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Abstract. In this work, we propose a novel approach 
called “Normalized Gain Function (NGF) method” to 
design low/medium power single stage ultra wide band 
microwave amplifiers based on linear S parameters of the 
active device. Normalized Gain Function TNGF is defined as 
the ratio of T and |S21|

2, desired shape or frequency re-
sponse of the gain function of the amplifier to be designed 
and the shape of the transistor forward gain function, re-
spectively. Synthesis of input/output matching networks 
(IMN/OMN) of the amplifier requires mathematically gen-
erated target gain functions to be tracked in two different 
nonlinear optimization processes. In this manner, NGF not 
only facilitates a mathematical base to share the amplifier 
gain function into such two distinct target gain functions, 
but also allows their precise computation in terms of 
TNGF=T/|S21|

2 at the very beginning of the design. The par-
ticular amplifier presented as the design example operates 
over 800-5200 MHz to target GSM, UMTS, Wi-Fi and 
WiMAX applications. An SRFT (Simplified Real Frequency 
Technique) based design example supported by simulations 
in MWO (MicroWave Office from AWR Corporation) is 
given using a 1400 mW pHEMT transistor, TGF2021-01 
from TriQuint Semiconductor. 
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1. Introduction 
Mobile wireless equipment of today have unneces-

sarily large number of narrow-band power amplifiers (PA) 
in their output stages to accommodate communication 
standards such as GSM, DCS1800, PCS1900, UMTS, 
Bluetooth, WLAN, Wi-Fi and WiMAX. The number of 
PAs reaches even up to 6 especially in some GSM plat-
forms. In this work, based on a very recently developed 
novel ultra wide band (UWB) amplifier design approach 

that we call “NGF (Normalized Gain Function) method” 
[1], we propose to replace a large number of PAs by de-
signing only one single UWB PA operating within  
800-5200 MHz band. Therefore, the use of this type UWB 
amplifier decreases the problems such as system complexi-
ties, high costs, heavy equipment structure, large circuitry 
areas, high DC power consumption caused by many sepa-
rate narrow-band PAs and their accompanying matching 
elements. NGF based design methodology is used to design 
UWB amplifiers operating within 800-5200 MHz band that 
can cover all frequency bands of the above mentioned 
communication standards.  

Increasing sophistication in modern wireless equip-
ment tends to require more and more digital hardware and 
software units to control output amplifier of the transmitter 
especially in SDR (Software Defined Radio) based plat-
forms. From the flexible operation point of view, a highly 
digital environment can benefit having such a UWB ampli-
fier. In such a SDR platform, signals to be broadcasted are 
generated via only software means in the digital unit 
(FPGA, DSP etc.) and directly applied into the input port of 
the proposed UWB amplifier without being exposed any 
drawbacks by hardware intervention. However, from the 
embedded engineering point of view, digitally generated 
signals must be safely targeted to fall into the operational 
frequency band of the UWB amplifier. 

Due to impossibility of analytically solving the ampli-
fier equations composed of many unknown variables re-
lated to element values of the input and output matching 
networks (IMN/OMN), one has to choose a numerical 
technique that is highly successful, numerically stable and 
yielding always convergent and realizable solution. The 
obvious answer is the Real Frequency Techniques (RFTs) 
which are very well-known and widely used numerical 
solvers in the literature [2-8]. In this work, reflectance 
based RFT version called “Simplified Real Frequency 
Technique (SRFT)” is preferred as the fundamental nu-
merical design technique [4-20]. 

NGF takes its name from the amplifier gain function 
T divided by the forward scattering parameter of the tran-
sistor |S21|

2, a kind of normalization or division operation 
applied to the amplifier gain function T by the normaliza-
tion factor |S21|

2. We may also use a term NGF-SRFT (NGF 
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assisted SRFT technique) suitably which combines NGF 
method with SRFT based design technique. 

An UWB Flat Gain Amplifier (FGA) with a flat gain 
level T0 = 14.90 dB (see Fig. 1.b) along [fL - fH] = 
[0.8-5.2] GHz frequency band is designed using the 
developed Matlab [21] code. The linear small signal nor-
malized scattering parameters of a commercially available 
1400mW wideband DC-12 GHz discrete power pHEMT, 
TGF2021-01 of TriQuint Semiconductor [22], is used in 
the design and the theoretical results are found in 100% 
agreement with the simulations done in the Microwave 
Office (MWO) of AWR Corporation [23]. TGF2021-01 is 
ideally suited for point-to-point radio, high-reliability 
space, and military applications [22], however in such 
applications demanding more than 1400 mW power, the 
introduced design method allows us to design more power-
ful amplifiers using higher power transistors provided that 
they are targeted to operate in the linear region sufficiently 
below P1dB point. 
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Fig. 1.  a) An ultra wideband microwave amplifier composed 

of IMN, OMN, a single transistor Q, source and load 
side resistive terminations RG and RL. b) Gain curve 
shapes for the amplifier operating in the (fL-fH) fre-
quency band: TG, TQ = |S21|

2, TL, T, T U,max (Maximum 
Unilateral Power Gain, i.e. ΓL = S22

*, ΓG= S11
*, if 

S12= 0 assumed). 

Major features of the NGF-SRFT methodology: 
NGF method to be presented in this paper has several 
novelties when compared to RFT based amplifier design 
methods worked in for example [5] and [10]:  

i) NGF method starts to design OMN first and then 
IMN as opposed to them.  

ii) It predetermines the shape of each target gain 
functions for OMN and IMN along the optimiza

tion frequency band and generates target gain 
functions modeled by bandpass Chebyshev or 
Butterworth type template functions. Thus, the 
optimization has gain curves to track precisely in 
the whole frequency band covering also stopband 
beside the passband. However, previous art uses 
target gain curves limited only in the passband.  

iii) Bandpass Chebyshev or Butterworth modeled tar-
get gain curves behave as precise guides to be 
tracked by the optimization. Therefore, the search 
space is predetermined which makes the optimi-
zation is always convergent, numerically robust, 
well-behaved and capable to reach realizable 
solutions.  

iv) NGF is general, i.e. it assumes no unilateral be-
havior known as S12 = 0 for the transistor. It takes 
into account of the output into the input or vice 
versa, by assuming S12 ≠ 0. This causes transistor 
input and output reflectances be affected from 
each other which is not so in the case S12 = 0 as-
sumption of previous works. This allows more re-
alistic resemblance of the transistor in the design.  

v) NGF takes into account of the acceptability of re-
flectance values when designing OMN and IMN. 
Reflectances should have sufficiently low values 
and this is tried to be achieved via LRA (Least Re-
flection Approach) or BRA (Balanced Reflection 
Approach) approaches which will be detailed in 
Section 3.1.B. 

In the following sections, first, amplifier design equa-
tions are introduced in Section 2. In Section 3, Normalized 
Gain Function method is introduced. A brief summary of 
SRFT is outlined in Section 4. In Section 5, wideband am-
plifier design steps using NGF-SRFT are given and elabo-
rated. Section 6 deals with an example design of an UWB 
amplifier based on NGF-SRFT and its performance evalu-
ations. 

