SOME PROPERTIES OF VAGUE GRAPH STRUCTURES

M. TAHERI ${ }^{1}$, Y. TALEBI ${ }^{1}$, H. RASHMANLOU ${ }^{1}$, §

Abstract

A graph structure is a generalization of simple graphs. Graph structures are very useful tools for the study of different domains of computational intelligence and computer science. A vague graph structure is a generalization of a vague graph. In this research paper, we present several different types of operations including cartesian product, cross product, lexicographic product, union, and composition on vague graph structures. We also introduce some results of operations.

Keywords: Vague set, vague graph structure, cross product, lexicographic product, composition.

AMS Subject Classification: 05C99, 03E72.

1. Introduction

Fuzzy graph models are advantageous mathematical tools for dealing with combinatorial problems of various domains including operations research, optimization, social science, algebra, computer science, and topology. Fuzzy graphical models are obviously better than graphical models due to natural existence of vagueness and ambiguity. Fuzzy set theory [24] is a very strong mathematical tool for solving approximate reasoning related problems. Graph structures, introduced by Sampathkumar (2006), are a generalization of graph which quite useful in studying structures including graphs, signed graphs, and graphs in which every edge is labeled or colored. Gau and Buehrer [7] proposed the concept of vague set in 1993, by replacing the value of an element in a set with a sub-interval of $[0,1]$. Namely, a true-membership function $t_{v}(x)$ and a false membership function $f_{v}(x)$ are used to describe the boundaries of the membership degree. Kauffman defined in [9] a fuzzy graph. Rosenfeld [18] described the structure of fuzzy graph obtaining analogs of several graph theoretical concepts. Bhattacharya [5] gave some remarks on fuzzy graphs. Several concepts on fuzzy graphs were introduced by Mordeson et al. [10]. Dinesh [6] introduced the notion of a fuzzy graph structure and discussed some related properties. Ramakrishna [11] defined the concept of vague graphs and studied some of their properties. Sahoo and Pal [19, 20] studied different types of products on intuitionistic fuzzy graphs.

[^0]Rashmanlou et al. $[12,13,14,15,16,17]$ investigated several properties of fuzzy graphs. Ghorai and Pal [8] defined certain types of product bipolar fuzzy graphs. Akram [1] given bipolar fuzzy graphs. Sheikh Hoseini et al. [21] introduced maximal product of graphs under vague environment. Sunitha and Vijayakumar [23] studied some properties of complement on fuzzy graphs. Shahzadi et al. [22] investigated pythagorean fuzzy soft graphs with applications. Borzooei $[2,3,4]$ introduced new concepts on vague graphs. In this paper, we present several different types of operations, including cartesian product, cross product, lexicographic product, union, and composition on vague graph structures.

2. Preliminaries

A graph structure $G^{*}=\left(U, E_{1}, E_{2}, \cdots, E_{k}\right)$, consists of a non-empty set U together with mutually disjoint, irreflexive, and symmetric relations, $E_{1}, E_{2}, \cdots, E_{k}$ on U. If G_{1}^{*} and G_{2}^{*} are two graph structures given by $\left(U, E_{1}, E_{2}, \cdots, E_{k}\right)$ and $\left(V, E_{1}^{\prime}, E_{2}^{\prime}, \cdots, E_{k}^{\prime}\right)$ respectively, then cartesian product of G_{1}^{*} and G_{2}^{*}, is denoted by " $G_{1}^{*} \times G_{2}^{* "}$ and given by $G_{1} \times G_{2}^{*}=\left(U \times V, E_{1} \times E_{1}^{\prime}, E_{2} \times E_{2}^{\prime}, \cdots, E_{k} \times E_{k}^{\prime}\right)$ where $E_{i} \times E_{i}^{\prime}=\left\{\left(u_{1} v, u_{2} v\right) \mid v \in\right.$ $\left.V, u_{1} u_{2} \in E_{i}\right\} \cup\left\{\left(u v_{1}, u v_{2}\right) \mid u \in U, v_{1} v_{2} \in E_{i}^{\prime}\right\}, i=1,2, \cdots, k$. Composition of G_{1}^{*} and G_{2}^{*} is denoted by " $G_{1}^{*} \circ G_{2}^{* "}$ and given by $G_{1}^{*} \circ G_{2}^{*}=\left(U \circ V, E_{1} \circ E_{1}^{\prime}, E_{2} \circ E_{2}^{\prime}, \cdots, E_{k} \circ E_{k}^{\prime}\right)$ where $U \circ V=U \times V$ and $E_{i} \circ E_{i}^{\prime}=\left\{\left(u_{1} v, u_{2} v\right) \mid v \in V, u_{1} u_{2} \in E_{i}\right\} \cup\left\{\left(u v_{1}, u v_{2}\right) \mid u \in\right.$ $\left.U, v_{1} v_{2} \in E_{i}^{\prime}\right\} \cup\left\{\left(u_{1} v_{1}, u_{2} v_{2}\right) \mid u_{1} u_{2} \in E_{i}, v_{1} \neq v_{2}\right\}, i=1,2, \cdots, k$. Union of G_{1}^{*} and G_{2}^{*} is denoted by " $G_{1}^{*} \cup G_{2}^{* "}$ and given by $G_{1}^{*} \cup G_{2}^{*}=\left(U \cup V, E_{1} \cup E_{1}^{\prime}, E_{2} \cup E_{2}^{\prime}, \cdots, E_{k} \cup E_{k}^{\prime}\right)$ and join of G_{1}^{*} and G_{2}^{*} is given by $G_{1}^{*}+G_{2}^{*}=\left(U+V, E_{1}+E_{1}^{\prime}, E_{2}+E_{2}^{\prime}, \cdots, E_{k}+E_{k}^{\prime}\right)$ where $U+V=U \cup V$ and $E_{i}+E_{i}^{\prime}=E_{i} \cup E_{i}^{\prime} \cup E$, for $i=1,2, \cdots, k$ such that E is the set consisting of all edges which join vertices of U with vertices of V.

