} \quad v_{2} v_{1} v_{4} v_{3} \quad v_{6} v_{5} \ldots v_{2 i-6} v_{2 i-7} v_{2 i-4} v_{2 i-5} v_{2 i-2} v_{2 i-3} v_{2 i} v_{2 i+1}$
$v_{2 i+4} v_{2 i+5} v_{2 i+8} v_{2 i+9} \ldots v_{2 k-14} v_{2 k-13} \quad v_{2 k-10} v_{2 k-9} \quad v_{2 k-6} v_{2 k-5} \quad v_{2 k-3} v_{2 k-4}$
$v_{2 k-7} v_{2 k-8} \quad v_{2 k-11} v_{2 k-12} \ldots v_{2 i+11} v_{2 i+10} v_{2 i+7} v_{2 i+6} \quad v_{2 i+3} v_{2 i+2} v_{2 i-1}$
if ' $k \geq 10$ is even and $i \in\{3,5,7, \ldots, k-7, k-5, k-3\}$ ' or ' $k \geq 11$ is odd and $i \in\{4,6,8$, $\ldots, k-7, k-5, k-3\}^{\prime}$;
for $k=9, v_{0} v_{16} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{9} v_{12} v_{13} v_{15} v_{14} v_{11} v_{10} v_{7}$,
$v_{0} v_{16} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{7} v_{10} v_{9} v_{12} v_{13} v_{15} v_{14} v_{11}$;
for $k=8, v_{0} v_{14} v_{2} v_{1} v_{4} v_{3} v_{6} v_{7} v_{10} v_{11} v_{13} v_{12} v_{9} v_{8} v_{5}, v_{0} v_{14} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{7} v_{10} v_{11} v_{13} v_{12} v_{9}$;
for $k=7, v_{0} v_{12} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{9} v_{11} v_{10} v_{7}$;
for $k=6, v_{0} v_{10} v_{2} v_{1} v_{4} v_{3} v_{6} v_{7} v_{9} v_{8} v_{5}$;
$v_{0}-v_{2 i}$ path: $v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} \ldots v_{2 i-7} v_{2 i-8} v_{2 i-5} v_{2 i-6} v_{2 i-3} v_{2 i-4} v_{2 i-1} v_{2 i-2}$
$v_{2 i+1} v_{2 i+2} \quad v_{2 i+5} v_{2 i+6} \quad v_{2 i+9} v_{2 i+10} \ldots v_{2 k-11} v_{2 k-10} v_{2 k-7} v_{2 k-6} \quad v_{2 k-3} v_{2 k-2}$
$v_{2 k-4} v_{2 k-5} \quad v_{2 k-8} v_{2 k-9} v_{2 k-12} v_{2 k-13} \ldots v_{2 i+12} v_{2 i+11} v_{2 i+8} v_{2 i+7} v_{2 i+4} v_{2 i+3} v_{2 i}$
if ' $k \geq 10$ is even and $i \in\{4,6,8, \ldots, k-6, k-4, k-2\}$ ' or ' $k \geq 11$ is odd and $i \in\{3,5,7, \ldots$, $k-6, k-4, k-2\} ;$;
for $k=9, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{8} v_{11} v_{12} v_{15} v_{16} v_{14} v_{13} v_{10} v_{9} v_{6}$,
$v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{8} v_{11} v_{12} v_{15} v_{16} v_{14} v_{13} v_{10}$, $v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{8} v_{11} v_{10} v_{13} v_{12} v_{15} v_{16} v_{14} ;$
for $k=8, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{10} v_{13} v_{14} v_{12} v_{11} v_{8}, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{8} v_{11} v_{10} v_{13} v_{14} v_{12}$;
for $k=7, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{8} v_{11} v_{12} v_{10} v_{9} v_{6}, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{8} v_{11} v_{12} v_{10}$;
for $k=6, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{10} v_{8}$; and
$v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} \ldots v_{2 i-5} v_{2 i-6} v_{2 i-3} v_{2 i-4} v_{2 i-1} v_{2 i-2} v_{2 i+1} v_{2 i+2}$

```
\(v_{2 i+5} v_{2 i+6} v_{2 i+9} v_{2 i+10} \ldots v_{2 k-13} v_{2 k-12} v_{2 k-9} v_{2 k-8} v_{2 k-5} v_{2 k-4} v_{2 k-2} v_{2 k-3}\)
\(v_{2 k-6} v_{2 k-7} v_{2 k-10} v_{2 k-11} \ldots v_{2 i+12} v_{2 i+11} v_{2 i+8} v_{2 i+7} v_{2 i+4} v_{2 i+3} v_{2 i}\)
```