2. Amplifier Design Equations 
For the wideband microwave amplifier seen in 

Fig. 1.a which is composed of Input Matching Network 
(IMN), Output Matching Network (OMN), transistor Q, 
resistive terminations RG and RL at the generator (source) 
and load sides respectively, Transducer Power Gain (TPG 
or shortly T) is given as [24], 

 G Q LT T T T  (1) 

where the partial gains are expressed in terms of IMN input 
reflectance ΓG, reflectances ΓIN, ΓOUT seen from the input 
and output of the transistor and OMN input reflectance ΓL such that [24], 
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The reflectances seen from the input and output of the 
transistor can be written in terms of unit normalized scat-
tering parameters (shortly S-parameters) given for the tran-
sistor, input reflectances ΓG

 
and ΓL of IMN and OMN 

matching circuits as [24], 
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Unit normalized scattering parameters are measured 
via a NA (Network Analyzer) under standard 50 Ohm 
resistive terminations connected at both ports of the tran-
sistor such that R1 = R2 = 50 Ohms, which corresponds to 
unit terminations rk = Rk/R0 = 1 Ohm (k = {1,2}) for a port 
normalization number R0 = 50 at each ports. Both ΓG and ΓL

 
 

are frequency dependent complex quantities expressed as 
rational functions defined by the ratio of two polynomials 
such that 
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where p = jω is the Laplace variable defined in terms of 
real frequency ω. Denominator polynomials for both re-
flectances must be “Strictly Hurwitz” polynomials whose 
all roots reside in the open LHP (Left Half Plane) and both 
numerator polynomials are arbitrary polynomials with real 
coefficients. Numerator and denominator polynomials of 
both matching networks are expressed in the following 
forms 
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where M denotes generator (G) or load (L) side matching 
networks, i.e. IMN or OMN, respectively. n is the total 
number of L and C (inductors and capacitors) lumped ele-
ments in each matching network which has (n + 1) number 
of total elements including one resistive termination [7], 
[8].  

Once either reflectance function is obtained in the 
form of (4), its corresponding Darlington driving point 
input impedance function is obtained as  
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which must be a rational PRF (Positive Real Function) 
from the realizability point of view [7], [8]. 

The sole meaning of amplifier design is basically to 
determine the topology and circuit parameter values of 
IMN and OMN matching circuits, that is to realize [7], 
[25], [26] them using LC lossless components either in 
lumped, distributed or mixed fashion so that the resulting 
overall amplifier gain function T satisfy the prescribed gain 

curve shape such as seen in Fig. 1.b. Any PRF, thus “real-
izable”, input impedance function z(p) in the form of (6) 
can be synthesized in such a way that it always yields 
an LC network with resistive termination, which completes 
the design. This is known as “Darlington Synthesis” and it 
could be achieved via a procedure known as Long-Division 
or Continued Fractional Expansion using the following 
form [7], [8] 

  (7) 

where zi and yi designate the series arm impedances and the 
shunt arm admittances in a reciprocal lossless two-port 
ladder topology, respectively.   is the constant resistive 

termination (resistance or conductance) of the lossless two-
port which can be omitted with a transformer loaded by 
unit resistance and 

 

 (8)

 

where coefficients ai, bi and “ci-di pair” could be realized 
by inductor in series branch (capacitor in shunt branch), 
capacitor in series branch (inductor in shunt branch), “ca-
pacitor-shunt-inductor in series branch (capacitor-series-
inductor in shunt branch)” if we deal with impedance zi (or 
admittance yi) function. The term related “ci-di pair” repre-
sents a resonant circuit composed of serial or parallel con-
nected L and C components [7], [8]. 

Losslessness Condition of Two-Port Networks:Any 
lossless two-port network must satisfy the relation known 
as “losslessness condition” given by 

  (9), (10) 

which requires an extra polynomial f(p) representing the 
transmission zeros of the gain function T(p) of the two-port 
such that 

 . (11) 

h(p) and g(p) are numerator and denominator polynomials 
of the input reflectance function Γ(p) = h(p)/g(p) and they 
have open form as given previously in (5). G, H, F of (10) 
are even polynomials each constructed by the product of 
corresponding polynomial and its conjugate. Conjugate 
polynomial is the polynomial in which Laplace variable is 
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substituted by –p. These even polynomials are given with 
the following form 

 2 2( 1) 2
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n nG p G p G p G p G
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where their order are double of the total element number n 
of the related matching network [4]. Gain function T(p) of 
a lossless two-port (IMN or OMN) can be written in terms 
of scattering parameters of this two-port as 

   2 2

21 22( ) 1 ,  {   }MT p M p M p M G or L    , where M21(p) 

is the forward scattering parameter and M22(p) is the re-
flectance seen at port 2. As seen in Fig. 1.a, we use ( )M p  
notation instead of M22(p), hence the gain for either IMN or 

OMN can be written as    2
( ) 1 ,   or M MT p p M G L    . 

Therefore, for any lossless two-port, whether it is IMN or 
OMN, gain function is expressed in terms of even polyno-
mials as  

 
 
 

 
 

2
( ) 1 ( ) 1

H p F p
T p p

G p G p
     

 

, (15) 

    
 

2 2( 1) 2
1 2 1

2 2( 1) 2
1 2 1

...

...

n n
n n

n n
n n

F p F p F p F p F
T p

G p G p G p G p G







   
 

   
 (16) 

which is an even rational function [7], [8]. In many cases, 
realization of transmission zeros of the numerator polyno-
mial given in general form (16) is difficult and mostly not 
practical. Therefore, one should adhere to a more practical 
model of the gain function given by 
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which has (2ndc + 2nz) number of total finite transmission 
zeros at DC and at frequencies 

iZ , 2n-(2ndc+2nz) number 

of transmission zeros at infinity. In many practical cases, 
and for our work in this study which considers ladder 
topology only, we deal with a simplified gain function form 
as 
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which only realizes transmission zeros at DC and infinity. 
Thus, this gain function form yields only single inductors 
and single capacitors in series/shunt branches of the ladder. 
In the paper, we utilize (18) to realize bandpass Chebyshev 
and Butterworth type gain functions. However, even 
though it is out of the scope of this study, one must also 

deal with finite real frequency or jω zeros of  22 2
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Z
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term seen in (17) that may be realized either as a parallel 
resonance circuit in series configuration, or as a series 

resonance circuit in shunt configuration or even as a Dar-
lington C (or D) section with coupled coils [7]. Especially, 
realization of Darlington C (or D) section with coupled 
coils is indeed a challenging issue and found impractical by 
the designers. 

3. Normalized Gain Function Method 
Shape or frequency response of amplifier gain func-

tion T in (1) is mathematically generated at the very begin-
ning of the design in such a way that it exactly represents 
the desired technical specifications of the amplifier to be 
designed. Hence, it has a known shape Tdata(ω) along the 
design or operating band [ ... ]b ef f  of the amplifier. More-

over, the shape of the transistor forward gain function is 

also known as     2

21Q dataT S  
 

since the transistor  

S-parameters are obtained from the vendor. Since shapes of 
these two functions are known, their ratio is a function 
whose shape is known as well. We define this ratio as 
“Normalized Gain Function (NGF)” [1] and write it as 
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For a flat gain amplifier whose gain 0( )dataT T   as 

seen in Fig. 1.b, (19.a) becomes 
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which has a “tapered” gain shape due to reciprocal of 

  2

21S  function [1]. Major objective of the designer is to 

able to obtain input and output matching networks (IMN/ 
OMN) in such a way that the resulting amplifier satisfies 
the desired overall ( )dataT   gain shape seen in Fig. 1.b, 

provided that the maximum power transfer is attained as 
much as possible.  

In the course of the amplifier design, designer targets 
to obtain matching networks IMN and OMN by means of 
two distinct optimization phases: I. OMN design phase, II. 
IMN design phase, respectively. 

I.  Output Matching Network (OMN) Design Phase: 

OMN design phase aims to find OMN input reflec-
tance     / ( )L L Lp h p g p   as a rational function in terms of 

hL and gL polynomial coefficients via a nonlinear optimiza-
tion process. At the beginning of the design, the shape of 
the target gain function ( )L dataT   to be tracked by the 

optimization algorithm is numerically generated. Then, 
unknown hL and gL polynomial coefficients of the input 
reflectance is obtained in the OMN optimization code via 
a suitable nonlinear optimization algorithm by minimizing 
the error or distance function given as 

       ndiTpTid idataLiLOMN ,...,2,1,     (20) 
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where data number in the frequency axis is nd and the 
minimum angular frequency step   /e bd nd    . 

i ip j  is the numeric value of the Laplace variable at 

the ith frequency point in the optimization or design band 

 ...e b  . In (20), OMN gain function in terms of un-

known reflectance is evaluated at the ith frequency point 
using 
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At the end of a successful optimization which may 
employ least square sense error minimization as 
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optimized ( ) ( ) / ( )L L Lp h p g p   and synthesized in the 

form of (7) to get the topology and the element values of 
the OMN network, which completes the 1st phase of the 
design [1]. 