Definition 2.1. [6] Let $G^{*}=\left(U, E_{1}, E_{2}, \cdots, E_{k}\right)$ be a graph structure and let $\nu, \rho_{1}, \rho_{2}, \cdots, \rho_{k}$ be the fuzzy subsets of $U, E_{1}, E_{2}, \cdots, E_{k}$ respectively such that:

$$
0 \leq \rho_{i}(x y) \leq \mu(x) \wedge \mu(y), \text { for all } x, y \in V, i=1,2, \cdots, k
$$

Then $G=\left(\nu, \rho_{1}, \rho_{2}, \cdots, \rho_{k}\right)$ is a fuzzy graph structure of G^{*}.
Definition 2.2. [7] A vague set A on an ordinary finite non-empty set X is a pair $\left(t_{A}, f_{A}\right)$ where $t_{A}: X \rightarrow[0,1]$ and $f_{A}: X \rightarrow[0,1]$ are true and false membership functions, respectively such that $t_{A}(x)+f_{A}(x) \leq 1$, for all $x \in X$. Let X and Y be ordinary finite non-empty sets. Then we call a vague relation to be a vague subset of $X \times Y$, that is an expression R defined by:

$$
R=\left\{\left\langle(x, y), t_{R}(x, y), f_{R}(x, y)\right\rangle \mid x \in X, y \in Y\right\}
$$

where $t_{R}: X \times Y \rightarrow[0,1], f_{R}: X \times Y \rightarrow[0,1]$, which satisfies condition $0 \leq t_{R}(x, y)+$ $f_{R}(x, y) \leq 1$, for all $(x, y) \in X \times Y$.
Definition 2.3. [11] A vague graph is a pair of $G=(A, B)$, where $A=\left(t_{A}, f_{A}\right)$ is a vague set on V and $B=\left(t_{B}, f_{B}\right)$ is a vague set on $E \subseteq V \times V$ such that $t_{B}(x y) \leq$ $\min \left(t_{A}(x), t_{A}(y)\right)$ and $f_{B}(x y) \geq \max \left(f_{A}(x), f_{A}(y)\right)$, for $x y \in E$.

Example 2.1. [11] Consider a vague graph G such that $V=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $E=$ $\left\{a_{1} a_{2}, a_{2} a_{3}, a_{1} a_{3}\right\}$. By routin computations, it is easy to show that G is a vague graph.

3. Operations on vague graph structures

Definition 3.1. $\check{G}_{v}=\left(A, B_{1}, B_{2}, \cdots, B_{n}\right)$ is called a vague graph structure (VGS) of a graph structure $(G S) G^{*}=\left(U, E_{1}, E_{2}, \cdots, E_{n}\right)$, if $A=\left(t_{A}, f_{A}\right)$ is a vague set on U and

Figure 1. Vague graph G
for each $i=1,2, \cdots, n ; B_{i}=\left(t_{B_{i}}, f_{B_{i}}\right)$ is a vague set on E_{i} such that:

$$
t_{B_{i}}(x y) \leq t_{A}(x) \wedge t_{A}(y), f_{B_{i}}(x y) \geq f_{A}(x) \vee f_{A}(y)
$$

$\forall x y \in E_{i} \subseteq U \times U$. Note that $t_{B_{i}}(x y)=0=f_{B_{i}}(x y)$, for all $x y \in U \times U-E_{i}$ and $0 \leq t_{B_{i}}(x y) \leq 1,0 \leq f_{B_{i}}(x y) \leq 1, \forall x y \in E_{i}$, where U and $E_{i}(i=1,2, \cdots, n)$ are called underlying vertex set and underlying i-edge set of \check{G}_{v}, respectively.

Example 3.1. Let $\left(U, E_{1}, E_{2}\right)$ be a graph structure such that $U=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}, E_{1}=$ $\left\{a_{1} a_{2}, a_{2} a_{3}\right\}$, and $E_{2}=\left\{a_{3} a_{4}, a_{1} a_{4}\right\}$. Let A, B_{1} and B_{2} be vague subsets of U, E_{1} and E_{2} respectively such that:

$$
\begin{aligned}
& A=\left\{\left(a_{1}, 0.3,0.4\right),\left(a_{2}, 0.3,0.5\right),\left(a_{3}, 0.2,0.3\right),\left(a_{4}, 0.3,0.3\right)\right\} \\
& B_{1}=\left\{\left(a_{1} a_{2}, 0.3,0.5\right),\left(a_{2} a_{3}, 0.2,0.5\right)\right\}, \text { and } B_{2}=\left\{\left(a_{3} a_{4}, 0.2,0.3\right),\left(a_{1} a_{4}, 0.2,0.4\right)\right\}
\end{aligned}
$$

Then $\check{G}_{v}=\left(A, B_{1}, B_{2}\right)$ is a $V G S$ of G^{*} as shown in Fig. 2.

Figure 2. VGS $\check{G}_{v}=\left(A, B_{1}, B_{2}\right)$

Definition 3.2. Let $\check{G}_{v 1}=\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$. The cartesian product $\check{G}_{v 1} \times \check{G}_{v 2}$ of $\check{G}_{v 1}$ and $\check{G}_{v 2}$ is then a VGS of $G_{1}^{*} \times G_{2}^{*}=\left(U_{1} \times\right.$ $\left.U_{2}, E_{11} \times E_{21}, E_{12} \times E_{22}, \ldots, E_{1 n} \times E_{2 n}\right)$ is given by
$\left(A_{1} \times A_{2}, B_{11} \times B_{21}, B_{12} \times B_{22}, \cdots, B_{1 n} \times B_{2 n}\right)$ suchthat
$(i)\left\{\begin{array}{l}t_{A_{1} \times A_{2}}(x y)=\left(t_{A_{1}} \times t_{A_{2}}\right)(x y)=t_{A_{1}}(x) \wedge t_{A_{2}}(y) \\ f_{A_{1} \times A_{2}}(x y)=\left(f_{A_{1}} \times f_{A_{2}}\right)(x y)=f_{A_{1}}(x) \vee f_{A_{2}}(y), \quad \forall x y \in U_{1} \times U_{2}\end{array}\right.$
$(i i)\left\{\begin{array}{l}t_{B_{1 i} \times B_{2 i}}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\left(t_{B_{1 i}} \times t_{B_{2 i}}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=t_{A_{1}}(x) \wedge t_{B_{2 i}}\left(y_{1} y_{2}\right) \\ f_{B_{1 i} \times B_{2 i}}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\left(f_{B_{1 i}} \times f_{B_{2 i}}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=f_{A_{1}}(x) \vee f_{B_{2 i}}\left(y_{1} y_{2}\right), \\ \forall x \in U_{1}, y_{1} y_{2} \in E_{2 i},\end{array}\right.$
$(i i i)\left\{\begin{array}{l}t_{B_{1 i} \times B_{2 i}}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\left(t_{B_{1 i}} \times t_{B_{2 i}}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=t_{A_{2}}(y) \wedge t_{B_{1 i}}\left(x_{1} x_{2}\right) \\ f_{B_{1 i} \times B_{2 i}}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\left(f_{B_{1 i}} \times f_{B_{2 i}}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=f_{A_{2}}(y) \vee f_{B_{1 i}}\left(x_{1} x_{2}\right), \\ \forall y \in U_{2}, x_{1} x_{2} \in E_{1 i},\end{array}\right.$
Example 3.2. Let $\check{G}_{v 1}=\left(A_{1}, B_{11}, B_{12}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}\right)$ be respective VGSs of graph structures $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}\right)$ such that $U_{1}=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$, $U_{2}=\left\{b_{1}, b_{2}, b_{3}, b_{4}\right\}, E_{11}=\left\{a_{1} a_{2}\right\}, E_{12}=\left\{a_{3} a_{4}\right\}, E_{21}=\left\{b_{1} b_{2}\right\}$, and $E_{22}=\left\{b_{3} b_{4}\right\} . \check{G}_{v 1}$ and $\check{G}_{v 2}$ are shown in Fig. 3,

Figure 3. Vague graph structures
and cartesian product $\check{G}_{v 1} \times \check{G}_{v 2}=\left(A_{1} \times A_{2}, B_{11} \times B_{21}, B_{12} \times B_{22}\right)$ is shown in Fig. 4.
Theorem 3.1. Let $G^{*}=\left(U_{1} \times U_{2}, E_{11} \times E_{21}, E_{12} \times E_{22}, \cdots, E_{1 n} \times E_{2 n}\right)$ be cartesian product of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$. Let $\check{G}_{v 1}=$ $\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of G_{1}^{*} and G_{2}^{*}. Then $\left(A_{1} \times A_{2}, B_{11} \times B_{21}, B_{21} \times B_{22}, \cdots, B_{1 n} \times B_{2 n}\right)$ is a $V G S$ of G^{*}.