if ' $k \geq 10$ is even and $i \in\{3,5,7, \ldots, k-7, k-5, k-3\}$ ' or ' $k \geq 11$ is odd and $i \in\{4,6,8$, $\ldots, k-7, k-5, k-3\}$;
for $k=9, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{10} v_{13} v_{14} v_{16} v_{15} v_{12} v_{11} v_{8}$,
$v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{8} v_{11} v_{10} v_{13} v_{14} v_{16} v_{15} v_{12} ;$
for $k=8, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{8} v_{11} v_{12} v_{14} v_{13} v_{10} v_{9} v_{6}, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{8} v_{11} v_{12} v_{14} v_{13} v_{10}$;
for $k=7, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{6} v_{9} v_{10} v_{12} v_{11} v_{8} ;$
for $k=6, v_{0} v_{1} v_{3} v_{2} v_{5} v_{4} v_{7} v_{8} v_{10} v_{9} v_{6}$;
$v_{0}-v_{2 k-3}$ path: for $k \geq 7, v_{0} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} \ldots v_{2 k-6} v_{2 k-7} v_{2 k-4} v_{2 k-5} v_{2 k-2} v_{2 k-3}$;
for $k=6, v_{0} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{7} v_{10} v_{9} v_{12} v_{11}$;
for $k=5, v_{0} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{7}$;
for $k=4, v_{0} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5}$;
$v_{0}-v_{2 k-2}$ path: for $k \geq 7, v_{0} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} \ldots v_{2 k-6} v_{2 k-7} v_{2 k-4} v_{2 k-5} v_{2 k-3} v_{2 k-2}$;
for $k=6, v_{0} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{8} v_{7} v_{9} v_{10}$;
for $k=5, v_{0} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{7} v_{8}$;
for $k=4, v_{0} v_{2} v_{1} v_{4} v_{3} v_{5} v_{6}$. This completes the proof.
It follows from Lemma 2.1 that
Theorem 2.1. If G is a graph with n vertices, $n \geq 7$, such that $\operatorname{Circ}(n:\{1,2,3\}) \subseteq G$, then $\operatorname{hpc}(G)=2$.
Corollary 2.1. (Bi, Byers and Zhang [2]) For $n \geq 7, h p c\left(K_{n}\right)=2$.
Lemma 2.2. For any odd integer $k \geq 5, \operatorname{hpc}(\operatorname{Circ}(2 k:\{1,2, k\}))=2$.
Proof. Let $G=\operatorname{Circ}(2 k:\{1,2, k\})$ and $F=\left\{v_{i} v_{i+1}: i \in\{1,3,5, \ldots, 2 k-1\}\right\}$, where $v_{2 k}=v_{0}$. Then F is a 1 -factor of G. Define an edge-coloring c of G by assigning color blue to each edge of F and color red to the remaining edges of G. As the edge-colored G is vertex-transitive, we show that for every vertex $v_{j}, j \neq 0$, of G, there is a proper Hamilton $v_{0}-v_{j}$ path in G.
(Observe that, in the following paths, the first and the last edges are colored blue.)
$v_{0}-v_{1}$ path: $v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} v_{2 k-4} v_{2 k-5} \ldots v_{6} v_{5} v_{4} v_{3} v_{2} v_{1}$;
$v_{0}-v_{2}$ path: $v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} v_{2 k-4} v_{2 k-5} \ldots v_{6} v_{5} v_{4} v_{3} v_{1} v_{2}$;
$v_{0}-v_{2 i-1}$ path, $i \in\left\{2,3,4, \ldots, \frac{k-3}{2}\right\}:$ for $k \geq 13$,
$v_{0} v_{2 k-1} v_{k-1} v_{k-2} v_{2 k-2} v_{2 k-3} v_{k-3} v_{k-4} v_{2 k-4} v_{2 k-5} v_{k-5} v_{k-6} v_{2 k-6} v_{2 k-7}$
$\ldots v_{2 i+6} v_{2 i+5} v_{k+2 i+5} v_{k+2 i+4} v_{2 i+4} v_{2 i+3} v_{k+2 i+3} v_{k+2 i+2} v_{2 i+2} v_{2 i+1} v_{k+2 i+1} v_{k+2 i}$
$v_{k+2 i-1} v_{k+2 i-2} v_{k+2 i-3} v_{k+2 i-4} \ldots v_{k+7} v_{k+6} v_{k+5} v_{k+4} v_{k+3} v_{k+2} v_{k} v_{k+1}$
$v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} \ldots v_{2 i-7} v_{2 i-6} v_{2 i-5} v_{2 i-4} v_{2 i-3} v_{2 i-2} v_{2 i} v_{2 i-1} ;$
for $k=11, v_{0} v_{21} v_{10} v_{9} v_{20} v_{19} v_{8} v_{7} v_{18} v_{17} v_{6} v_{5} v_{16} v_{15} v_{14} v_{13} v_{11} v_{12} v_{1} v_{2} v_{4} v_{3}$,
$v_{0} v_{21} v_{10} v_{9} v_{20} v_{19} v_{8} v_{7} v_{18} v_{17} v_{16} v_{15} v_{14} v_{13} v_{11} v_{12} v_{1} v_{2} v_{3} v_{4} v_{6} v_{5}$, $v_{0} v_{21} v_{10} v_{9} v_{20} v_{19} v_{18} v_{17} v_{16} v_{15} v_{14} v_{13} v_{11} v_{12} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{8} v_{7} ;$
for $k=9, v_{0} v_{17} v_{8} v_{7} v_{16} v_{15} v_{6} v_{5} v_{14} v_{13} v_{12} v_{11} v_{9} v_{10} v_{1} v_{2} v_{4} v_{3}$,
$v_{0} v_{17} v_{8} v_{7} v_{16} v_{15} v_{14} v_{13} v_{12} v_{11} v_{9} v_{10} v_{1} v_{2} v_{3} v_{4} v_{6} v_{5} ;$
for $k=7, v_{0} v_{13} v_{6} v_{5} v_{12} v_{11} v_{10} v_{9} v_{7} v_{8} v_{1} v_{2} v_{4} v_{3}$;
$v_{0}-v_{2 i}$ path, $i \in\left\{2,3,4, \ldots, \frac{k-3}{2}\right\}$: for $k \geq 13$,
$v_{0} v_{2 k-1} v_{k-1} v_{k-2} v_{2 k-2} v_{2 k-3} v_{k-3} v_{k-4} v_{2 k-4} v_{2 k-5} v_{k-5} v_{k-6} v_{2 k-6} v_{2 k-7}$
$\ldots v_{2 i+6} v_{2 i+5} v_{k+2 i+5} v_{k+2 i+4} v_{2 i+4} v_{2 i+3} v_{k+2 i+3} v_{k+2 i+2} v_{2 i+2} v_{2 i+1} v_{k+2 i+1} v_{k+2 i}$
$v_{k+2 i-1} v_{k+2 i-2} v_{k+2 i-3} v_{k+2 i-4} \ldots v_{k+7} v_{k+6} v_{k+5} v_{k+4} v_{k+3} v_{k+2} v_{k} v_{k+1}$
$v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} \ldots v_{2 i-7} v_{2 i-6} v_{2 i-5} v_{2 i-4} v_{2 i-3} v_{2 i-2} v_{2 i-1} v_{2 i} ;$
for $k=11, v_{0} v_{21} v_{10} v_{9} v_{20} v_{19} v_{8} v_{7} v_{18} v_{17} v_{6} v_{5} v_{16} v_{15} v_{14} v_{13} v_{11} v_{12} v_{1} v_{2} v_{3} v_{4}$,
$v_{0} v_{21} v_{10} v_{9} v_{20} v_{19} v_{8} v_{7} v_{18} v_{17} v_{16} v_{15} v_{14} v_{13} v_{11} v_{12} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$, $v_{0} v_{21} v_{10} v_{9} v_{20} v_{19} v_{18} v_{17} v_{16} v_{15} v_{14} v_{13} v_{11} v_{12} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8}$;
for $k=9, v_{0} v_{17} v_{8} v_{7} v_{16} v_{15} v_{6} v_{5} v_{14} v_{13} v_{12} v_{11} v_{9} v_{10} v_{1} v_{2} v_{3} v_{4}$, $v_{0} v_{17} v_{8} v_{7} v_{16} v_{15} v_{14} v_{13} v_{12} v_{11} v_{9} v_{10} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} ;$
for $k=7, v_{0} v_{13} v_{6} v_{5} v_{12} v_{11} v_{10} v_{9} v_{7} v_{8} v_{1} v_{2} v_{3} v_{4}$;
$v_{0}-v_{k-2}$ path: for $k \geq 13, v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} v_{2 k-4} v_{2 k-5} \ldots v_{k+5} v_{k+4} v_{k+3} v_{k+2}$ $v_{k} v_{k+1} \quad v_{1} v_{2} \quad v_{3} v_{4} \quad v_{5} v_{6} \ldots v_{k-6} v_{k-5} \quad v_{k-4} v_{k-3} \quad v_{k-1} v_{k-2} ;$
for $k=11, v_{0} v_{21} v_{20} v_{19} v_{18} v_{17} v_{16} v_{15} v_{14} v_{13} v_{11} v_{12} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{10} v_{9}$;
for $k=9, v_{0} v_{17} v_{16} v_{15} v_{14} v_{13} v_{12} v_{11} v_{9} v_{10} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{8} v_{7}$;
for $k=7, v_{0} v_{13} v_{12} v_{11} v_{10} v_{9} v_{7} v_{8} v_{1} v_{2} v_{3} v_{4} v_{6} v_{5}$;
$v_{0}-v_{k-1}$ path: for $k \geq 13, v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} v_{2 k-4} v_{2 k-5} \ldots v_{k+5} v_{k+4} v_{k+3} v_{k+2}$
$v_{k} v_{k+1} \quad v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} \ldots v_{k-6} v_{k-5} v_{k-4} v_{k-3} \quad v_{k-2} v_{k-1} ;$
for $k=11, v_{0} v_{21} v_{20} v_{19} v_{18} v_{17} v_{16} v_{15} v_{14} v_{13} v_{11} v_{12} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} v_{10}$;