II.  Input Matching Network (IMN) Design Phase:   

Similar to the OMN design phase, the optimization 
code minimizes the IMN error function given as 

       ndiTpTid idataGiGIMN ,...,2,1,    .  (22) 

IMN gain function in terms of unknown input reflectance is 
written as 
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Similarly, at the end of a successful optimization 
which may employ least square error minimization of 
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optimized ( ) ( ) / ( )G G Gp h p g p   and synthesized in the 

form of (7) to get the topology and element values of the 
IMN network, which completes the 2nd phase and the over-
all design [1]. 

3.1 Generation of Target Gain Functions 

From the optimization point of view, error functions 
in (20) and (22) require pre-determination of shapes of 

( )L dataT   and ( )G dataT   target gain functions before the 

optimization. The shapes of these target gain functions can 
be generated using two approaches: A. Least Reflection 
Approach (LRA), B.  Balanced Reflection Approach (BRA). 

A.  Least Reflection Approach (LRA): In LRA [1], 
we propose to choose the OMN target gain function to 
satisfy the condition 

   max ,  L data b i eT            (24) 

which makes OMN circuit have the “least reflection” or 
“reflectionless” (corresponds to *

22L S   along the pass-

band in the ideal case or a very small value sufficiently 
close to zero in a well-matched network when max  )  

that preserve the transistor output from harmful load re-
flections especially in high power levels. Indeed, this is 
a critical task that must be charged on the transistor output 
circuit together with the OMN circuit through to the load 
since the transistor drain (collector) circuit has the capabil-
ity of carrying high powers compared to the gate (base) 
circuit. A good candidate for OMN target gain function can 
be a bandpass gain function modeled by Chebyshev or 
Butterworth template function denoted by  ChT 

 
or  BwT 

 
of degree 2n and ripple factor   with a maximum gain 
amplitude of unity as in (24) within b e     band [1]. 

Therefore, using bandpass Chebyshev or Butterworth tem-
plate function, the shapes of both IMN and OMN target 
gain functions are mathematically generated using NGF 
given in (19) as 

     ,  L data temp temp b i eT T        
 
, (25) 
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where Ttemp denotes designer’s choice of bandpass Cheby-
shev or Butterworth template function as follows 

    
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

,1max  
. (27.i)

 

Bandpass Chebyshev or Butterworth template function 
( )tempT   is generated using bandpass to lowpass transfor-

mation  2 2 2 2
0 0/ ( ) /p p Bp j B        into lowpass 

prototype function TL(p) as 
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 (27.ii)

 

where TL(p) is chosen by the designer as either a Cheby-
shev lowpass prototype function TChL(p) built by mth order 
Chebyshev polynomials and ripple factor epsilon or a mth 
order Butterworth lowpass prototype function TBwL(p). 

   L data temp tempT T     means the OMN target gain 

function shape will be a bandpass Chebyshev or 
Butterworth template function given with (27.i) [1]. 
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      2

0 21/G data temp tempT T S T      means the IMN 

target gain function shape will be a bandpass Chebyshev or 
Butterworth template function whose passband gain is 
a “tapered” shape determined by NGF gain 

    2

0 21/NGFT T S   given in (19.b). In Fig. 2.a, typical 

gain shapes are shown. 

Depending on the value of transistor S-parameters, 
α > 1 situations may occur in (21) and ( )L dataT   could be 

modeled by  or  function having maximum 

gain value greater than 1. However, for simplicity reasons, 
LRA assumes α = 1 in our study. Designers should also pay 
attention to obtain sufficiently acceptable low values for 
IMN reflection function G  along the operation band, 

while she/he tries to optimize to obtain least reflection 
values concurrently for OMN reflection function L .  

B.  Balanced Reflection Approach (BRA): Although 
LRA almost always attains low reflection values (less than 
-10 dB) for OMN reflection function L  along the opera-

tion band, it may not always yield a sufficiently low values 
for IMN reflection function G  in all regions of the opera-

tion band. This may be caused by the fact that the S-param-
eter data of the transistor is not always suitable to obtain 
well-behaved, i.e. low valued, reflections in the whole 
operation band. BRA may help to share the OMN reflec-
tion into two parts almost equally between OMN and IMN, 
which may allow the input mismatch seen at IMN side to 
be healed. To achieve this, using (19.a), BRA assumes 
taking eth exponent of normalized gain function TNGF to 
generate OMN and IMN target gain functions ( )L dataT   

and ( )G dataT   using the following expressions 
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e
dataNGFdataG

e
dataNGFdataL







 (27.iii)

 

where the only situation that the balanced (or equal) re-
flections for both OMN and IMN can occur if e = 1/2 satis-
fied which corresponds to the geometric mean of the nor-
malized gain function TNGF. If we apply Chebyshev or 
Butterworth template modeling to (27.iii), we get the final 
forms of OMN and IMN target gain functions to be used in 
the optimization as 
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 . (27.iv)

 

In Fig. 2.b, typical gain shapes are shown for BRA 
approach. 

 

 
a) 

 
b) 

Fig. 2.  Typical gain curves for a) LRA and b) BRA. 

4. A Brief Summary of SRFT 
Simplified Real Frequency Technique (SRFT) solves 

the double matching problems by constructing lossless 
two-ports via optimization of the transducer power gain. In 
this process, lossless two-port is described in terms of its 
real normalized input reflection coefficient Γ(p) = h(p)/g(p).  
The unknowns of the matching problem are selected as 
coefficients of h(p) polynomial, i.e.  1 2 1, ,..., ,n nh h h h  . 

Then, “strictly Hurwitz” denominator polynomial ( )g p  is 

uniquely determined from the initialized coefficients 
 1 2 1, ,..., ,n nh h h h   by explicit factorization of the lossless-

ness condition given by (9). In (9), polynomial ( )f p  is 

specified by the user and it is constructed on the transmis-
sion zeros of the lossless matching network. Details of 
SRFT are omitted here. However, further and detailed 
information can be found in [7]. 

 ChT   BwT 
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5. Wideband Amplifier Design Steps 
Using NGF-SRFT 
NGF method combined with SRFT which might be 

called as NGF-SRFT, can be a good approach to design 
ultra wideband amplifiers. In a UWB microwave amplifier 
design, NGF method can be performed in 5 major steps: 
1. OMN design, 2. IMN design, 3. synthesis, 4. reoptimi-
zation, 5. simulation. 

This design method is given in the following in a step 
by step manner. 

 Step 1: OMN design 

1.1. The specifications of the amplifier to be designed 
are entered with parameters such as choice of template 
function either as Chebyshev or Butterworth i.e. 

        temp ch BwT T or T   , flat gain level 0( )dataT T  , 

lower corner frequency fL, upper corner frequency fH, 
passband ripple ε , total number of L and C elements n for 
each of IMN and OMN, lower and upper optimization 
frequency bounds fb and fe.  

1.2. Transistor forward gain is calculated by 

     ebdataQ ST   ,
2

21  (28) 

using linear S-parameters of the transistor provided from 
the vendor in matrix form as 

      
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SS
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 







 ,

2221

1211  (29) 

Thus, its gain curve shape also becomes known, where b  
and e  are lower and upper bounds of the optimization [1]. 