Proof. Case 1. When $u \in U_{1}, b_{1} b_{2} \in E_{2 i}$

$$
\begin{aligned}
t_{B_{1 i} \times B_{2 i}}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =t_{A_{1}}(u) \wedge t_{B_{2 i}}\left(b_{1} b_{2}\right) \leq t_{A_{1}}(u) \wedge\left[t_{A_{2}}\left(b_{1}\right) \wedge t_{A_{2}}\left(b_{2}\right)\right] \\
& =\left[t_{A_{1}}(u) \wedge t_{A_{2}}\left(b_{1}\right)\right] \wedge\left[t_{A_{1}}(u) \wedge t_{A_{2}}\left(b_{2}\right)\right] \\
& =t_{A_{1} \times A_{2}}\left(u b_{1}\right) \wedge t_{A_{1} \times A_{2}}\left(u b_{2}\right) \\
f_{B_{1 i} \times B_{2 i}}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =f_{A_{1}}(u) \vee f_{B_{2 i}}\left(b_{1} b_{2}\right) \geq f_{A_{1}}(u) \vee\left[f_{A_{2}}\left(b_{1}\right) \vee f_{A_{2}}\left(b_{2}\right)\right] \\
& =\left[f_{A_{1}}(u) \vee f_{A_{2}}\left(b_{1}\right)\right] \vee\left[f_{A_{1}}(u) \vee f_{A_{2}}\left(b_{2}\right)\right] \\
& =f_{A_{1} \times A_{2}}\left(u b_{1}\right) \vee f_{A_{1} \times A_{2}}\left(u b_{2}\right)
\end{aligned}
$$

Figure 4. Cartesian product of two VGSs
for $u b_{1}, u b_{2} \in U_{1} \times U_{2}$.
Case 2. When $u \in U_{2}, b_{1} b_{2} \in E_{1 i}$

$$
\begin{aligned}
\left.t_{B_{1 i} \times B_{2 i}}\left(b_{1} u\right)\left(b_{2} u\right)\right) & =t_{A_{2}}(u) \wedge t_{B_{1 i}}\left(b_{1} b_{2}\right) \leq t_{A_{2}}(u) \wedge\left[t_{A_{1}}\left(b_{1}\right) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[t_{A_{2}}(u) \wedge t_{A_{1}}\left(b_{1}\right)\right] \wedge\left[t_{A_{2}}(u) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =t_{A_{1} \times A_{2}}\left(b_{1} u\right) \wedge t_{A_{1} \times A_{2}}\left(b_{2} u\right) \\
\left.f_{B_{1 i} \times B_{2 i}}\left(b_{1} u\right)\left(b_{2} u\right)\right) & =f_{A_{2}}(u) \vee f_{B_{B_{1 i}}}\left(b_{1} b_{2}\right) \geq f_{A_{2}}(u) \vee\left[f_{A_{1}}\left(b_{1}\right) \vee f_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[f_{A_{2}}(u) \vee f_{A_{1}}\left(b_{1}\right)\right] \vee\left[f_{A_{2}}(u) \vee f_{A_{1}}\left(b_{2}\right)\right] \\
& =f_{A_{1} \times A_{2}}\left(b_{1} u\right) \vee f_{A_{1} \times A_{2}}\left(b_{2} u\right)
\end{aligned}
$$

for $b_{1} u, b_{2} u \in U_{1} \times U_{2}$. Both cases hold for $i=1,2, \cdots, n$. This completes the proof.
Definition 3.3. Let $\check{G}_{v 1}=\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$. The cross product $\check{G}_{v 1} * \check{G}_{v 2}$ of $\check{G}_{v 1}$ and $\check{G}_{v 2}$ is a VGS of $G_{1}^{*} * G_{2}^{*}=\left(U_{1} * U_{2}, E_{11} * E_{21}, E_{12} *\right.$ $\left.E_{22}, \cdots, E_{1 n} * E_{2 n}\right)$ is given by $\left(A_{1} * A_{2}, B_{11} * B_{21}, B_{12} * B_{22}, \cdots, B_{1 n} * B_{2 n}\right)$, such that
$(i)\left\{\begin{array}{l}t_{A_{1} * A_{2}}(x y)=\left(t_{A_{1}} * t_{A_{2}}\right)(x y)=t_{A_{1}}(x) \wedge t_{A_{2}}(y) \\ f_{A_{1} * A_{2}}(x y)=\left(f_{A_{1}} * f_{A_{2}}\right)(x y)=f_{A_{1}}(x) \vee f_{A_{2}}(y), \forall x y \in U_{1} \times U_{2},\end{array}\right.$
$(i i)\left\{\begin{array}{l}t_{B_{1 i} * B_{2 i}}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\left(t_{B_{1 i}} * t_{B_{2 i}}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=t_{B_{2 i}}\left(y_{1} y_{2}\right) \wedge t_{B_{1 i}}\left(x_{1} x_{2}\right), \\ f_{B_{1 i} * B_{2 i}}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\left(f_{B_{1 i}} * f_{B_{2 i}}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=f_{B_{2 i}}\left(y_{1} y_{2}\right) \vee f_{B_{1 i}}\left(x_{1} x_{2}\right),\end{array}\right.$
$\forall y_{1} y_{2} \in E_{2 i}, x_{1} x_{2} \in E_{1 i}$.
Example 3.3. Let $\check{G}_{v 1}$ and $\check{G}_{v 2}$ be VGSs as shown in Figure 3 and cross products $\check{G}_{v 1} *$ $\check{G}_{v 2}=\left(A_{1} * A_{2}, B_{11} * B_{21}, B_{12} * B_{22}\right)$ is shown in Figure 5.