for $k=9, v_{0} v_{17} v_{16} v_{15} v_{14} v_{13} v_{12} v_{11} v_{9} v_{10} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8}$;
for $k=7, v_{0} v_{13} v_{12} v_{11} v_{10} v_{9} v_{7} v_{8} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$;
$v_{0}-v_{k}$ path: for $k \geq 13, v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} v_{2 k-4} v_{2 k-5} \ldots v_{k+5} v_{k+4} v_{k+3} v_{k+2}$
$v_{2} v_{1} \quad v_{3} v_{4} \quad v_{5} v_{6} \quad v_{7} v_{8} \ldots v_{k-4} v_{k-3} \quad v_{k-2} v_{k-1} \quad v_{k+1} v_{k} ;$
for $k=11, v_{0} v_{21} v_{20} v_{19} v_{18} v_{17} v_{16} v_{15} v_{14} v_{13} v_{2} v_{1} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} v_{10} v_{12} v_{11}$;
for $k=9, v_{0} v_{17} v_{16} v_{15} v_{14} v_{13} v_{12} v_{11} v_{2} v_{1} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{10} v_{9}$;
for $k=7, v_{0} v_{13} v_{12} v_{11} v_{10} v_{9} v_{2} v_{1} v_{3} v_{4} v_{5} v_{6} v_{8} v_{7}$;
$v_{0}-v_{k+1}$ path: for $k \geq 13, v_{0} v_{2 k-1} v_{2 k-2} v_{2 k-3} v_{2 k-4} v_{2 k-5} \ldots v_{k+5} v_{k+4} v_{k+3} v_{k+2}$
$v_{2} v_{1} v_{3} v_{4} \quad v_{5} v_{6} \quad v_{7} v_{8} \ldots v_{k-4} v_{k-3} \quad v_{k-2} v_{k-1} \quad v_{k} v_{k+1} ;$
for $k=11, v_{0} v_{21} v_{20} v_{19} v_{18} v_{17} v_{16} v_{15} v_{14} v_{13} v_{2} v_{1} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} v_{10} v_{11} v_{12}$;
for $k=9, v_{0} v_{17} v_{16} v_{15} v_{14} v_{13} v_{12} v_{11} v_{2} v_{1} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{9} v_{10}$;
for $k=7, v_{0} v_{13} v_{12} v_{11} v_{10} v_{9} v_{2} v_{1} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8}$;
$v_{0}-v_{k+2}$ path: for $k \geq 13, v_{0} v_{2 k-1} v_{k-1} v_{k-2} v_{k} v_{k+1} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} \ldots v_{k-6} v_{k-5} v_{k-4} v_{k-3}$
$v_{2 k-3} v_{2 k-2} \quad v_{2 k-4} v_{2 k-5} \quad v_{2 k-6} v_{2 k-7} \quad v_{2 k-8} v_{2 k-9} \ldots v_{k+5} v_{k+4} \quad v_{k+3} v_{k+2} ;$
for $k=11, v_{0} v_{21} v_{10} v_{9} v_{11} v_{12} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7} v_{8} v_{19} v_{20} v_{18} v_{17} v_{16} v_{15} v_{14} v_{13}$;
for $k=9, v_{0} v_{17} v_{8} v_{7} v_{9} v_{10} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{15} v_{16} v_{14} v_{13} v_{12} v_{11}$;
for $k=7, v_{0} v_{13} v_{6} v_{5} v_{7} v_{8} v_{1} v_{2} v_{3} v_{4} v_{11} v_{12} v_{10} v_{9}$;
$v_{0}-v_{2 i-1}$ path, $i \in\left\{\frac{k+5}{2}, \frac{k+7}{2}, \frac{k+9}{2}, \ldots, k-2\right\}$: for $k \geq 15$,
$v_{0} v_{2 k-1} \quad v_{k-1} v_{k-2} \quad v_{2 k-2} v_{2 k-3} \quad v_{k-3} v_{k-4} \quad v_{2 k-4} v_{2 k-5} \quad v_{k-5} v_{k-6} \quad v_{2 k-6} v_{2 k-7}$
$\ldots v_{2 i+6} v_{2 i+5} v_{2 i+5-k} v_{2 i+4-k} v_{2 i+4} v_{2 i+3} v_{2 i+3-k} v_{2 i+2-k} v_{2 i+2} v_{2 i+1}$
$v_{2 i+1-k} v_{2 i-k} v_{2 i-k-1} v_{2 i-k-2} v_{2 i-k-3} v_{2 i-k-4} \ldots v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{k+1} v_{k}$
$v_{k+2} v_{k+3} \quad v_{k+4} v_{k+5} \quad v_{k+6} v_{k+7} \ldots v_{2 i-7} v_{2 i-6} \quad v_{2 i-5} v_{2 i-4} \quad v_{2 i-3} v_{2 i-2} \quad v_{2 i} v_{2 i-1} ;$
for $k=13, v_{0} v_{25} v_{12} v_{11} v_{24} v_{23} v_{10} v_{9} v_{22} v_{21} v_{8} v_{7} v_{20} v_{19} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{14} v_{13} v_{15} v_{16} v_{18} v_{17}$, $v_{0} v_{25} v_{12} v_{11} v_{24} v_{23} v_{10} v_{9} v_{22} v_{21} v_{8} v_{7} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{14} v_{13} v_{15} v_{16} v_{17} v_{18} v_{20} v_{19}$, $v_{0} v_{25} v_{12} v_{11} v_{24} v_{23} v_{10} v_{9} v_{8} v_{7} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{14} v_{13} v_{15} v_{16} v_{17} v_{18} v_{19} v_{20} v_{22} v_{21}$;
for $k=11, v_{0} v_{21} v_{10} v_{9} v_{20} v_{19} v_{8} v_{7} v_{18} v_{17} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{12} v_{11} v_{13} v_{14} v_{16} v_{15}$,
$v_{0} v_{21} v_{10} v_{9} v_{20} v_{19} v_{8} v_{7} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{12} v_{11} v_{13} v_{14} v_{15} v_{16} v_{18} v_{17} ;$
for $k=9, v_{0} v_{17} v_{8} v_{7} v_{16} v_{15} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{10} v_{9} v_{11} v_{12} v_{14} v_{13}$;
$v_{0}-v_{2 i}$ path, $i \in\left\{\frac{k+3}{2}, \frac{k+5}{2}, \frac{k+7}{2}, \ldots, k-2\right\}$: for $k \geq 15$,
$v_{0} v_{2 k-1} \quad v_{k-1} v_{k-2} \quad v_{2 k-2} v_{2 k-3} \quad v_{k-3} v_{k-4} v_{2 k-4} v_{2 k-5} \quad v_{k-5} v_{k-6} \quad v_{2 k-6} v_{2 k-7}$
$\ldots v_{2 i+6} v_{2 i+5} v_{2 i+5-k} v_{2 i+4-k} \quad v_{2 i+4} v_{2 i+3} \quad v_{2 i+3-k} v_{2 i+2-k} \quad v_{2 i+2} v_{2 i+1}$
$v_{2 i+1-k} v_{2 i-k} v_{2 i-k-1} v_{2 i-k-2} \quad v_{2 i-k-3} v_{2 i-k-4} \ldots v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{k+1} v_{k}$
$v_{k+2} v_{k+3} \quad v_{k+4} v_{k+5} \quad v_{k+6} v_{k+7} \ldots v_{2 i-7} v_{2 i-6} \quad v_{2 i-5} v_{2 i-4} \quad v_{2 i-3} v_{2 i-2} \quad v_{2 i-1} v_{2 i}$;
for $k=13, v_{0} v_{25} v_{12} v_{11} v_{24} v_{23} v_{10} v_{9} v_{22} v_{21} v_{8} v_{7} v_{20} v_{19} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{14} v_{13} v_{15} v_{16} v_{17} v_{18}$, $v_{0} v_{25} v_{12} v_{11} v_{24} v_{23} v_{10} v_{9} v_{22} v_{21} v_{8} v_{7} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{14} v_{13} v_{15} v_{16} v_{17} v_{18} v_{19} v_{20}$, $v_{0} v_{25} v_{12} v_{11} v_{24} v_{23} v_{10} v_{9} v_{8} v_{7} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1} v_{14} v_{13} v_{15} v_{16} v_{17} v_{18} v_{19} v_{20} v_{21} v_{22}$

```
    for }k=11,\mp@subsup{v}{0}{}\mp@subsup{v}{21}{}\mp@subsup{v}{10}{}\mp@subsup{v}{9}{}\mp@subsup{v}{20}{}\mp@subsup{v}{19}{}\mp@subsup{v}{8}{}\mp@subsup{v}{7}{}\mp@subsup{v}{18}{}\mp@subsup{v}{17}{}\mp@subsup{v}{6}{}\mp@subsup{v}{5}{}\mp@subsup{v}{4}{}\mp@subsup{v}{3}{}\mp@subsup{v}{2}{}\mp@subsup{v}{1}{}\mp@subsup{v}{12}{}\mp@subsup{v}{11}{}\mp@subsup{v}{13}{}\mp@subsup{v}{14}{}\mp@subsup{v}{15}{}\mp@subsup{v}{16}{}\mathrm{ ,
                v0}\mp@subsup{v}{21}{}\mp@subsup{v}{10}{}\mp@subsup{v}{9}{}\mp@subsup{v}{20}{}\mp@subsup{v}{19}{}\mp@subsup{v}{8}{}\mp@subsup{v}{7}{}\mp@subsup{v}{6}{}\mp@subsup{v}{5}{}\mp@subsup{v}{4}{}\mp@subsup{v}{3}{}\mp@subsup{v}{2}{}\mp@subsup{v}{1}{}\mp@subsup{v}{12}{}\mp@subsup{v}{11}{}\mp@subsup{v}{13}{}\mp@subsup{v}{14}{}\mp@subsup{v}{15}{}\mp@subsup{v}{16}{}\mp@subsup{v}{17}{}\mp@subsup{v}{18}{}
    for }k=9,\mp@subsup{v}{0}{}\mp@subsup{v}{17}{}\mp@subsup{v}{8}{}\mp@subsup{v}{7}{}\mp@subsup{v}{16}{}\mp@subsup{v}{15}{}\mp@subsup{v}{6}{}\mp@subsup{v}{5}{}\mp@subsup{v}{4}{}\mp@subsup{v}{3}{}\mp@subsup{v}{2}{}\mp@subsup{v}{1}{}\mp@subsup{v}{10}{}\mp@subsup{v}{9}{}\mp@subsup{v}{11}{}\mp@subsup{v}{12}{}\mp@subsup{v}{13}{}\mp@subsup{v}{14}{}\mathrm{ ;
```



```
    (Observe that, in the following path, the first and the last edges are colored red.)
```