1.3. Eventually, using (19.b), the shape of normalized 
gain function TNGF is computed by the ratio of given 

0( )dataT T   and   2

21S 
 
as     2

0 21/NGFT T S  . Then, 

the target gain functions to be used in the OMN and IMN 
optimization processes are generated using BRA as 
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1.4. OMN Optimization Code – OptOMN.m: This 
Matlab code deals with the computation of the unknown 
vectors hL, fL and gL of OMN. In the main code, before 
entering the OMN optimization code, the unknown vectors 
hL and  fL are generally initialized in an ad-hoc manner, for 
example filled with unit values, i.e. hL= [hL,1 hL,2… 
hL,n+1]=I=[1 1…1 1] and fL=[fL,1 fL,2… fL,n/2+1… fL,n+1]=[0 0… 
fL0… 0]=[0 0…1… 0]. As will be detailed in the following, 
gL need not to be initialized as “unknown” since it is totally 
derived in terms of unknown vectors hL and  fL via loss-
lessness condition of (9), (10). All coefficients of fL vector 

are set to zero except the middle term fL,n/2+1= fL0 = 1, hence 
forming an even numerator polynomial FL=fLfL*= 
[FL,1 FL,2… FL,n/2+1… FL,n+1]= [0 0… FL0… 0]=[0 0… fL0

2
… 0]. 

It is preferable to choose ndc as half of the element number 
of the OMN, i.e. ndc = n/2, to be able to obtain a 
symmetrical bandpass gain function for OMN with the 
form given as 

    
 

2
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2 2( 1) 2
,1 ,2 , , 1...

ndc
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L n n
L L L L n L n

F pF p
T p

G p G p G p G p G


 
   

.(30) 

Matlab optimization code OptOMN.m yields the resulting 
optimized polynomials hL, fL, gL by executing the pseudo-
code, given in Tab. 1, in step by step manner. n denotes the 
total element number of the bandpass OMN, LHProots 
denotes “Left-Half Plane roots” of strictly Hurwitz even  
 

Optimization Code: OptOMN.m step 
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vii. 

Tab. 1.  Pseudo code in OMN opt. func. 
 

polynomial GL(p), nd represents the data number in the 
optimization range , TL(pi) is the OMN gain func-

tion as given in (2), Ld is error or distance vector to be 

minimized and defined as the difference between the gain 
function ( )L iT p  being optimized and the OMN target gain 

function ( )L data tempT    
being tracked. Matlab built-in func-

[ ... ]b e 



RADIOENGINEERING, VOL. 22, NO. 3, SEPTEMBER 2013 679 

tion “conv” performs vector convolution or multiplication. 
In the Matlab optimization code development stage, among 
many optimization algorithm choices such as used in [27], 
[28], “fminsearch” [29] has been experimented and found 
as a highly successful and well-suited algorithm which 
takes the initial vector xL0= [hL0  fL0] as an input argument 
and yields always a convergent and realizable solution as 
xL= [hL  fL] optimized vector. In the main code, it is written 
as “x = fminsearch( 'OptOMN', xL0, options );”. At the end 
of the optimization, we have ( ),  ( )L Lh p g p  polynomials 

belonging to the input reflectance ( ) ( ) / ( )L L Lp h p g p   of 

the OMN from which the normalized input impedance 
function ( ) ( ) / ( )L L Lz p a p b p  is obtained as given in (6) 

[1].  

 Step 2: IMN design 

2.1. IMN Optimization Code – OptIMN.m: The IMN 
optimization is very similar to that of OMN. Again, the 
optimization starts with the initial vectors hG=[hG,1 hG,2… 
hG,n+1]=I=[1 1…1 1] and fG=[fG,1 fG,2… fG,n/2+1… fG,n+1]=[0 
0… fG0… 0]=[0 0…1… 0]. Hence, F even numerator poly-
nomial is formed as FG=fGfG*=[FG,1 FG,2… FG,n/2+1… 
FG,n+1]= [0 0… FG0… 0]=[0 0… fG0

2
… 0]. As in OMN, ndc is 

chosen as half of the total element number of IMN, i.e. 
ndc = n/2, to be able to obtain a symmetrical bandpass gain 
function for IMN with the form given as 

 
 
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2
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2 2( 1) 2
,1 ,2 ,2 ,2 1
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...

ndc
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G n n
G G G G n G n

F pF p
T p

G p G p G p G p G


 
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.(31) 

Matlab optimization code OptIMN.m yields the resulting 
optimized polynomials hG, fG, gG by executing the pseudo-
code, given in Tab. 2, in a step by step manner. 

- ( )G data tempT   is the tapered gain form as seen in Fig. 1.b. In 

the main code, it is written as “x=fminsearch( 'OptIMN', 
xG0, options );”. At the end of the optimization, we have 

( ),  ( )G Gh p g p  polynomials belonging to the input 

reflectance ( ) ( ) / ( )G G Gp h p g p   of the IMN from which 

the normalized input impedance function 
( ) ( ) / ( )G G Gz p a p b p  is obtained as given in (6) [1].  

 Step 3: Synthesis 

Any rational PR (positive real) driving point input 
impedance function z(p) of the form (6) can always be 
realized as LC lossless ladder network with resistive termi-
nation in Darlington’s sense. In principle, an LC ladder 
synthesis is achieved by means of a straightforward long 
division process (see (7) and (8)) of an immitance (imped-
ance or admittance) function. At each step, a pole at DC or 
infinity is removed. After each step, the degree of the re-
maining function is reduced. This process continues until 
we end up with a constant term [26], which determines the 
termination resistance of the corresponding matching net-
work. When the gain function form given in (18) is consid-
ered, for each of IMN and OMN matching networks, inte-
ger n designates the total number of reactive elements 
when z(p) is synthesized as a lossless 2-port in resistive 
termination. ndc is the number of DC transmission zeros 

which are realized as series capacitors and shunt inductors 
in a 2-port. 0dcn n n     

is the number of transmission 

zeros at infinity which are realized as series inductors and 
shunt capacitors. In [26], much more detailed information 
can be found about the “high precision synthesis of 
bandpass LC ladders“ together with very useful Matlab 
synthesis package. 

Choosing ndc = n/2 allows one to be able to create 
“symmetrical” roll-off characters for gain functions TG(p) 
and TL(p) of IMN and OMN, respectively. For the design 
example worked in Section 6, at the beginning of the de-
sign, element number for each matching network is chosen, 
for example, as n = 8 excluding termination resistances 
denoted by R9. As seen in Fig. 5 of this design example, 
we synthesize both OMN and IMN input impedance func-
tions in such a way that each is yielded as bandpass LC 
lossless ladder having ndc = n/2 = 4 number of hp (high-
pass) sections with series capacitors and shunt inductors 
(C1, L2, C3, L4) and / 2 4dcn n n n      number of lp 

(lowpass) sections with series inductors and shunt capaci-
tors (C8, L7, C6, L5). 
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vii. 

Tab. 2.  Pseudo codes in IMN opt. func. 
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In the Matlab code “Main_NGF_SRFT.m”, a function 
[CVal, CType]=general_synthesis(a, b) is executed twice to 
synthesize each of the normalized input impedance func-
tions zL(p)=aL(p)/bL(p) and zG(p)=aG(p)/bG(p), respectively. 
The function “general_synthesis” performs the synthesis 
procedure based on the theoretical description introduced at 
the beginning of this step (1st paragraph), i.e. Step 4. Once 
the OMN optimization is completed, the optimized coeffi-
cient vectors aL and bL are loaded into the function 
[CVal_L, CType_L]=general_synthesis(aL, bL), which 
synthesizes the impedance function zL(p)=aL(p)/bL(p) and 
eventually yields normalized component values vector as 
CVal_L=[1.2701  9.0262  2.3485  18.0363  4.1510  0.4823  
2.2512  0.0871  2.6377] and topology vector in terms of 
component types as CType_L=[2 7  2  7  1  8  1  8  9]; 
where 2 and 7 denotes series-C and shunt-L; 1 and 8 de-
notes series-L and shunt-C; 9 denotes termination re-
sistance. Similarly, after the IMN optimization is com-
pleted, re-running the function as [CVal_G, 
CType_G]=general_synthesis(aG, bG) results the normal-
ized component values of the IMN network and its topol-
ogy such that CVal_G=[2.9015  5.6189  3.9557  9.6290  
1.7046  0.5265  0.2497  0.1894  1.5548] and CType_G=[2 
7  2  7  1  8  1  8  9], respectively. Once the normalized 
element values for each matching network are obtained by 
the synthesis process; then, the actual element values for 
OMN and IMN are computed, as seen in Tab. 3.a, via a de-
normalization process that uses impedance normalization 
factor with R0 = 50 Ohms and frequency normalization 
factor with fnorm = 2πfH = 2π (5.2 GHz).  