Figure 5. Cross product of two VGSs

Theorem 3.2. Let $G^{*}=\left(U_{1} * U_{2}, E_{11} * E_{21}, E_{12} * E_{22}, \cdots, E_{1 n} * E_{2 n}\right)$ be cross product of $G S s G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$. Let $\check{G}_{v 1}=$ $\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of GSs G_{1}^{*} and G_{2}^{*}. Then $\left(A_{1} * A_{2}, B_{11} * B_{21}, B_{12} * B_{22}, \cdots, B_{1 n} * B_{2 n}\right)$ is a $G V S$ of G^{*}.
Proof. For all $b_{1} u_{1}, b_{2} u_{2} \in U_{1} * U_{2}$;

$$
\begin{aligned}
t_{B_{1 i} \times B_{2 i}}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =t_{B_{2 i}}\left(u_{1} u_{2}\right) \wedge t_{B_{1 i}}\left(b_{1} b_{2}\right) \\
& \leq\left[t_{A_{2}}\left(u_{1}\right) \wedge t_{A_{2}}\left(u_{2}\right)\right] \wedge\left[t_{A_{1}}\left(b_{1}\right) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[t_{A_{2}}\left(u_{1}\right) \wedge t_{A_{1}}\left(b_{1}\right)\right] \wedge\left[t_{A_{2}}\left(u_{2}\right) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =t_{A_{1} * A_{2}}\left(b_{1} u_{1}\right) \wedge t_{A_{1} * A_{2}}\left(b_{2} u_{2}\right) \\
f_{B_{1 i} \times B_{2 i}}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =f_{B_{2_{2 i}}}\left(u_{1} u_{2}\right) \vee f_{B_{1 i}}\left(b_{1} b_{2}\right) \\
& \geq\left[f_{A_{2}}\left(u_{1}\right) \vee f_{A_{2}}\left(u_{2}\right)\right] \vee\left[f_{A_{1}}\left(b_{1}\right) \vee f_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[f_{A_{2}}\left(u_{1}\right) \vee f_{A_{1}}\left(b_{1}\right)\right] \vee\left[f_{A_{2}}\left(u_{2}\right) \vee f_{A_{1}(}\left(b_{2}\right)\right] \\
& =f_{A_{1} * A_{2}}\left(b_{1} u_{1}\right) \vee f_{A_{1} * A_{2}}\left(b_{2} u_{2}\right)
\end{aligned}
$$

for $i=1,2, \cdots, n$. This complete the proof.
Definition 3.4. Let $\check{G}_{v 1}=\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$. The lexicographic product $\dot{G}_{v 1} \bullet \breve{G}_{v 2}$ of $\bar{G}_{v 1}$ and $\dot{G}_{v 2}$ is a VGS of $G_{1}^{*} \bullet G_{2}^{*}=\left(U_{1} \bullet U_{2}, E_{11} \bullet\right.$ $\left.E_{21}, E_{12} \bullet E_{22}, \cdots, E_{1 n} \bullet E_{2 n}\right)$ is given by $\left(A_{1} \bullet A_{2}, B_{11} \bullet B_{21}, B_{12} \bullet B_{22}, \cdots, B_{1 n} \bullet B_{2 n}\right)$ such that
$(i)\left\{\begin{array}{l}t_{A_{1} \bullet A_{2}}(x y)=\left(t_{A_{1}} \bullet t_{A_{2}}\right)(x y)=t_{A_{1}}(x) \wedge t_{A_{2}}(y) \\ f_{A_{1} \bullet A_{2}}(x y)=\left(f_{A_{1}} \bullet f_{A_{2}}\right)(x y)=f_{A_{1}}(x) \vee f_{A_{2}}(y), \forall x y \in U_{1} \times U_{2},\end{array}\right.$

$(i i i)\left\{\begin{array}{l}t_{B_{1} \bullet B_{2 i}}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\left(t_{B_{1 i}} \bullet t_{B_{2 i}}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=t_{B_{2 i}}\left(y_{1} y_{2}\right) \wedge t_{B_{1 i}}\left(x_{1} x_{2}\right) \\ f_{B_{1 i} \bullet B_{2 i}}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\left(f_{B_{1 i}} \bullet f_{B_{2 i}}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=f_{B_{2 i}}\left(y_{1} y_{2}\right) \vee f_{B_{1 i}}\left(x_{1} x_{2}\right), \\ \forall y_{1} y_{2} \in E_{2 i}, x_{1} x_{2} \in E_{1 i} .\end{array}\right.$
Example 3.4. Let $\check{G}_{v 1}$ and $\check{G}_{v 2}$ be VGSs shown in Figure 3 and lexicographic product $\check{G}_{v 1} \bullet \dot{G}_{v 2}=\left(A_{1} \bullet A_{2}, B_{11} \bullet B_{21}, B_{12} \bullet B_{22}\right)$ is as shown in Figure 6 .

Figure 6. Lexicographic product of two VGSs

Theorem 3.3. Let $G^{*}=\left(U_{1} \bullet U_{2}, E_{11} \bullet E_{21}, E_{12} \bullet E_{22}, \cdots, E_{1 n} \bullet E_{2 n}\right)$ be lexicographic product of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$. Let $\check{G}_{v 1}=$ $\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of G_{1}^{*} and G_{2}^{*}. Then $\left(A_{1} \bullet A_{2}, B_{11} \bullet B_{21}, B_{12} \bullet B_{22}, \cdots, B_{1 n} \bullet B_{2 n}\right)$ is a VGS of G^{*}.

Proof. Case 1. When $u \in U_{1}, b_{1} b_{2} \in E_{2 i}$

$$
\begin{aligned}
t_{B_{1 i} \bullet B_{2 i}}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =t_{A_{1}}(u) \wedge t_{B_{2 i}}\left(b_{1} b_{2}\right) \leq t_{A_{1}}(u) \wedge\left[t_{A_{2}}\left(b_{1}\right) \wedge t_{A_{2}}\left(b_{2}\right)\right] \\
& =\left[t_{A_{1}}(u) \wedge t_{A_{2}}\left(b_{1}\right)\right] \wedge\left[t_{A_{1}}(u) \wedge t_{A_{2}}\left(b_{2}\right)\right] \\
& =t_{A_{1} \bullet A_{2}}\left(u b_{1}\right) \wedge t_{A_{1} \bullet A_{2}}\left(u b_{2}\right) \\
f_{B_{1 i} \bullet B_{2 i}}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =f_{A_{1}}(u) \vee f_{B_{2 i}}\left(b_{1} b_{2}\right) \geq f_{A_{1}}(u) \vee\left[f_{A_{2}}\left(b_{1}\right) \vee f_{A_{2}}\left(b_{2}\right)\right] \\
& =\left[f_{A_{1}}(u) \vee f_{A_{2}}\left(b_{1}\right)\right] \vee\left[f_{A_{1}}(u) \vee f_{A_{2}}\left(b_{2}\right)\right] \\
& =f_{A_{1} \bullet A_{2}}\left(u b_{1}\right) \vee f_{A_{1} \bullet A_{2}}\left(u b_{2}\right)
\end{aligned}
$$

for $u b_{1}, u b_{2} \in U_{1} \bullet U_{2}$.
Case 2. When $u_{1} u_{2} \in E_{2 i}, b_{1} b_{2} \in E_{1 i}$