This completes the proof.

From Lemma 2.2, we have the following result.
Theorem 2.2. If G is a graph with n vertices, $n \geq 10, n \equiv 2(\bmod 4)$, such that $\operatorname{Circ}(n$: $\left.\left\{1,2, \frac{n}{2}\right\}\right) \subseteq G$, then $\operatorname{hpc}(G)=2$.

Theorem 2.2 is open for $n \equiv 0(\bmod 4)$. We show that it is true for $n=8$, i.e., $\operatorname{hpc}(\operatorname{Circ}(8:\{1,2,4\}))=2$.
Let $G=\operatorname{Circ}(8:\{1,2,4\})$ and $F=\left\{v_{i} v_{i+1}: i \in\{1,3,5,7\}\right\}$, where $v_{8}=v_{0}$. Then F is a 1 -factor of G. Define an edge-coloring c of G by assigning color red to each edge of F and color blue to the remaining edges of G. We show that, for every vertex $v_{j}, j \neq 0$, of G, there is a proper Hamilton $v_{0}-v_{j}$ path in G. $v_{0}-v_{1}$ path: $v_{0} v_{7} v_{6} v_{5} v_{4} v_{3} v_{2} v_{1}$;
$v_{0}-v_{2}$ path: $v_{0} v_{7} v_{6} v_{5} v_{4} v_{3} v_{1} v_{2} ; \quad v_{0}-v_{3}$ path: $v_{0} v_{7} v_{1} v_{2} v_{6} v_{5} v_{4} v_{3}$;
$v_{0}-v_{4}$ path: $v_{0} v_{7} v_{1} v_{2} v_{6} v_{5} v_{3} v_{4} ; \quad v_{0}-v_{5}$ path: $v_{0} v_{7} v_{1} v_{2} v_{3} v_{4} v_{6} v_{5}$;
$v_{0}-v_{6}$ path: $v_{0} v_{7} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} ; \quad v_{0}-v_{7}$ path: $v_{0} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{7}$.
Suppose that $G_{0}=\left(V_{0}, E_{0}\right)$ and $G_{1}=\left(V_{1}, E_{1}\right)$ are two disjoint graphs with $\left|V_{0}\right|=\left|V_{1}\right|$. A $1-1$ connection between G_{0} and G_{1} is defined as an edge set $E_{c}=\{(v, \bar{v}) \mid v \in$ $V_{0}, \bar{v}=\phi(v) \in V_{1}$ and $\phi: V_{0} \rightarrow V_{1}$ is a bijection $\} . G_{0} \oplus G_{1}$ denotes the graph $G=\left(V_{0} \cup\right.$ $\left.V_{1}, E_{0} \cup E_{1} \cup E_{c}\right)$. Thus, ϕ induces a 1-factor in $G_{0} \oplus G_{1}$.

Theorem 2.3. (See Theorem 9.15 of [3]) $G_{0} \oplus G_{1}$ is Hamiltonian-connected if both G_{0} and G_{1} are Hamiltonian-connected and $\left|V\left(G_{0}\right)\right|=\left|V\left(G_{1}\right)\right| \geq 3$.

Theorem 2.4. Suppose that $G_{0}=\left(V_{0}, E_{0}\right)$ and $G_{1}=\left(V_{1}, E_{1}\right)$ are two disjoint
Hamiltonian-connected graphs with an even number $\left|V_{0}\right|=\left|V_{1}\right| \geq 4$ of vertices. If, for each $i \in\{0,1\}$, there is a proper Hamilton path 2 -coloring c_{i} of G_{i} with colors blue and red such that for any two vertices u and v of G_{i}, there is a proper Hamilton u-v path in G_{i} with the first and the last edges colored blue, then there is a proper Hamilton path 2 -coloring c of $G_{0} \oplus G_{1}$ with colors blue and red such that for any two vertices x and y of $G_{0} \oplus G_{1}$, there is a proper Hamilton $x-y$ path in $G_{0} \oplus G_{1}$ with the first and the last edges colored blue. So, $h p c\left(G_{0} \oplus G_{1}\right)=2$.

Proof. Define c so that c restricted to E_{0} is c_{0}, c restricted to E_{1} is c_{1}, and the edges of E_{c} are colored red. Without loss of generality, we have the following two cases: (1) both x and y are in $G_{0} ;(2) x$ is in G_{0} and y is in G_{1}.

First, assume that both x and y are in G_{0}. By hypothesis, there exists a proper Hamilton path P of G_{0} joining x and y with the first and the last edges colored blue. The path P can be written as $\left(x, P_{1}, w, z, P_{2}, y\right)$ with $c_{0}(w z)=$ red. Obviously, $\bar{w} \neq \bar{z}$ and, by hypothesis, there exists a proper Hamilton path Q of G_{1} joining \bar{w} and \bar{z} with the first and the last edges colored blue. Thus, $\left(x, P_{1}, w, \bar{w}, Q, \bar{z}, z, P_{2}, y\right)$ forms a proper Hamilton path of $G_{0} \oplus G_{1}$ joining x and y with the first and the last edges colored blue.

Next, assume that x is in G_{0} and y is in G_{1}. Since $\left|V\left(G_{0}\right)\right|=\left|V\left(G_{1}\right)\right| \geq 4$, there exists a vertex z in G_{0} such that $x \neq z$ and $\bar{z} \neq y$. Thus, there exists a proper Hamilton path P of G_{0} joining x and z with the first and the last edges colored blue and there exists a
proper Hamilton path Q of G_{1} joining \bar{z} and y with the first and the last edges colored blue. Obviously, (x, P, z, \bar{z}, Q, y) forms a proper Hamilton path of $G_{0} \oplus G_{1}$ joining x and y with the first and the last edges colored blue. This completes the proof.
Next, we observe that, for any integer $k \geq 5, G_{0}=\operatorname{Circ}(2 k:\{1,2,3,4\})$ satisfies the hypothesis of the previous theorem. By the proof of Case 1 of Lemma 2.1, it is enough if we define c to the edges of length 4 and to find a proper Hamilton $v_{0}-v_{2 k-1}$ path. Color the edges of length 4 by blue and the required path is: $v_{0} v_{2 k-4} v_{2 k-3} v_{2 k-2} v_{1} v_{2} v_{3} \ldots$ $v_{2 k-7} v_{2 k-6} v_{2 k-5} v_{2 k-1}$. Also, we observe that, for any odd integer $k \geq 5, \operatorname{Circ}(2 k:\{1,2,3$, $k-1, k\}$) satisfies the hypothesis of the previous theorem. By the proof of Lemma 2.2, it is enough if we define c to the edges of lengths 3 and $k-1$ so that we have a proper Hamilton $v_{0}-v_{2 k-1}$ path. Color the edges of length 3 by red and length $k-1$ by blue and the required path is: $v_{0} v_{k+1} v_{k+2} v_{k+3} v_{k+4} v_{k+5} \ldots v_{2 k-5} v_{2 k-4} v_{2 k-3} v_{2 k-2} v_{1} v_{2} v_{3} v_{4} \ldots v_{k-2} v_{k-1} v_{k} v_{2 k-1}$.
3. Graphs with hpc $=3$
I. Known graphs G with $h p c(G)=3=\chi^{\prime}(G)$ are: $C_{2 n+1} \square K_{2}$ and H_{k}. Let G be a Hamiltonian-connected graph with $\chi^{\prime}(G)=3$. To show that $h p c(G)=3$, we must show that G has no proper Hamilton path 2-coloring.
II. Known graph G with $\chi^{\prime}(G) \geq 4$ and $h p c(G)=3$ is: F_{k}.