 Step 4: Reoptimization 

Reoptimization of the designed amplifier can be done 
to be able to obtain a new amplifier having 50 Ohm resis-
tive terminations for both OMN and IMN networks. One 
must observe that the performance of the reoptimized am-
plifier does not go far away from the desired technical 
specs prescribed at the beginning of the design. This can be 
a validation condition; if it is not possible to meet this con-
dition, a 50 Ohm reoptimized design may not be preferred 
over non-50 Ohm design. However, 50-Ohm termination, if 
it could be achieved via reoptimization, is a desirable situ-
ation for many practical problems; moreover, it eases the 
measurement of the amplifier since its input and output are 
compatible to the standard 50 Ohm ports of the measure-
ment equipment such as VNAs (vector network analyzers). 

We should mention that, when the analytic form of 
the normalized immitance (impedance z(p) or admittance 
y(p)) is synthesized as a lossless two-port in resistive termi-
nation, one may end up with a transformer depending on 
the value of the termination resistance. ‘Transformerless’ 
or 50 Ohm termination is always desired in the final syn-
thesis, however, this can only be achieved for low-pass 
design problems (see p. 361 [7]). Indeed, at DC, i.e. when 

0p j  , 

  (1 ( )) /(1 ( )) ( ( ) ( )) /( ( ) ( ))M M M M M M Mz p p p g p h p g p h p     

 becomes   1, 1, 1, 1,( ) /( )M n M n M n M n Mz p g h g h       and, by 

substituting hn+1,M = 0, it results    1, 1,/ 1M n M n Mz p g g   . 

This means that, for low-pass designs only, each of the 
IMN and OMN normalized input impedances has 1 Ohm 
termination resistance that corresponds to standard 50 Ohm 
(“transformerless” design).  

To our knowledge, for bandpass design problems, it is 
a challenging task to obtain 50 Ohm terminations via 
an analytic procedure similar to the above mentioned 
method for lowpass designs. On the other hand, reoptimi-
zation would be impossible if the topology of the designed 
amplifier was not available. This is owed to the SRFT that 
determines the topology of the non-50 Ohm amplifier as 
the initial design to be able to pass to the reoptimization 
stage if desired.  

Once the topology of the initial non-50 Ohm amplifier 
(seen in Fig. 5) is obtained via SRFT technique by the 
Matlab code “Main_NGF_SRFT.m”, then, to be able to 
obtain a 50 Ohm terminated amplifier in MWO (of AWR 
Corp.) environment, both termination resistances (two R9s 
in Fig. 5) are firstly kept constant as 50 Ohm. Then, all LC 
elements of IMN and OMN are reoptimized in such a way 
that the overall gain function is tracked as much precise as 
possible. As a result, Tab. 3.a shows the element values of 
the non-50 Ohm amplifier, whereas Tab. 3.b shows the 
element values of the reoptimized, in other words 50-Ohm 
terminated, amplifier. In Fig. 4, a high agreement between 
the gain performances of both non-50 Ohm and the reopti-
mized amplifier can be seen. 

 Step 5: Simulation 

The amplifier composed of transistor Q and designed 
matching networks IMN/OMN is simulated in the MWO 
(Microwave Office, AWR Corp.) environment [23]. Theo-
retical and simulated gain performances are compared to 
observe the degree of agreement between them (see Fig. 3 
and Fig. 4 to compare the performances of the theoretical 
Matlab design with that of the simulation in Fig. 4 (dashed 
one)).  

6. Design of an UWB Amplifier and Its 
Performance Evaluations 
Design example: UWB amplifier based on NGF-SRFT 

A flat gain UWB amplifier is to be designed with the 
following specifications: flat gain level 

0( ) 14.90 dataT T dB   (to assure the stability, T0 is se-

lected inside the lower region below the TUmax maximum 
unilateral power gain curve which is a perfect match case 
under the assumption: * *

22 11 12,   if 0L GS S S     ), 

lower corner frequency fL = 0.8 GHz, upper corner fre-
quency fH = 5.2 GHz, Chebyshev template function 

, passband ripple factor  = 0.27 

(0.3056 dB), total number of L and C elements n = 8 (ex-
cluding termination resistance) for each of IMN and OMN, 
ndc = n/2 = 4 transmission zeros at DC, lower and upper 
optimization frequency bounds fb = 0.5 GHz and 

   temp chT T 
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fe = 26 GHz, active device TGF2021-01 of TriQuint Semi-
conductor, 1.4 W wideband DC-12 GHz discrete power 
pHEMT [22]. 

Note that, choosing the total number of L and C ele-
ments as n = 8, which is a relatively high filter order, can 
make possible to obtain IMN and OMN networks belong-
ing to such an amplifier that its gain characteristic can 
resemble much more closely the shape of the given pre-
scribed target gain function along a wide frequency band 

 
Fig. 3.  Matlab design: shapes of typical gain functions for the 

designed UWB amplifier. 

 
Fig. 4.  MWO simulation: gain performances of the designed 

UWB amplifier by Matlab code (dashed) and  
reoptimized one by MWO (solid). 

 
Fig. 5.  Matlab design: schematic of the designed UWB 

amplifier. 

of operation, (0.5-26) GHz. According to our experience 
with the Matlab code “Main_NGF_SRFT.m”, element 
number n smaller than n = 8, could not yield matching 

networks that can resemble thoroughly the desired pre-
scribed amplifier gain shape over a wide frequency band of 
operation. On the other hand, we have observed that, for 
the higher element number n greater than 12, severe accu-
mulated numerical errors in the computations yield dis-
torted shapes for the target gain functions TG-data-temp(p) and 
TL-data-tem(p), which cannot be used as the optimization 
target functions at all. The main idea in choosing the “suit-
able” filter order n is that; not only this order n should yield 
matching networks satisfying the desired gain shape pre-
cisely as much as possible along a wide frequency band, 
but also it concurrently should result such matching circuits 
with minimal number of elements as much as possible. 
 

Element 
Values: 

pF, nH, 
Ohm 

Matching 
Network 

Element 
Values: 

pF, nH, 
Ohm 

Matching  Network 

IMN OMN IMN OMN 

C1 1.759 0.770 L5 2.584 6.292 

L2 8.517 13.682 C6 0.319 0.292 

C3 2.398 1.424 L7 0.379 3.412 

L4 14.595 27.339 C8 0.115 0.053 

   R9 77.739 131.884 

a) 
 

Element 
Values: 

pF, nH, 
Ohm 

Matching 
Network 

Element 
Values: 

pF, nH, 
Ohm 

Matching  Network 

IMN OMN IMN OMN 

C1 1.739 1.200 L5 2.464 8.542 

L2 6.417 15.08 C6 0.5745 0.3404 

C3 3.898 1.404 L7 0.2435 5.812 

L4 198.0 614.7 C8 0.1228 0.05208 

   R9 50.00 50.00 

b) 

Tab. 3.  a) Matlab design: element values of the designed 
UWB amplifier by Matlab, b) element values of the 
“reoptimized” amplifier by MWO (of AWR Corp.). 