$$
\begin{aligned}
t_{B_{1 i} \bullet B_{2 i}}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =t_{B_{2 i}}\left(u_{1} u_{2}\right) \wedge t_{B_{1 i}}\left(b_{1} b_{2}\right) \\
& \leq\left[t_{A_{2}}\left(u_{1}\right) \wedge t_{A_{2}}\left(u_{2}\right)\right] \wedge\left[t_{A_{1}}\left(b_{1}\right) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[t_{A_{2}}\left(u_{1}\right) \wedge t_{A_{1}}\left(b_{1}\right)\right] \wedge\left[t_{A_{2}}\left(u_{2}\right) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =t_{A_{1} \bullet A_{2}}\left(b_{1} u_{1}\right) \wedge t_{A_{1} \bullet A_{2}}\left(b_{2} u_{2}\right), \\
f_{B_{1 i} \bullet B_{2 i}}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =f_{B_{B_{2 i}}}\left(u_{1} u_{2}\right) \vee f_{B_{1 i}}\left(b_{1} b_{2}\right) \\
& \geq\left[f_{A_{2}}\left(u_{1}\right) \vee f_{A_{2}}\left(u_{2}\right)\right] \vee\left[f_{A_{1}}\left(b_{1}\right) \vee f_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[f_{A_{2}}\left(u_{1}\right) \vee f_{A_{1}}\left(b_{1}\right)\right] \vee\left[f_{A_{2}}\left(u_{2}\right) \vee f_{A_{1}}\left(b_{2}\right)\right] \\
& =f_{A_{1} \bullet A_{2}}\left(b_{1} u_{1}\right) \vee f_{A_{1} \bullet A_{2}}\left(b_{2} u_{2}\right),
\end{aligned}
$$

for $b_{1} u_{1}, b_{2} u_{2} \in U_{1} \bullet U_{2}$. Both cases hold for $i=1,2, \cdots, n$. This completes the proof.
Definition 3.5. Let $\check{G}_{v 1}=\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$.

The composition $\check{G}_{v 1} \circ \check{G}_{v 2}$ of $\check{G}_{v 1}$ and $\check{G}_{v 2}$ is then a VGS of $G_{1}^{*} \circ G_{2}^{*}=\left(U_{1} \circ U_{2}, E_{11} \circ\right.$ $\left.E_{21}, E_{12} \circ E_{22}, \cdots, E_{1 n} \circ E_{2 n}\right)$ is given by $\left(A_{1} \circ A_{2}, B_{11} \circ B_{21}, B_{12} \circ B_{22}, \cdots, B_{1 n} \circ B_{2 n}\right)$ such that

$$
\begin{aligned}
& \text { (i) }\left\{\begin{array}{l}
t_{A_{1} \circ A_{2}}(x y)=\left(t_{A_{1}} \circ t_{A_{2}}\right)(x y)=t_{A_{1}}(x) \wedge t_{A_{2}}(y) \\
f_{A_{1} \circ A_{2}}(x y)=\left(f_{A_{1}} \circ f_{A_{2}}\right)(x y)=f_{A_{1}}(x) \vee f_{A_{2}}(y), \forall x y \in U_{1} \times U_{2},
\end{array}\right. \\
& (i i)\left\{\begin{array}{l}
t_{B_{1 i} \circ B_{2 i}}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\left(t_{B_{1 i}} \circ t_{B_{22}}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=t_{A_{1}}(x) \wedge t_{B_{2 i}}\left(y_{1} y_{2}\right) \\
f_{B_{1 i} \circ \circ \mathcal{S}_{2 i}}\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=\left(f_{B_{1 i}} \circ f_{B_{2 i}}\right)\left(\left(x y_{1}\right)\left(x y_{2}\right)\right)=f_{A_{1}}(x) \vee f_{B_{2 i}}\left(y_{1} y_{2}\right), \\
\forall x \in U_{1}, y_{1} y_{2} \in E_{2 i},
\end{array}\right. \\
& (i i i)\left\{\begin{array}{l}
t_{B_{1 i} \circ B_{2 i}}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\left(t_{B_{1 i}} \circ t_{B_{22}}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=t_{A_{2}}(y) \wedge t_{B_{1 i}}\left(x_{1} x_{2}\right) \\
f_{B_{1 i} \circ B_{2 i}}\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=\left(f_{B_{1 i}} \circ f_{B_{2 i}}\right)\left(\left(x_{1} y\right)\left(x_{2} y\right)\right)=f_{A_{2}}(y) \vee f_{B_{1 i}}\left(x_{1} x_{2}\right), \\
\forall y \in U_{2}, x_{1} x_{2} \in E_{1 i},
\end{array}\right. \\
& (i v)\left\{\begin{array}{l}
t_{B_{1 \circ} \circ B_{2 i}}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\left(t_{B_{1 i}} \circ t_{B_{22}}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=t_{A_{2}}\left(y_{1}\right) \wedge t_{A_{2}}\left(y_{2}\right) \wedge t_{B_{1 i}}\left(x_{1} x_{2}\right) \\
f_{B_{1 i} \circ B_{2 i}}\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=\left(f_{B_{1 i}} \circ f_{B_{2 i} i}\right)\left(\left(x_{1} y_{1}\right)\left(x_{2} y_{2}\right)\right)=f_{A_{2}}\left(y_{1}\right) \vee f_{A_{2}}\left(y_{2}\right) \vee f_{B_{1 i}}\left(x_{1} x_{2}\right), \\
\forall y_{1}, y_{2} \in U_{2}, x_{1} x_{2} \in E_{1 i},
\end{array}\right.
\end{aligned}
$$

such that $y_{1} \neq y_{2}$.
Theorem 3.4. Let $G^{*}=\left(U_{1} \circ U_{2}, E_{11} \circ E_{21}, E_{12} \circ E_{22}, \cdots, E_{1 n} \circ E_{2 n}\right)$ be the composition of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$. Let $\dot{G}_{v 1}=\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\dot{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of
G_{1}^{*} and G_{2}^{*}. Then $\check{G}_{v 1} \circ \check{G}_{v 2}=\left(A_{1} \circ A_{2}, B_{11} \circ B_{21}, B_{12} \circ B_{22}, \cdots, B_{1 n} \circ B_{2 n}\right)$ is a VGS of G^{*}.