Theorem 3.1. For $k \geq 2 \operatorname{hpc}(\operatorname{Circ}(4 k:\{1,2 k\}))=3$.
Proof. Let $G=\operatorname{Circ}(4 k:\{1,2 k\})$. Consider the proper 3-edge-coloring ($\left\{v_{i} v_{i+1}: i \in\{0\right.$, $\left.2,4, \ldots, 4 k-2\}\},\left\{v_{i} v_{i+1}: i \in\{1,3,5, \ldots, 4 k-1\}\right\},\left\{v_{i} v_{i+2 k}: i \in\{0,1,2, \ldots, 2 k-1\}\right\}\right)$ of the 3 -regular graph G. Thus $\chi^{\prime}(G)=3$. It remains to show that G has no proper Hamilton path 2-coloring. Assume, to the contrary, that there is a proper Hamilton path 2-coloring c of G.
Claim 1. The Hamilton paths from v_{0} to $v_{2 k}$ are
$P_{1}:=v_{0} v_{1} v_{2} v_{3} \ldots v_{2 k-2} v_{2 k-1}-v_{4 k-1} v_{4 k-2} v_{4 k-3} \ldots v_{2 k+1} v_{2 k}$ and
$P_{2}:=v_{0} v_{4 k-1} v_{4 k-2} v_{4 k-3} \ldots v_{2 k+2} v_{2 k+1}-v_{1} v_{2} v_{3} \ldots v_{2 k-1} v_{2 k}$.
Assume, by symmetry, the edge $v_{0} v_{1}$ is in P, a Hamilton path from v_{0} to $v_{2 k}$. Then, $v_{0} v_{4 k-1} \notin E(P)$ and so $v_{4 k-1} v_{4 k-2} \in E(P)$ and $v_{4 k-1} v_{2 k-1} \in E(P)$. Suppose $v_{2 k-1} v_{2 k} \in$ $E(P)$, then $P:=v_{0} v_{1} \ldots v_{4 k-2} v_{4 k-1} v_{2 k-1} v_{2 k}$; it follows that $P^{-1}:=v_{2 k} v_{2 k-1} v_{4 k-1} v_{4 k-2}$ $v_{2 k-2} v_{2 k-3} v_{4 k-3} v_{4 k-4} v_{2 k-4} v_{2 k-5} v_{4 k-5} v_{4 k-6} \ldots ;$ now the vertex $v_{2 k+1} \notin P$, a contradiction. Hence, $v_{2 k-1} v_{2 k} \notin E(P)$. So, $v_{2 k} v_{2 k+1} \in E(P)$. Thus $P:=v_{0} v_{1} \ldots-\ldots v_{2 k+1} v_{2 k}$. Consequently, $P:=v_{0} v_{1} v_{2} \ldots-\ldots v_{2 k+2} v_{2 k+1} v_{2 k}$ and therefore, $P=P_{1}$.
Claim 2. The Hamilton paths from v_{0} to v_{2} are

$$
\begin{aligned}
& Q_{1}:=v_{0} v_{1} v_{2 k+1}-v_{2 k} v_{2 k-1}-v_{4 k-1} v_{4 k-2}-v_{2 k-2} v_{2 k-3}-v_{4 k-3} v_{4 k-4}-v_{2 k-4} v_{2 k-5} \\
& \quad-v_{4 k-5} v_{4 k-6}-\cdots-v_{6} v_{5}-v_{2 k+5} v_{2 k+4}-v_{4} v_{3}-v_{2 k+3} v_{2 k+2}-v_{2} \text { and } \\
& Q_{2}:=v_{0}-v_{2 k} v_{2 k-1}-v_{4 k-1} v_{4 k-2}-v_{2 k-2} v_{2 k-3}-v_{4 k-3} v_{4 k-4}-v_{2 k-4} v_{2 k-5} \\
& \quad-v_{4 k-5} v_{4 k-6}-\cdots-v_{6} v_{5}-v_{2 k+5} v_{2 k+4}-v_{4} v_{3}-v_{2 k+3} v_{2 k+2}-v_{2 k+1} v_{1} v_{2} .
\end{aligned}
$$

Since $N\left(v_{1}\right)=\left\{v_{0}, v_{2}, v_{2 k+1}\right\}$, any Hamilton path Q from v_{0} to v_{2} contains $v_{0} v_{1} v_{2 k+1}$ or $v_{2 k+1} v_{1} v_{2}$ but not both. Assume, by symmetry, $Q:=v_{0} v_{1} v_{2 k+1} \ldots v_{2}$. Edge $v_{0} v_{4 k-1} \notin$ $E(Q)$ implies $v_{4 k-2} v_{4 k-1} v_{2 k-1}$ is in Q and $v_{0} v_{2 k} \notin E(Q)$ implies $v_{2 k-1} v_{2 k} v_{2 k+1}$ is in Q. Hence, $Q:=v_{0} v_{1} v_{2 k+1}-v_{2 k} v_{2 k-1}-v_{4 k-1} v_{4 k-2}-\cdots-v_{2}$. Now, $v_{2 k-1} v_{2 k-2} \notin E(Q)$ implies $v_{2 k-3} v_{2 k-2} v_{4 k-2}$ is in Q. Proceeding in this way, we get $Q=Q_{1}$.
We have four possibilities. If the paths required for c are P_{1} and Q_{1}, then we have a contradiction, since $c\left(v_{0} v_{1}\right) \neq c\left(v_{2 k-1} v_{4 k-1}\right)$ in P_{1} and $c\left(v_{0} v_{1}\right)=c\left(v_{2 k-1} v_{4 k-1}\right)$ in Q_{1}. If the paths required for c are P_{1} and Q_{2}, then also we have a contradiction, since $c\left(v_{2 k-3} v_{2 k-2}\right)=$ $c\left(v_{2 k-1} v_{4 k-1}\right)$ in P_{1} and $c\left(v_{2 k-3} v_{2 k-2}\right) \neq c\left(v_{2 k-1} v_{4 k-1}\right)$ in Q_{2}. Similarly, the reason for P_{2} and Q_{1} is $c\left(v_{1} v_{2 k+1}\right) \neq c\left(v_{2 k-1} v_{2 k}\right)$ in P_{2} and $c\left(v_{1} v_{2 k+1}\right)=c\left(v_{2 k-1} v_{2 k}\right)$ in Q_{1}; and the
same for P_{2} and Q_{2} is $c\left(v_{2 k+2} v_{2 k+3}\right) \neq c\left(v_{3} v_{4}\right)$ in P_{2} and $c\left(v_{2 k+2} v_{2 k+3}\right)=c\left(v_{3} v_{4}\right)$ in Q_{2}. This completes the proof.
Conclusion The conjecture 'if G is a Hamiltonian-connected graph, then hpc $(G) \leq 3$ ' of Bi, Byers and Zhang [2] is verified for some classes of graphs (see Theorems 2.1, 2.2 and 3.1). Also, Theorem 2.4 generates more graphs that serve as a support to the conjecture.