Lower and upper optimization frequency bounds are 
set as fb = 0.5 GHz and fe = 26 GHz, between which scat-
tering parameters measured at 52 different frequencies are 
given in the S-parameter file of the active device 
TGF2021-01. By using interpolation, the optimization band 
in (0.5-26) GHz is further divided into nd = 714 equal fre-
quency steps, each measures f = 35.714 MHz. Therefore, 
in every stage of the design, the computations are done 
with frequency increments of f = 35.714 MHz, enabling 
high resolution computations. 

Solution: Using the developed Matlab code 
“Main_NGF_SRFT.m”, starting with initial polynomials 
hL, fL, hG, fG, OptOMN.m and OptIMN.m optimization 
codes yield the following optimized results:
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 

 
 

8 7 6 5

4 3 2

4

8 7 6 5

4 3 2

 0.7986 3.1527 4.1501 4.4580

          2.6134 1.3310 0.3189 0.0335 0.0042

  2.5065

 0.7986 3.8030 6.9821 8.5300

          5.8964 2.1443 0.4175 0.0442 0.0042

L

L

L

h p p p p p

p p p p

f p p

g p p p p p

p p p p

   

    



   

    

 

 

 
 

8 7 6 5

4 3 2

4

8 7 6 5

4 3 2

 0.0598 0.1512 1.6385 0.3535

          0.8212 0.3114 0.1434 0.0103 0.0023

  2.2607

 0.0598 0.2551 1.9914 3.3822

          3.6454 1.2133 0.2415 0.0235 0.0023

G

G

G

h p p p p p

p p p p

f p p

g p p p p p

p p p p

   

    



   

    

 

then, numerator and denominator polynomials of Darling-
ton input impedance functions zL(p) = aL(p)/bL(p) and 
zG(p) = aG(p)/bG(p) for the corresponding OMN and IMN 
networks are  

 

 

8 7 6 5

4 3 2

7 6 5

4 3 2

 =1.5972 6.9557 11.1322 12.9881

          8.5098 3.4753 0.7364 0.0777 0.0084

 =0.6503 2.8320 4.0720

          3.2830 0.8133 0.0986 0.0106

L

L

a p p p p p

p p p p

b p p p p

p p p p

  

    

 

     

 

 

8 7 6 5

4 3 2

7 6 5

4 3 2

 =0.1196 0.4063 3.6299 3.7357

          4.4667 1.5247 0.3848 0.0338 0.0045

 =0.1039 0.3529 3.0288

          2.8242 0.9019 0.0981 0.0132

G

G

a p p p p p

p p p p

b p p p p

p p p p

  

    

 

     

And finally, optimized partial gain functions in p-domain 
for OMN and IMN networks in the form of (30) and (31) 
are

    
   

 

2 8
,0

2 2( 1) 2
,1 ,2 , ,2 1

16 14 12 10

8 6 4 2 -5

6.2825

...

0.6378  - 3.3109  - 6.7120  - 6.0658

3.6870  - 0.3688 0.0344 0.0016 1.7570 10

ndc
LL

L n n
L LL L L n L n

L

F pF p p
T p

G p G pG p G p G p G

G p p p p p

p p p p




  
   



      

   
   

 

2 8
,0

2 2( 1) 2
,1 ,2 , ,2 1

16 14 12 10

8 6 4 2 -5

5.1105

...

0.0036  + 0.1732  + 2.6761  + 2.4893

6.0318  + 0.1386 0.0179 0.0005 5.1514 10

ndc
GG

G n n
G GG G G n G n

G

F pF p p
T p

G p G pG p G p G p G

G p p p p p

p p p p




  
   



    

 

which construct the overall amplifier gain function as 

  2

21( ) ( ) ( )G LT T S T   
 

by substituting p j . 

Typical gain functions for the designed UWB amplifier via 
Matlab code Main_NGF_SRFT.m, the amplifier schematic 
and the element values are given in Fig. 3, Fig. 5 and 
Tab. 3.a, respectively. For the NA (Network Analyzer) 
measurement requirements, R9 termination resistances of 
both IMN and OMN should be replaced by transformers 
whose winding ratios are determined in such a way that the 
generator and the load each sees 50 Ohm standard imped-
ance of NA ports. Although termination resistances were 
optimized to values different than 50 Ohm, reoptimization 

for both OMN and IMN can yield 50 Ohm terminations 
hence the need for transformers is avoided.  

As recalled from the step 4, in Section 5, the reopti-
mization issue was first mentioned and elaborated exten-
sively. If we re-state, Tab. 3.a and Tab. 3.b show the ele-
ment values of the non-50 Ohm amplifier designed by the 
Matlab code “Main_NGF_SRFT.m” and the reoptimized 
amplifier by the MWO, respectively. In Fig. 4, a high 
agreement between the gain performances of both non-
50 Ohm and the reoptimized, i.e. 50-Ohm terminated, 
amplifier is shown. 

The amplifier gain yielded by the simulation in MWO 
is seen in Fig. 4 (dashed one) and it is in %100 agreement 
with that of theoretical gain obtained via Matlab code, as 
seen in Fig. 3. The overall amplifier gain flatness is 
acceptable over the operation band and its flatness may be 
improved depending on the desired degree of the reflec-
tions at OMN and IMN as far as the S-parameter data of 
the transistor permits. For those who desire to reproduce 
the results of the design example via Matlab code 
Main_NGF_SRFT.m, we recommend them to run the 
codes given in [30]. 

6.1 Stability Considerations 

Absolute and conditional stability checking of the 
designed amplifier can be done using the following 
equation set 

 
( ) 0,  

( ) 0,  
OUT

IN

R

R

 
 

 
   (32.i) 

 

( ) ( ) 0,  

( ) ( ) 0,  
OUT L

IN G

R R

R R

  
  

  
    (32.ii)

 

where ROUT, RIN, RL, RG are resistive (or real) parts of the 
impedances seen at transistor output, transistor input, OMN 
input, IMN output, respectively.  (32.i) is used for absolute 
stability checking and (32.ii) for conditional stability 
checking of the amplifier [7]. Above equation set is com-
puted along the whole band, i.e. [0.5-26] GHz given for the 
transistor TGF2021-01, and the results are seen in Fig. 6. 
As seen from the figure, all the computed normalized re-
sistive parts of the impedances are always greater than zero 
along the design band [0.8-5.2] GHz, that is to say they 
have not any negative resistances. Therefore, we can say 
that the amplifier is absolutely stable. 

6.2 Computation of h and g Polynomial 
Coefficients via Error Minimization 

Computation of the coefficients of h and g polynomi-
als for both OMN and IMN is the main aim of each of the 
optimization functions OptOMN.m and OptIMN.m. As 
seen in Step vii of each of Tab. 1 and Tab. 2, at any itera-
tion instant t, the optimization function computes the gain 
function TM(pi) (M={G or L} and 2i i ip j j f   ) as 

a vector in 1nd dimension, where i = 1..nd. For the exam-
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ple design in Section 6, nd is taken as 714. The computa-
tion of TM(pi) vector is done within a loop in which the 
frequency variable fi is swept in the frequency range 

b i ef f f  . As stated earlier, the optimization band is 

given as (fb - fe) = (0.5-26) GHz composed of nd = 714 
number of total frequency increments, each measures 
f = 35.714 MHz. Then, the computed gain vector TM is 
substracted from the same-length (i.e. 1xnd) target gain 
function vector ( )M data temp iT    to form the error vector dM 

in 1  nd dimension. Therefore, at any iteration instant t, 
for every point fi in the frequency axis of length nd, 
a corresponding number dM(i) that measures the distance  

 
Fig. 6.  Stability check of the designed amplifier. 

between the computed mathematical gain and the target 
gain curve is created. In step vii of either Tab. 1 or Tab. 2, 
the error minimization stated by a formula as the “summa-
tion of the squares of the errors (SSE)”  acts a very critical 
role in that the nonlinear optimization algorithm (NOA) 
could converge to a successful solution, i.e. finding the 
optimized solution for hM and gM vectors, each in 1 (n+1) 
dimension. For any iteration instant t in the related optimi-
zation function (in OptOMN or OptIMN), a scalar number 
SSE(t) can be computed in accordance with “summation of 
the square of the error vector elements” along the optimi-
zation frequency band such that 