Proof. Case 1. When $u \in U_{1}, b_{1} b_{2} \in E_{2 i}$,

$$
\begin{aligned}
t_{B_{1 i} \circ B_{2 i}}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =t_{A_{1}}(u) \wedge t_{B_{2 i}}\left(b_{1} b_{2}\right) \leq t_{A_{1}}(u) \wedge\left[t_{A_{2}}\left(b_{1}\right) \wedge t_{A_{2}}\left(b_{2}\right)\right] \\
& =\left[t_{A_{1}}(u) \wedge t_{A_{2}}\left(b_{1}\right)\right] \wedge\left[t_{A_{1}}(u) \wedge t_{A_{2}}\left(b_{2}\right)\right] \\
& =t_{A_{1} \circ A_{2}}\left(u b_{1}\right) \wedge t_{A_{1} \circ A_{2}}\left(u b_{2}\right) \\
f_{B_{1 i} \circ B_{2 i}}\left(\left(u b_{1}\right)\left(u b_{2}\right)\right) & =f_{A_{1}}(u) \vee f_{B_{2 i}}\left(b_{1} b_{2}\right) \geq f_{A_{1}}(u) \vee\left[f_{A_{2}}\left(b_{1}\right) \vee f_{A_{2}}\left(b_{2}\right)\right] \\
& =\left[f_{A_{1}}(u) \vee f_{A_{2}}\left(b_{1}\right)\right] \vee\left[f_{A_{1}}(u) \vee f_{A_{2}}\left(b_{2}\right)\right] \\
& =f_{A_{1} \circ A_{2}}\left(u b_{1}\right) \vee f_{A_{1} \circ A_{2}}\left(u b_{2}\right),
\end{aligned}
$$

for $u b_{1}, u b_{2} \in U_{1} \circ U_{2}$.
Case 2. When $u \in U_{2}, b_{1} b_{2} \in E_{1 i}$

$$
\begin{aligned}
t_{B_{1 i} \circ B_{2 i}}\left(\left(b_{1} u\right)\left(b_{2} u\right)\right) & =t_{A_{2}}(u) \wedge t_{B_{1 i}}\left(b_{1} b_{2}\right) \leq t_{A_{2}}(u) \wedge\left[t_{A_{1}}\left(b_{1}\right) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[t_{A_{2}}(u) \wedge t_{A_{1}}\left(b_{1}\right)\right] \wedge\left[t_{A_{2}}(u) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =t_{A_{1} \circ A_{2}}\left(b_{1} u\right) \wedge t_{A_{1} \circ A_{2}}\left(b_{2} u\right) \\
f_{B_{1 i} \circ B_{2 i}}\left(\left(b_{1} u\right)\left(b_{2} u\right)\right) & =f_{A_{2}}(u) \vee f_{B_{1 i}}\left(b_{1} b_{2}\right) \geq f_{A_{2}}(u) \vee\left[f_{A_{1}}\left(b_{1}\right) \vee f_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[f_{A_{2}}(u) \vee f_{A_{1}}\left(b_{1}\right)\right] \vee\left[f_{A_{2}}(u) \vee f_{A_{1}}\left(b_{2}\right)\right] \\
& =f_{A_{1} \circ A_{2}}\left(b_{1} u\right) \vee f_{A_{1} \circ A_{2}}\left(b_{2} u\right),
\end{aligned}
$$

for $b_{1} u, b_{2} u \in U_{1} \circ U_{2}$.
Case 3. When $b_{1} b_{2} \in E_{1 i}, u_{1}, u_{2} \in U_{2}$ such that $u_{1} \neq u_{2}$,

$$
\begin{aligned}
t_{B_{1 i} \circ B_{2 i}}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =t_{A_{2}}\left(u_{1}\right) \wedge t_{A_{2}}\left(u_{2}\right) \wedge t_{B_{1 i}}\left(b_{1} b_{2}\right) \\
& \leq t_{A_{2}}\left(u_{1}\right) \wedge t_{A_{2}}\left(u_{2}\right) \wedge\left[t_{A_{1}}\left(b_{1}\right) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[t_{A_{2}}\left(u_{1}\right) \wedge t_{A_{1}}\left(b_{1}\right)\right] \wedge\left[t_{A_{2}}\left(u_{2}\right) \wedge t_{A_{1}}\left(b_{2}\right)\right] \\
& =t_{A_{1} \circ A_{2}}\left(b_{1} u_{1}\right) \wedge t_{A_{1} \circ A_{2}}\left(b_{2} u_{2}\right), \\
f_{B_{1 i} \circ B_{2 i}}\left(\left(b_{1} u_{1}\right)\left(b_{2} u_{2}\right)\right) & =f_{A_{2}}\left(u_{1}\right) \vee f_{A_{2}}\left(u_{2}\right) \vee f_{B_{1 i}}\left(b_{1} b_{2}\right) \\
& \geq f_{A_{2}}\left(u_{1}\right) \vee f_{A_{2}}\left(u_{2}\right) \vee\left[f_{A_{1}}\left(b_{1}\right) \vee f_{A_{1}}\left(b_{2}\right)\right] \\
& =\left[f_{A_{2}}\left(u_{1}\right) \vee f_{A_{1}}\left(b_{1}\right)\right] \vee\left[f_{A_{2}}\left(u_{2}\right) \vee f_{A_{1}}\left(b_{2}\right)\right] \\
& =f_{A_{1} \circ A_{2}}\left(b_{1} u_{1}\right) \vee f_{A_{1} \circ A_{2}}\left(b_{2} u_{2}\right),
\end{aligned}
$$

for $b_{1} u_{1}, b_{2} u_{2} \in U_{1} \circ U_{2}$. All three cases hold for $i=1,2, \cdots, n$. This completes the proof.
Definition 3.6. Let $\check{G}_{v 1}=\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of GSs $G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$ and let $U_{1} \cap U_{2}=\emptyset$. The union $\check{G}_{v 1} \cup \check{G}_{v 2}$ of $\check{G}_{v 1}$ and $\check{G}_{v 2}$ is then a $V G S G_{1}^{*} \cup G_{2}^{*}=$ $\left(U_{1} \cup U_{2}, E_{11} \cup E_{21}, E_{12} \cup E_{22}, \cdots, E_{1 n} \cup E_{2 n}\right)$ is given by $\left(A_{1} \cup A_{2}, B_{11} \cup B_{21}, B_{12} \cup\right.$ $\left.B_{22}, \cdots, B_{1 n} \cup B_{2 n}\right)$ such that $A_{1} \cup A_{2}$ is defined by

$$
\begin{aligned}
& t_{A_{1} \cup A_{2}}(x)=\left(t_{A_{1}} \cup t_{A_{2}}\right)(x)=t_{A_{1}}(x) \vee t_{A_{2}}(x) \\
& f_{A_{1} \cup A_{2}}(x)=\left(f_{A_{1}} \cup f_{A_{2}}\right)(x)=f_{A_{1}}(x) \wedge f_{A_{2}}(x), \forall x \in U_{1} \cup U_{2}
\end{aligned}
$$

(assuming $t_{A_{j}}(x)=0, f_{A_{j}}(x)=0$, if $x \in U_{j}, j=1,2$)
and $B_{1 i} \cup B_{2 i}$, for $i=1,2, \cdots, n$ is defined by

$$
\begin{aligned}
t_{B_{1 i} \cup B_{2 i}}(x y) & =\left(t_{B_{1 i}} \cup t_{B_{2 i}}\right)(x y)=t_{B_{1 i}}(x y) \vee t_{B_{2 i}}(x y) \\
f_{B_{1 i} \cup B_{2 i}}(x y) & =\left(f_{B_{1 i}} \cup f_{B_{2 i}}\right)(x y)=f_{B_{1 i}}(x y) \wedge f_{B_{2 i}}(x y), \forall x y \in E_{1 i} \cup E_{2 i}
\end{aligned}
$$

(assuming $t_{B_{j i}}(x y)=0, f_{B_{j i}}(x y)=0$, if $\left.x y \notin E_{j i}, j=1,2\right)$.
Example 3.5. Let $\check{G}_{v 1}$ and $\check{G}_{v 2}$ be VGSs as shown in Figure 3. Their union represented by $\check{G}_{v 1} \cup \check{G}_{v 2}=\left(A_{1} \cup A_{2}, B_{11} \cup B_{21}, B_{21} \cup B_{22}\right)$ is shown in Figure 7.