We pose the following problems.
Problem 3.1. Find $a_{1}<a_{2}<a_{3}$ such that for every integer $n \geq 2 a_{3}+1$,
$h p c\left(\operatorname{Circ}\left(n:\left\{a_{1}, a_{2}, a_{3}\right\}\right)\right)=2$.
If $\left(a_{1}, a_{2}, a_{3}\right)=(1,2,3)$, then we have Lemma 2.1.
Problem 3.2. Find $a_{1}<a_{2}$ such that for every odd integer $k \geq 2 a_{2}+1$, $h p c\left(\operatorname{Circ}\left(2 k:\left\{a_{1}, a_{2}, k\right\}\right)\right)=2$.

If $\left(a_{1}, a_{2}\right)=(1,2)$, then we have Lemma 2.2.
In the next two sections, we consider Hamiltonian-laceable graphs and apply the hpc -Conjecture.

4. Hamiltonian-laceable graphs

A bipartite graph with bipartition (X, Y) is Hamiltonian-laceable if there exists a Hamilton path joining any two vertices from different partite sets; that is, one in X and one in Y. For a Hamiltonian-laceable graph G, an edge-coloring $c: E(G) \rightarrow\{1,2, \ldots, k\}$ is a proper Hamilton path k-coloring if every two vertices from different partite sets of G are connected by a proper Hamilton path in G. The minimum number k of colors in a proper Hamilton path k-coloring of G is also called the proper Hamiltonian-connection number of G, but it is denoted by $\mathrm{hpc}_{b}(G)$.

5. GRaphs with $\mathrm{HPC}_{b}=2$

Let G be a Hamiltonian-laceable graph with bipartition (X, Y). To show that $h p c_{b}(G)=$ 2 , we must show that G has a 2 -edge-coloring with the property that for every two vertices $u \in X$ and $v \in Y$ of G, there is a proper Hamilton $u-v$ path in G.
Lemma 5.1. For every integer $n \geq 5, \operatorname{hpc}_{b}(\operatorname{Circ}(2 n:\{1,3,5\}))=2$.
Proof. Let $G=\operatorname{Circ}(2 n:\{1,3,5\})$ and $F=\left\{v_{i} v_{i+1}: i \in\{1,3,5, \ldots, 2 n-1\}\right\}$, where $v_{2 n}$ $=v_{0}$. Then, F is a 1-factor of G. Let $X=\left\{v_{i}: i \in\{0,2,4, \ldots, 2 n-2\}\right\}$ and $Y=\left\{v_{i}\right.$: $i \in\{1,3,5, \ldots, 2 n-1\}\}$. Define an edge-coloring c of G by assigning color blue to each edge of F and color red to the remaining edges of G. As the edge-colored G is vertex-transitive, we show that for every vertex $v_{j} \in Y$ of G, there is a proper Hamilton $v_{0}-v_{j}$ path in G.
(Observe that, in the following paths, the first and the last edges are colored blue.)
$v_{0}-v_{1}$ path: $v_{0} v_{2 n-1} v_{2 n-2} v_{2 n-3} \ldots v_{4} v_{3} v_{2} v_{1}$;
$v_{0}-v_{3}$ path: for $n \geq 6, v_{0} v_{2 n-1} v_{2 n-2} v_{2 n-3} \ldots v_{8} v_{7} v_{6} v_{5} v_{2} v_{1} v_{4} v_{3}$;
for $n=5, v_{0} v_{9} v_{8} v_{7} v_{6} v_{5} v_{2} v_{1} v_{4} v_{3}$;
$v_{0}-v_{5}$ path: for $n \geq 6, v_{0} v_{2 n-1} v_{2 n-2} v_{2 n-3} \ldots v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5}$;
for $n=5, v_{0} v_{9} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5}$;
$v_{0}-v_{7}$ path: for $n \geq 7, v_{0} v_{2 n-1} v_{2 n-2} v_{2 n-3} \ldots v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{4} v_{3} v_{8} v_{7}$;
for $n=6, v_{0} v_{11} v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{4} v_{3} v_{8} v_{7}$; for $n=5, v_{0} v_{9} v_{6} v_{5} v_{2} v_{1} v_{4} v_{3} v_{8} v_{7}$;
Assume $n \geq 6$ and $j \in\{5,6,7, \ldots, n-1\}$:
$v_{0}-v_{2 j-1}$ path, if $j \equiv 0(\bmod 2)$: for $n \geq 10$,
$v_{0} v_{2 n-1} v_{2 n-2} v_{2 n-3} \ldots v_{2 j+2} v_{2 j+1} v_{2 j-2} v_{2 j-3} v_{2 j-6} v_{2 j-7} v_{2 j-10} v_{2 j-11} \ldots v_{10} v_{9}$
$v_{6} v_{5} v_{2} v_{1} v_{4} v_{3} v_{8} v_{7} v_{12} v_{11} \ldots v_{2 j-8} v_{2 j-9} v_{2 j-4} v_{2 j-5} v_{2 j} v_{2 j-1} ;$

```
    for \(n=9, v_{0} v_{17} v_{16} v_{15} v_{14} v_{13} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{10} v_{9} v_{12} v_{11}\),
        \(v_{0} v_{17} v_{14} v_{13} v_{10} v_{9} v_{6} v_{5} v_{2} v_{1} v_{4} v_{3} v_{8} v_{7} v_{12} v_{11} v_{16} v_{15}\);
    for \(n=8, v_{0} v_{15} v_{14} v_{13} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{10} v_{9} v_{12} v_{11}\);
    for \(n=7, v_{0} v_{13} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{10} v_{9} v_{12} v_{11}\);
\(v_{0}-v_{2 j-1}\) path, if \(j \equiv 1(\bmod 2)\) : for \(n \geq 10, v_{0} v_{2 n-1} v_{2 n-2} v_{2 n-3} \ldots v_{2 j+2} v_{2 j+1}\)
    \(v_{2 j-2} v_{2 j-3} \quad v_{2 j-6} v_{2 j-7} \quad v_{2 j-10} v_{2 j-11} \ldots v_{12} v_{11} v_{8} v_{7} v_{2} v_{1}\)
    \(v_{4} v_{3} \quad v_{6} v_{5} \quad v_{10} v_{9} v_{14} v_{13} \ldots v_{2 j-8} v_{2 j-9} v_{2 j-4} v_{2 j-5} \quad v_{2 j} v_{2 j-1}\);
    for \(n=9, v_{0} v_{17} v_{16} v_{15} v_{14} v_{13} v_{12} v_{11} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{10} v_{9}\),
            \(v_{0} v_{17} v_{16} v_{15} v_{12} v_{11} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{10} v_{9} v_{14} v_{13} ;\)
    for \(n=8, v_{0} v_{15} v_{14} v_{13} v_{12} v_{11} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{10} v_{9}\),
            \(v_{0} v_{15} v_{12} v_{11} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{10} v_{9} v_{14} v_{13}\);
    for \(n=7, v_{0} v_{13} v_{12} v_{11} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{10} v_{9}\);
    for \(n=6, v_{0} v_{11} v_{8} v_{7} v_{2} v_{1} v_{4} v_{3} v_{6} v_{5} v_{10} v_{9}\);
```

(Observe that, in the following path, the first and the last edges are colored red.)
$v_{0}-v_{2 n-1}$ path: $v_{0} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} \ldots v_{2 n-4} v_{2 n-3} v_{2 n-2} v_{2 n-1}$. This completes the proof.
Theorem 5.1. Let G be a bipartite graph with $n \geq 5$ vertices in each partite set. If $\operatorname{Circ}(2 n:\{1,3,5\}) \subseteq G$, then $h p c_{b}(G)=2$.

Corollary 5.1. For $n \geq 5, h p c_{b}\left(K_{n, n}\right)=2$.
Theorem 5.2. (See Theorem 9.17 of [3]) Assume that G_{0}, G_{1}, and $G_{0} \oplus G_{1}$ are bipartite graphs such that $\left|V\left(G_{0}\right)\right|=\left|V\left(G_{1}\right)\right| \geq 2$. Then $G_{0} \oplus G_{1}$ is Hamiltonian-laceable if both G_{0} and G_{1} are Hamiltonian-laceable.