   

       
     


















GMTpTid

LMTpTid
id

ndiidtSSE

itempdataGiGG

itempdataLiLL
M

nd

i
M

if,

if,
 where

..1,
1

2




 (33) 

This scalar is a number that uniquely defines the 
measure of the closeness or the similarity degree of the 
shape of the current gain computed at the tth instant to the 
target gain curve being tracked. The smaller the SSE scalar, 
the closer the computed gain shape to the target gain shape. 
fminsearch nonlinear optimization algorithm ends the op-
timization upon the current SSE(t) nears a sufficiently small 
SSEval (which is set to 410TolX   in the “options” of the 
fminsearch algorithm) and returns to the main code after 
loading the optimized h and f vectors into the solution 

vector as opt optx [h  f ]
  

. Once the main code reloads the 

solved h and f vectors as opt opth x(h ), f x(f ) 
  

, g vec-

tor is computed using step iii of Tab. 2 (or Tab. 1). As 
a result, final h and g solution vectors have been computed.  
To be able to comprehend thoroughly how “minimization 
of the summation of the square of the errors”, i.e. the scalar 
SSE, acts an effective role in the success of the optimiza-
tion algorithm convergence that eventually yields solved h, 
f and g vectors; we consider the IMN optimization case of 
the design example in Section 6. For this design example, 
in the IMN optimization function OptIMN.m, the com-
puted scalar numbers SSE(t) with respect to the iteration 
number t, are shown in Fig. 7. As seen in the figure, the 
IMN optimization has ended at the iteration instant t6514. 
Thus, the final solution belongs to the iteration instant 
when t is equal to 6514. Therefore, the solution vector 

becomes opt opt 6514 6514x [h  f ]=[h  f ]
    

. As noticed, the 

solution has the least SSE number which is 
SSE6514 = 0.1004. For the marked instants at t = {1, 3570, 
4500, 5400, 6300, 6514} in Fig. 7, the hG and gG vectors  

 

Fig. 7.  Deviation of the “sum of the square of the errors 
(SSE)” with respect to the iteration number (t) in the 
IMN optimization. 

 

Iter. 
Num. 

(t) 

SSE 

(t) 
hG(t)=[h1 h2 h3 h4 h5 h6 h7 h8 h9] 

1 79.6 1              1              1              1              
1              1              1              1                1 

3570 0.616 0.8043    0.8331      2.8350     0.5265     
1.5651    0.3186      0.2192     0.0113      0.0040 

4500 0.6055 0.7838    0.8413      2.8075      0.5174    
1.5865    0.3020      0.2310      0.0108      0.0043 

5400 0.1333 0.1555    0.5371      1.8235      0.5379     
0.9188    0.3544      0.1504      0.0111      0.0024 

6300 0.1004 0.0597    0.1508      1.6381      0.3533     
0.8210    0.3113      0.1433      0.0103      0.0023 

6514 0.1004 0.0598    0.1512      1.6385      0.3535     
0.8212    0.3114      0.1434      0.0103      0.0023 

Tab. 4.  Solved h vector with respect to iteration number. 
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Iter. 
Num. 

(t) 

SSE 

(t) 
gG(t)=[g1 g2 g3 g4 g5 g6 g7 g8 g9] 

1 
 
79.6 

1.0000    4.8492   12.2573   20.3230   23.9289   
20.3230   12.2573    4.8492    1.0000 

3570 
 
0.616 

0.8043    2.1437    5.2603    5.9865    4.7699    
1.5089    0.3377    0.0327    0.0040 

4500 
 
0.6055 

0.7838    2.1214    5.2268    5.9710    4.7926    
1.5325    0.3509    0.0339    0.0043 

5400 
 
0.1333 

0.1555    0.8052    2.9805    4.4202    4.0774    
1.3155    0.2555    0.0249    0.0024 

6300 
 
0.1004 

0.0597    0.2546    1.9902    3.3810    3.6448    
1.2131    0.2414    0.0235    0.0023 

6514 
 
0.1004 

0.0598    0.2551    1.9913    3.3821    3.6454    
1.2133    0.2415    0.0235    0.0023 

Tab. 5.  Solved g vector with respect to iteration number. 
 

are computed using the solution vector x and are shown in 
Tab. 4, Tab. 5, respectively. Notice how close all the values 
of the coefficients of h and g vectors having SSE values 
sufficiently close to the final SSE6514 where the optimiza-
tion ends with the solution.   

7. Conclusion 
In this work, a UWB amplifier design methodology 

based on Simplified Real Frequency Technique (SRFT), 
we name as NGF-SRFT, is proposed and used in the design 
of an ultra wideband (800-5200 MHz) low/medium power 
microwave amplifier that can cover all frequency bands of 
the communication standards. NGF method gives the de-
signer a substantial approach to compute the target gain 
functions precisely to be tracked by the OMN and IMN 
optimization processes. In other words, the fineness of 
NGF comes from its capability of sharing of overall ampli-
fier gain function into two separate mathematically gener-
ated target gain functions in a simple way but relied on a 
mathematical base. Therefore, in NGF-SRFT, while NGF 
provides the generation of two target gain functions re-
quired by the SRFT assisted nonlinear optimization pro-
cesses; SRFT, which has essentially “topology-free” na-
ture, allows numerical computation of input impedances of 
IMN/OMN as realizable and synthesizable positive real 
functions. NGF-SRFT not only permits to design the 
matching networks of the amplifier in ladder topology 
composed of L and C elements, but also helps the resulting 
amplifier to track the desired overall gain function shape, 
as seen in Fig. 3, provided that the maximum power trans-
fer is attained as much and concurrent as possible. 

The theoretical results generated by the Matlab code 
are found in 100% agreement with the results obtained 
from the simulations done in MWO environment. The 
practical implementation of (0.8-5.2) GHz UWB amplifier 
based on NGF-SRFT methodology is currently under in-
vestigation. If one stays loyal to the fundamentals of 
lumped element design given in the paper, the NGF-SRFT 
method does not differ much to design all-distributed ele-
ment based design using various technologies such as mi-

crostrip technology. All-distributed element based design 
using Richard transformations [7] via NGF-SRFT is cur-
rently worked both in theoretical and practical aspects. 

Acknowledgements 
We thank to Ahmet Aksen, Professor and Head of the 

Department of Electronics Engineering of Işık University, 
for his valuable contributions and supportive comments. 

References 
[1] KÖPRÜ, R., KUNTMAN, H., YARMAN, B. S. Design of an ultra 

wideband microwave amplifier using simplified real frequency 
technique. In 12th Mediterranean Microwave Symposium 
MMS2012. Doğuş University, Istanbul (Turkey), September 2–5 
2012. 

[2] CARLIN, H. J. New approach to gain bandwidth problems. IEEE 
Transactions on Circuits and Systems, 1977, vol. 23, p. 170–175. 

[3] YARMAN, B. S. Broadband matching a complex generator to 
a complex load. PhD thesis, Cornell University, 1982. 

[4] CARLIN, H. J., YARMAN, B. S. The double matching problem: 
analytic and real frequency solutions. IEEE Transactions on 
Circuits and Systems, 1983, vol. 30, p. 15–28. 

[5] YARMAN, B. S. A dynamic CAD technique for designing 
broadband microwave amplifiers. RCA Review, December 1983, 
vol. 44, p. 551–565. 

[6] YARMAN, B. S. Modern approaches to broadband matching 
problems. Proceedings of the IEE, April 1985, vol. 132, p. 87–92. 

[7] YARMAN, B. S. Design of Ultra Wideband Power Transfer 
Networks. John Wiley & Sons Ltd., UK, 2010. 