Figure 7. Union of two VGSs
Theorem 3.5. Let $G^{*}=\left(U_{1} \cup U_{2}, E_{11} \cup E_{21}, E_{12} \cup E_{22}, \cdots, E_{1 n} \cup E_{2 n}\right)$ be the union of $G S s G_{1}^{*}=\left(U_{1}, E_{11}, E_{12}, \cdots, E_{1 n}\right)$ and $G_{2}^{*}=\left(U_{2}, E_{21}, E_{22}, \cdots, E_{2 n}\right)$. Let $\check{G}_{v 1}=$ $\left(A_{1}, B_{11}, B_{12}, \cdots, B_{1 n}\right)$ and $\check{G}_{v 2}=\left(A_{2}, B_{21}, B_{22}, \cdots, B_{2 n}\right)$ be respective VGSs of G_{1}^{*} and G_{2}^{*}. Then $\left(A_{1} \cup A_{2}, B_{11} \cup B_{21}, B_{12} \cup B_{22}, \cdots, B_{1 n} \cup B_{2 n}\right)$ is a $V G S$ of G^{*}.
Proof. Let $u_{1} u_{2} \in E_{1 i} \cup E_{2 i}$.
Case 1. When $u_{1}, u_{2} \in U_{1}$, then by Definition 3.6

$$
t_{A_{2}}\left(u_{1}\right)=t_{A_{2}}\left(u_{2}\right)=t_{B_{2 i}}\left(u_{1} u_{2}\right)=0, f_{A_{2}}\left(u_{1}\right)=f_{A_{2}}\left(u_{2}\right)=f_{B_{2 i}}\left(u_{1} u_{2}\right)=0
$$

So, we have

$$
\begin{aligned}
t_{B_{1 i} \cup B_{2 i}}\left(u_{1} u_{2}\right) & =t_{B_{1 i}}\left(u_{1} u_{2}\right) \vee t_{B_{2 i}}\left(u_{1} u_{2}\right)=t_{B_{1 i}}\left(u_{1} u_{2}\right) \vee 0 \\
& \leq\left[t_{A_{1}}\left(u_{1}\right) \wedge t_{A_{1}}\left(u_{2}\right)\right] \vee 0 \\
& =\left[t_{A_{1}}\left(u_{1}\right) \vee 0\right] \wedge\left[t_{A_{1}}\left(u_{2}\right) \vee 0\right] \\
& =\left[t_{A_{1}}\left(u_{1}\right) \vee t_{A_{2}}\left(u_{1}\right)\right] \wedge\left[t_{A_{1}}\left(u_{2}\right) \vee t_{A_{2}}\left(u_{2}\right)\right] \\
& =t_{A_{1} \cup A_{2}}\left(u_{1}\right) \wedge t_{A_{1} \cup A_{2}}\left(u_{2}\right), \\
f_{B_{1 i} \cup B_{2 i}}\left(u_{1} u_{2}\right) & =f_{B_{1 i}}\left(u_{1} u_{2}\right) \wedge f_{B_{2 i}}\left(u_{1} u_{2}\right)=f_{B_{1 i}}\left(u_{1} u_{2}\right) \wedge 0 \\
& \geq\left[f_{A_{1}}\left(u_{1}\right) \vee f_{A_{1}}\left(u_{2}\right)\right] \wedge 0 \\
& =\left[f_{A_{1}}\left(u_{1}\right) \wedge 0\right] \vee\left[f_{A_{1}}\left(u_{2}\right) \wedge 0\right] \\
& =\left[f_{A_{1}}\left(u_{1}\right) \wedge f_{A_{2}}\left(u_{1}\right)\right] \vee\left[f_{A_{1}}\left(u_{2}\right) \wedge f_{A_{2}}\left(u_{2}\right)\right] \\
& =f_{A_{1} \cup A_{2}}\left(u_{1}\right) \vee f_{A_{1} \cup A_{2}}\left(u_{2}\right),
\end{aligned}
$$

for $u_{1}, u_{2} \in U_{1} \cup U_{2}$.
Case 2. When $u_{1}, u_{2} \in U_{2}$, then by Definition 3.6,

$$
t_{A_{1}}\left(u_{1}\right)=t_{A_{1}}\left(u_{2}\right)=t_{B_{1 i}}\left(u_{1} u_{2}\right)=0, f_{A_{1}}\left(u_{1}\right)=f_{A_{1}}\left(u_{2}\right)=f_{B_{1 i}}\left(u_{1} u_{2}\right)=0
$$

so, we have

$$
\begin{aligned}
t_{B_{1 i} \cup B_{2 i}}\left(u_{1} u_{2}\right) & =t_{B_{1 i}}\left(u_{1} u_{2}\right) \vee t_{B_{2 i}}\left(u_{1} u_{2}\right)=0 \vee t_{B_{2 i}}\left(u_{1} u_{2}\right) \\
& \leq 0 \vee\left[t_{A_{2}}\left(u_{1}\right) \wedge t_{A_{2}}\left(u_{2}\right)\right] \\
& =\left[0 \vee t_{A_{2}}\left(u_{1}\right)\right] \wedge\left[0 \vee t_{A_{2}}\left(u_{2}\right)\right] \\
& =\left[t_{A_{1}}\left(u_{1}\right) \vee t_{A_{2}}\left(u_{1}\right)\right] \wedge\left[t_{A_{1}}\left(u_{2}\right) \vee t_{A_{2}}\left(u_{2}\right)\right] \\
& =t_{A_{1} \cup A_{2}}\left(u_{1}\right) \wedge t_{A_{1} \cup A_{2}}\left(u_{2}\right), \\
f_{B_{1 i} \cup B_{2 i}}\left(u_{1} u_{2}\right) & =f_{B_{1 i}}\left(u_{1} u_{2}\right) \wedge f_{B_{2 i}}\left(u_{1} u_{2}\right)=0 \wedge f_{B_{2 i}}\left(u_{1} u_{2}\right) \\
& \geq 0 \wedge\left[f_{A_{2}}\left(u_{1}\right) \vee f_{A_{2}}\left(u_{2}\right)\right] \\
& =\left[0 \wedge f_{A_{2}}\left(u_{1}\right)\right] \vee\left[0 \wedge f_{A_{2}}\left(u_{2}\right)\right] \\
& =\left[f_{A_{1}}\left(u_{1}\right) \wedge f_{A_{2}}\left(u_{1}\right)\right] \vee\left[f_{A_{1}}\left(u_{2}\right) \wedge f_{A_{2}}\left(u_{2}\right)\right] \\
& =f_{A_{1} \cup A_{2}}\left(u_{1}\right) \vee f_{A_{1} \cup A_{2}}\left(u_{2}\right),
\end{aligned}
$$

for $u_{1}, u_{2} \in U_{1} \cup U_{2}$. Both cases hold for $i=1,2, \cdots, n$. This completes the proof.