Theorem 5.3. Suppose that $G_{0}=\left(V_{0}^{0} \cup V_{0}^{1}, E_{0}\right)$ and $G_{1}=\left(V_{1}^{0} \cup V_{1}^{1}, E_{1}\right)$ are two disjoint Hamiltonian-laceable graphs with $\left|V_{0}^{0}\right|=\left|V_{0}^{1}\right|=\left|V_{1}^{0}\right|=\left|V_{1}^{1}\right| \geq 2$, where $\left(V_{i}^{0}, V_{i}^{1}\right)$ is a bipartition of $G_{i}, i \in\{0,1\}$. If, for each $i \in\{0,1\}$, there is a proper Hamilton path 2 -coloring c_{i} of G_{i} with colors blue and red such that for every two vertices $u \in V_{i}^{0}$ and $v \in V_{i}^{1}$ of G_{i}, there is a proper Hamilton u-v path in G_{i} with the first and the last edges colored blue, then there is a proper Hamilton path 2-coloring c of $G_{0} \oplus G_{1}$ with colors blue and red such that for every two vertices x and y of $G_{0} \oplus G_{1}$, there is a proper Hamilton $x-y$ path in $G_{0} \oplus G_{1}$ with the first and the last edges colored blue. So, $h p c_{b}\left(G_{0} \oplus G_{1}\right)=2$.

Proof. Define c so that c restricted to E_{0} is c_{0}, c restricted to E_{1} is c_{1}, and the edges of E_{c} are colored red. By the symmetric property of $G_{0} \oplus G_{1}$, without loss of generality we can assume the following two cases:
Case 1. $x \in V_{0}^{0}$ and $y \in V_{0}^{1}$. By hypothesis, there exists a proper Hamilton path P of G_{0} joining x and y with the first and the last edges colored blue. The path P can be written as $\left(x, P_{1}, w, z, P_{2}, y\right)$ with $c_{0}(w z)=$ red, $w \in V_{0}^{1}$ and $z \in V_{0}^{0}$. Obviously, $\bar{w} \in V_{1}^{1}$ and $\bar{z} \in V_{1}^{0}$. Thus, there exists a proper Hamilton path Q of G_{1} joining \bar{w} and \bar{z} with the first and the last edges colored blue. Thus, $\left(x, P_{1}, w, \bar{w}, Q, \bar{z}, z, P_{2}, y\right)$ forms a proper Hamilton path of $G_{0} \oplus G_{1}$ with the first and the last edges colored blue.
Case 2. $x \in V_{0}^{0}$ and $y \in V_{1}^{1}$. Then, there exists a vertex z in V_{0}^{1}. Obviously, $\bar{z} \in V_{1}^{0}$. Thus, there exists a proper Hamilton path P of G_{0} joining x to z with the first and the last edges colored blue and there exists a proper Hamilton path Q of G_{1} joining \bar{z} to y with the first and the last edges colored blue. Obviously, (x, P, z, \bar{z}, Q, y) forms a proper Hamilton path of $G_{0} \oplus G_{1}$ with the first and the last edges colored blue. This completes the proof.

Next, we observe that, for any even integer $n \geq 10, \operatorname{Circ}(2 n:\{1,3,5,7,9\})$ satisfies the hypothesis of the previous theorem. By the proof of Lemma 5.1, it is enough if we define c
to the edges of lengths 7 and 9 so that we have a proper Hamilton $v_{0}-v_{2 k-1}$ path. Color the edges of lengths 7 and 9 by blue, the required path is $v_{0}-v_{2 n-1}$ path: $v_{0} v_{2 n-9} v_{2 n-10} v_{2 n-11}$ $v_{2 n-12} v_{2 n-13} \ldots v_{4} v_{3} v_{2} v_{1} v_{2 n-2} v_{2 n-3} v_{2 n-4} v_{2 n-5} \quad v_{2 n-6} v_{2 n-7} v_{2 n-8} v_{2 n-1}$.

6. Graphs with $\operatorname{HPC}_{b}=3$

Let G be a Hamiltonian-laceable graph with $\chi^{\prime}(G)=3$. To show that $h p c_{b}(G)=3$, we must show that G has no proper Hamilton path 2-coloring.
Theorem 6.1. For each integer $n \geq 2, h p c_{b}\left(C_{2 n} \square K_{2}\right)=3$.
Proof. Construct $G=C_{2 n} \square K_{2}$ from the two $2 n$-cycles $u_{1} u_{2} u_{3} \ldots u_{2 n-1} u_{2 n} u_{1}$ and $v_{1} v_{2} v_{3} \ldots v_{2 n-1} v_{2 n} v_{1}$ by adding the $2 n$ edges $u_{i} v_{i}$ for $i \in\{1,2, \ldots, 2 n\}$. Let $X=$ $\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{2 n-3}, u_{2 n-1}\right\} \cup\left\{v_{2}, v_{4}, v_{6}, \ldots, v_{2 n-2}, v_{2 n}\right\}$ and $Y=\left\{u_{2}, u_{4}, u_{6}, \ldots, u_{2 n-2}\right.$, $\left.u_{2 n}\right\} \cup\left\{v_{1}, v_{3}, v_{5}, \ldots, v_{2 n-3}, v_{2 n-1}\right\}$. Then (X, Y) is a bipartition of G. Note that $\chi^{\prime}(G)=3$. Assume, to the contrary, that there is a proper Hamilton path 2-coloring c of G.

First, consider a Hamilton $u_{1}-v_{1}$ path P in $G . P$ begins with $u_{1} u_{2}$ or $u_{1} u_{2 n}$ and ends with $v_{2} v_{1}$ or $v_{2 n} v_{1}$. Assume, by symmetry, P begins with $u_{1} u_{2}$.

If P ends with $v_{2} v_{1}$, then, as $u_{1} u_{2 n} \notin E(P)$ and $v_{1} v_{2 n} \notin E(P)$, we have the subpath $u_{2 n-1} u_{2 n} v_{2 n} v_{2 n-1}$ in P. Again, as $u_{2 n-1} v_{2 n-1} \notin E(P)$, we have $u_{2 n-2} u_{2 n-1}, v_{2 n-2} v_{2 n-1} \in$ $E(P)$. Proceeding in this way, we get $P=u_{1} u_{2} u_{3} \ldots u_{2 n-2} u_{2 n-1} u_{2 n} v_{2 n} v_{2 n-1} v_{2 n-2} \ldots v_{3} v_{2} v_{1}$ $=P_{1}$.
If P ends with $v_{2 n} v_{1}$, then, as $v_{1} v_{2} \notin E(P)$, we have the subpath $u_{2} v_{2} v_{3}$ in P. Since $u_{2} u_{3} \notin E(P)$, the subpath $v_{3} u_{3} u_{4}$ in P. As $v_{3} v_{4} \notin E(P)$, the subpath $u_{4} v_{4} v_{5}$ in P. Proceeding in this way, we get $P=u_{1} u_{2} v_{2} v_{3} u_{3} u_{4} v_{4} v_{5} \ldots v_{2 n-1} u_{2 n-1} u_{2 n} v_{2 n} v_{1}=P_{2}$.
Next, consider Hamilton $u_{3}-v_{3}$ paths in G. By the above argument, the paths are:
$Q_{1}=u_{3} u_{4} u_{5} \ldots u_{2 n-2} u_{2 n-1} u_{2 n} u_{1} u_{2} v_{2} v_{1} v_{2 n} v_{2 n-1} v_{2 n-2} \ldots v_{5} v_{4} v_{3}$,
$Q_{2}=u_{3} u_{4} v_{4} v_{5} u_{5} u_{6} v_{6} v_{7} \ldots v_{2 n-1} u_{2 n-1} u_{2 n} v_{2 n} v_{1} u_{1} u_{2} v_{2} v_{3}$,
$Q_{3}=u_{3} u_{2} u_{1} u_{2 n} u_{2 n-1} u_{2 n-2} \ldots u_{5} u_{4} v_{4} v_{5} v_{6} \ldots v_{2 n-1} v_{2 n} v_{1} v_{2} v_{3}$, and
$Q_{4}=u_{3} u_{2} v_{2} v_{1} u_{1} u_{2 n} v_{2 n} v_{2 n-1} u_{2 n-1} u_{2 n-2} v_{2 n-2} v_{2 n-3} \ldots v_{5} u_{5} u_{4} v_{4} v_{3}$.
If the paths required in c are P_{1} and Q_{2}, then, we have a contradiction, since $c\left(u_{2 n} v_{2 n}\right)=c\left(v_{2 n-1} v_{2 n-2}\right)$ in P_{1} and $c\left(u_{2 n} v_{2 n}\right) \neq c\left(v_{2 n-1} v_{2 n-2}\right)$ in Q_{2}.

If the paths required in c are P_{1} and Q_{4}, then, we have a contradiction, since $c\left(u_{2 n} v_{2 n}\right)=c\left(u_{2 n-2} u_{2 n-1}\right)$ in P_{1} and $c\left(u_{2 n} v_{2 n}\right) \neq c\left(u_{2 n-2} u_{2 n-1}\right)$ in Q_{4}.

If the paths required in c are P_{2} and Q_{1}, then, we have a contradiction, since $c\left(u_{2 n-1} u_{2 n}\right)=c\left(v_{2 n-2} v_{2 n-1}\right)$ in P_{2} and $c\left(u_{2 n-1} u_{2 n}\right) \neq c\left(v_{2 n-2} v_{2 n-1}\right)$ in Q_{1}.

If the paths required in c are P_{2} and Q_{3}, then, we have a contradiction, since $c\left(u_{2 n-1} u_{2 n}\right)=c\left(v_{2 n-2} v_{2 n-1}\right)$ in P_{2} and $c\left(u_{2 n-1} u_{2 n}\right) \neq c\left(v_{2 n-2} v_{2 n-1}\right)$ in Q_{3}.

If the paths required in c are P_{1} and Q_{1}, then, there is no proper Hamilton $u_{1}-v_{3}$ path in G. To see this, consider the first edge of this path. If it is either $u_{1} v_{1}$ or $u_{1} u_{2 n}$, then the edges $v_{2} u_{2}$ and $u_{2} u_{3}$ with same color are in the path. Otherwise, it is $u_{1} u_{2}$, and the edges $u_{2 n} v_{2 n}$ and $v_{2 n} v_{1}$ with same color are in the path. A contradiction.

If the paths required in c are P_{1} and Q_{3}, then, there is no proper Hamilton $u_{1}-v_{3}$ path in G. To see this, consider the first edge of this path. If it is $u_{1} u_{2}$, then the edges $u_{2 n} v_{2 n}$ and $v_{2 n} v_{1}$ with same color are in the path. If it is $u_{1} u_{2 n}$, then we have the subpath $v_{1} v_{2} u_{2} u_{3}$ in the path; now the edge $v_{2} u_{2}$ has no color. If it is $u_{1} v_{1}$, then we have the subpath $v_{2} u_{2} u_{3}$, with color 1,2 in order, in the path; now there is no second edge for this path. A contradiction.

If the paths required in c are P_{2} and Q_{4}, then, each of the edges in the two $2 n$-cycles $u_{1} u_{2} u_{3} \ldots u_{2 n-1} u_{2 n} u_{1}$ and $v_{1} v_{2} v_{3} \ldots v_{2 n-1} v_{2 n} v_{1}$ are of one color, say 1 , and each of
the $2 n$ edges $u_{i} v_{i}, i \in\{1,2, \ldots, 2 n\}$, are of another color, say 2 . Now, there is no proper Hamilton $u_{1}-v_{3}$ path in G, a contradiction.

If the paths required in c are P_{2} and Q_{2}, then, there is no proper Hamilton $u_{1}-u_{4}$ path R in G. To see this, consider the first edge of R. If it is $u_{1} u_{2 n}$, then we have the subpath $u_{2} v_{2} v_{1} v_{2 n}$; as the edges $u_{2} v_{2}$ and $v_{1} v_{2 n}$ are of different colors, there is no color for the edge $v_{2} v_{1}$. So it is either $u_{1} u_{2}$ or $u_{1} v_{1}$. First, assume that it is $u_{1} u_{2}$. If $R=u_{1} u_{2} u_{3} \ldots$, then $R=u_{1} u_{2} u_{3} u_{4}$. So, $R=u_{1} u_{2} v_{2} \ldots$ and therefore $R=u_{1} u_{2} v_{2} \ldots v_{3} u_{3} u_{4}$. As $R \neq u_{1} u_{2} v_{2} v_{3} u_{3} u_{4}, R=u_{1} u_{2} v_{2} v_{1} \ldots v_{3} u_{3} u_{4}$. Thus $R=u_{1} u_{2} v_{2} v_{1} u_{1}$. Next, assume that it is $u_{1} v_{1}$. By symmetry, assume that the last edge of R is $v_{4} u_{4}$. As $u_{1} u_{2}$ and $u_{3} u_{4}$ are not in $R, R=u_{1} v_{1} \ldots v_{2} u_{2} u_{3} v_{3} \ldots v_{4} u_{4}$. Since $v_{2} v_{3}$ is not in $R, R=u_{1} v_{1} v_{2} u_{2} u_{3} v_{3} v_{4} u_{4}$. A contradiction. This completes the proof.

Using the following two facts, we have:
If $n \geq 2$, then, for any edge e in $C_{2 n} \square K_{2}, \chi^{\prime}\left(\left(C_{2 n} \square K_{2}\right)-e\right)=3$, and it is known that (see Lemma 9.3 of [3]), $\left(C_{2 n} \square K_{2}\right)-e$ is Hamiltonian-laceable.

If H is a Hamiltonian-laceable spanning subgraph of a Hamiltonian-laceable graph G, then $\operatorname{hpc}_{b}(G) \leq \operatorname{hpc}_{b}(H)$.

Corollary 6.1. For $n \geq 2$ and for any edge e in $C_{2 n} \square K_{2}, h p c_{b}\left(\left(C_{2 n} \square K_{2}\right)-e\right)=3$.
We pose the following problem.
Problem 6.1. Find odd integers $a_{1}<a_{2}<a_{3}$ such that for every integer $n \geq a_{3}$, $h p c_{b}\left(\operatorname{Circ}\left(2 n:\left\{a_{1}, a_{2}, a_{3}\right\}\right)\right)=2$.

If $\left(a_{1}, a_{2}, a_{3}\right)=(1,3,5)$, then we have Lemma 5.1.

References

[1] Balakrishnan, R. and Ranganathan, K., (2012), A textbook of graph theory, Springer, New York.
[2] Bi, Z., Byers, A. and Zhang, P., (2017), Proper Hamiltonian-Connected Graphs, Bull. Inst. Combin. Appl., 79, pp. 48-65.
[3] Hsu, L. H. and Lin, C. K., (2009), Graph Theory and Interconnection Networks, CRC Press, Taylor Francis Group, New York.
[4] Moon, J. W., (1965), On a problem of Ore, Math. Gaz., 49, pp. 40-41.

R. Sampathkumar is a professor in the Department of Mathematics, Annamalai Univeristy, Annamalainagar. His areas of interests are Graph Decomposition, Graph Labelling, Graph Coloring, Orientations of Graphs, and Design Theory.

S. Anantharaman is a research scholar in the Department of Mathematics, Annamalai Unversity, Annamalainagar. His area of interest is Graph Coloring.

[^0]: ${ }^{1}$ Department of Mathematics, Annamalai University, Annamalainagar - 608 002, India.
 e-mail: sampathmath@gmail.com; ORCID: https://orcid.org/0000-0002-4910-7074.
 e-mail: ksskcomputer@gmail.com; ORCID: https://orcid.org/0000-0001-6671-3386.
 Manuscript received: April 24, 2020; accepted: June 22, 2020.
 TWMS Journal of Applied and Engineering Mathematics, Vol.12, No. 3 © Işık University, Department of Mathematics, 2022; all rights reserved.