4. Conclusion

It is well known that graphs are among the most ubiquitous models of both natural and humman-made structures. They can be used to model many types of relations and process dynamics in computer science, biological, social systems and physical. So we have applied the concept of vague sets to graph structures. We have discussed some operations on vague graph structures. In our future work, we will define vague soft graph structures, cubic vague graph structures, bondage number and non-bondage number of vague graph structures, and give some applications that will be useful in our daily life.

References

[1] Akram, M., (2011). Bipolar fuzzy graphs, Information Sciences, (181), pp. 5548-5564.
[2] Borzooei, R. A., Rashmanlou, H., (2015), Domination in vague graphs and its applications, J. Intell. Fuzzy Syst, (29), pp. 1933-1940.
[3] Borzooei, R. A., Rashmanlou, H., New concepts of vague graphs, Int. J. Mach. Learn. Cybern, http://dx.doi.org/10.1007/s13042-015-0475-x.
[4] Borzooei, R. A., Rashmanlou, H., (2016), More results on vague graphs, U.P.B. Sci. Bull.Ser. A, 78, (1), pp. 109-122.
[5] Bhattacharya, P., (1987). Some remarks on fuzzy graphs,"Pattern Recognition Letters, 6, (5) pp. 297302.
[6] Dinesh, T., Ramakrishna, T. V., (2011), On generalized fuzzy graph structures, Applied Mathematical Sciences, 5, (4), pp. 173-180.
[7] Gau, W. L., Buehrer, D. J., (1993), Vague sets, IEEE Transaction, on Systems, Man and Cybernetics, 23, (2), pp. 610-614.
[8] Ghorai, G., Pal, M., (2017), Certain types of product bipolar fuzzy graphs, International Journal of Applied and Computational Mathematics, 3, (2), pp. 605-619.
[9] Kauffman, A., (1973), Introduction a la Theorie des Sous-Emsembles Flous, vol. 1, Masson et Cie.
[10] Mordeson, J. N., Nair, P. S., Mordeson, J. N., (1998), Fuzzy Graphs and Fuzzy Hypergraphs, Second Edition, 2001, Physica, Heidelberg, Germany, 2nd edition, .
[11] Ramakrishna, N., (2009), Vague graphs, International Journal of Computational Cognition, (7), pp. 51-58.
[12] Rashmanlou, H., Jun, Y. B., (2013), Complete interval-valued fuzzy graphs, Annals of Fuzzy Mathematics and Informatics, 6, (3), pp. 677-687.
[13] Rashmanlou, H., Samanta, S., Pal, M. and Borzooei, R. A., (2015), Bipolar fuzzy graphs with categorical properties, International Journal of Computational Intelligent Systems, 8, (5), pp. 808-818.
[14] Rashmanlou, H., Samanta, S., Pal, M., Borzooei, R. A., (2015), A study on bipolar fuzzy graphs, Journal of Intelligent and Fuzzy Systems, (28), pp. 571-580.
[15] Rashmanlou, H., Pal, M., (2013), Antipodal interval-valued fuzzy graphs, International Journal of Applications of Fuzzy Sets and Artificial Intelligence, (3), pp. 107-130.
[16] Rashmanlou, H., Pal, M., (2013), Balanced interval-valued fuzzy graph, Journal of Physical Sciences, (17), pp. 43-57.
[17] Rashmanlou, H., Pal, M., (2013), Some properties of highly irregular interval-valued fuzzy graphs, World Applied Sciences Journal, 27, (12), pp. 1756-1773.
[18] Rosenfeld, A., (1975), Fuzzy graphs, in Fuzzy Sets and Their Applications, L. A. Zadeh, K. S. Fu, and M. Shimura, Eds., pp. 77-95, Academic Press, New York, NY, USA.
[19] Sahoo, S., Pal, M., (2015), Different types of products on intuitionistic fuzzy graphs, Pacific Science Review A: Natural Science and Engineering, 17, (3), pp. 87-96.
[20] Sahoo, S., Pal, M., (2016), Product of intuitionistic fuzzy graphs and degree, Journal of Intelligent and Fuzzy Systems, 32, (1), pp. 1059-1067.
[21] Sheikh Hoseini, B., Akram, M., Sheikh Hosseini, M., Rashmanlou, H., Borzooei, R., (2020), Maximal Product of Graphs under Vague Environment, Mathematical and Computational Applications, 25, (1), pp. 1-10.
[22] Shahzadi, G., Akram, M., Davvaz, B., (2020), Pythagorean Fuzzy Soft Graphs with Applications, Journal of Intelligent and Fuzzy Systems, DOI:10.3233/JIFS-191610.
[23] Sunitha, M. S., Vijayakumar, A., (2002), Complement of fuzzy graphs, Indian J Pure and Appl Math, (33), pp. 1451-1464.
[24] Zadeh, L. A., (1965), Fuzzy sets, Information and Computation, (8), pp. 338-353.

Morteza Taheri is a Ph.D. student in the Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran. He works on different kinds of fuzzy graphs such as vague graphs, cubic graphs, and bipolar fuzzy graphs.

Yahya Talebi recieved his PhD in 2002 from the University of Mumbai, Mumbai, India. He is an associated professor in the Department of Mathematics, University of Mazandaran, Babolsar, Iran. Since 1985, he has been a member of Iranian Mathematical Society. Since 2010, he has been the Dean of the Faculty of Mathematical Sciences at the University of Mazandaran, Babolsar, Iran.

Hossein Rashmanlou is a researcher in the Department of Mathematics, University of Mazandaran, Babolsar, Iran. His research interests include Fuzzy Logic and Fuzzy Graph Theory.

[^0]: ${ }^{1}$ Department of Mathematics, University of Mazandaran, Babolsar, Iran. e-mail: mortezataherimath@gmail.com; ORCID: https://orcid.org/0000-0002-6477-0173. e-mail: talebi@umz.ac.ir; ORCID: https://orcid.org/0000-0003-2311-4628. e-mail: rashmanlou.1987@gmail.com; ORCID: https://orcid.org/0000-0001-8717-9530.
 § Manuscript received: March 21, 2020; accepted: April 12, 2020. TWMS Journal of Applied and Engineering Mathematics, Vol.12, No. 3 © Işık University, Department of Mathematics, 2022; all rights reserved.