[8] YARMAN, B. S. Design of Ultra Wideband Antenna Matching 
Networks Via Simplified Real Frequency Techniques. Springer, 
2008. 

[9] YARMAN, B. S. A simplified real frequency technique for 
broadband matching complex generator to complex loads. RCA 
Review, Sept. 1982, vol. 43, p. 529–541. 

[10] YARMAN, B. S., CARLIN, H. J. A simplified real frequency 
technique applied to broadband multi-stage microwave amplifiers. 
IEEE Trans. Microwave Theory and Techniques, Dec. 1982, 
vol. 30, p. 2216–2222. 

[11] LINDBERG, P., ŞENGÜL, M., ÇIMEN, E., YARMAN, B. S., 
RYDBERG, A., AKSEN, A. A single matching network design 
for a dual band pifa antenna via simplified real frequency 
technique. In The First European Conference on Antennas and 
Propagation (EuCAP 2006), Nice (France), 6-10 November 2006. 

[12] GÜNEŞ, F., BİLGİN, C. A generalized design procedure for a mi-
crowave amplifier: a typical application example. Progress in 
Electromagnetics Research B, 2008, vol. 10, p. 1–19. 

[13] WU, Y. T., MKADEM, F., BOUMAIZA, S. Design of a broad-
band and highly efficient 45W GaN power amplifier via simplified 
real frequency technique. International Microwave Symposium 
(IMS), Anaheim-California (USA), May 2010. 

[14] JARRY, P., PERENNEC, A. Optimization of gain and VSWR in 
multistage microwave amplifier using real frequency method. In 
European Conference on Circuit Theory and Design. Paris 
(France), September 1987, vol. 23, p. 203–208. 

[15] ZHU, L., WU, B., CHENG, C. Real frequency technique applied 
to synthesis of broad-band matching networks with arbitrary 



RADIOENGINEERING, VOL. 22, NO. 3, SEPTEMBER 2013 685 

nonuniform losses for MMICs. IEEE Transactions on Microwave 
Theory and Techniques, December 1988, vol. 36, p. 1614–1620. 

[16] SENGUL, M., YARMAN, B. S. Real frequency technique without 
optimization. In 4th International Conference on Electrical and 
Electronics Engineering (ELECO 2005). Bursa (Turkey), Decem-
ber 07–11, 2005. 

[17] YARMAN, B. S., et al. Design of broadband matching networks. 
In ECT, Invited Talk, Okinawa (Japan), January 24–27, 2007, 
p. 35–40. 

[18] YARMAN, B. S., RETDIAN, N., TAKAGI, S., FUJII, N. Gain-
bandwidth limitations of 0.18um Si-CMOS RF technology. In 
Proceedings of ECCTD 2007. Seville (Spain), August 26–30, 
2007. 

[19] YARMAN, B. S. Modern techniques to design wide band power 
transfer networks and microwave amplifiers on silicon RF chips. 
In IEEE International Conference on Recent Advances in 
Microwave Theory and Applications. Jaipur (India), November 
21–24, 2008. 

[20] YARMAN, B. S., et al. Performance assessment of active and 
passive components manufactured employing 0.18um silicon 
CMOS processing technology up to 22 GHz. In Proceedings of 
International Analog VLSI Workshop (2008 IEEJ). Istanbul 
(Turkey), July 30–August 1, 2008, p. 129–132. 

[21] Mathworks Inc. Mass. (USA). http://www.mathworks.com. 

[22] TriQuint Semiconductors. www.triquint.com. 

[23] AWR Corp. www.awrcorp.com. 

[24] GONZALEZ, G. Microwave Transistor Amplifiers Analysis and 
Design. Prentice-Hall Inc., Englewood Cliffs, N.J., 1984. 

[25] KILINC, A., YARMAN, B. S. High precision LC ladder synthesis 
part I: Lowpass ladder synthesis via parametric approach. IEEE 
TCAS-I, Regular Papers, 2013, vol. 28. 

[26] YARMAN, B. S., KILINÇ, A. High precision LC ladder synthesis 
part II: Immitance synthesis with transmission zeros at DC and 
infinity. IEEE TCAS-I, Regular Papers, 2013, vol. 28. 

[27] MORÉ, J. J. The Levenberg-Marquardt Algorithm: Implementa-
tion and Theory. Numerical Analysis, ed. G. A. Watson, Lecture 
Notes in Mathematics 630, Springer Verlag, 1977, p. 105–116. 

[28] CHEN, A., JIANG, T., CHEN, Z., ZHANG, Y. A genetic and 
simulated annealing combined algorithm for optimization of 
wideband antenna matching networks. International Journal of 
Antennas and Propagation, vol. 2012, Hindawi Publishing Corp. 

[29] LAGARIAS, J. C., REEDS, J. A., WRIGHT, M. H., WRIGHT, P. 
E. Convergence properties of the nelder-mead simplex method in 
low dimensions. SIAM Journal of Optimization, 1998, vol. 9, 
no. 1, p. 112–147. 

[30] www.siddikyarman.com. 

About Authors ... 
Ramazan KÖPRÜ received B.Sc. and M.Sc. degrees in 
Electronics and Communications Engineering from Yildiz 
Technical University (YTU, Istanbul, Turkey) and Istanbul 
Technical University (ITU, Istanbul, Turkey), in 1991 and 
1994, respectively. In the past, he has worked as an elec-
tronics design engineer in R&D departments of private 
sector in the fields of embedded systems, wireless systems, 
power electronics and defense electronics. Recently, he has 
executed the analog design team leadership of a private 
electronics design house in the LWR (Laser Warning and 
Receiver) Project contracted under ASELSAN (one of the 

top national military electronics design/manufacture com-
pany of Turkey). Since 2009, he is pursuing his PhD degree 
in ITU. His main interest areas of research are military spec 
analog design for laser signal detection and post-pro-
cessing, wide-band microwave power amplifier design, 
semi-analytic real frequency techniques for wideband im-
pedance matching, synthesis with distributed elements. 

Hakan KUNTMAN received his B.Sc., M.Sc. and Ph.D. 
degrees from Istanbul Technical University in 1974, 1977 
and 1982, respectively. In 1974, he joined the Electronics 
and Communication Engineering Department of Istanbul 
Technical University. Since 1993, he is a professor of 
Electronics in the same department. His research interests 
include design of electronic circuits, modeling of electron 
devices and electronic systems, active filters, design of 
analog IC topologies. Dr. Kuntman has authored many 
publications on modeling and simulation of electron de-
vices and electronic circuits for computer-aided design, 
analog VLSI design and active circuit design. He is the 
author or the coauthor of 106 journal papers published or 
accepted for publishing in international journals, 163 con-
ference papers presented or accepted for presentation in 
international conferences, 154 Turkish conference papers 
presented in national conferences and 10 books related to 
the above mentioned areas. Furthermore, he advised and 
completed the work of 9 Ph.D. students and 39 M.Sc. stu-
dents. Currently, he acts as the advisor of 5 Ph.D. students. 
Dr. Kuntman is a member of the Chamber of Turkish 
Electrical Engineers (EMO). 

Binboga Siddik YARMAN (M’76–SM’94–F’04) received 
his B.Sc. in Electrical Engineering from Technical Univer-
sity of Istanbul (Feb. 1974), M.Sc. degree from Stevens 
Institute of Technology, NJ, USA (1978), Ph.D. degree 
from Cornell University, Ithaca, NY, USA (1982). He had 
been Member of Technical Staff at David Sarnoff Research 
Center where he was in charge of designing various satel-
lite transponders for various commercial and military agen-
cies in the US such as Air Force, Hughes Aircraft’s, Bell 
Labs, Comsat, Intelsat, American Satcom of RCA etc. He 
returned to Turkey in 1984 and served as Assistant, Asso-
ciate and full Professor at Anatolia University-Eskisehir, 
Middle East Technical University-Ankara, Technical Uni-
versity of Istanbul, and Istanbul University, Istanbul. He 
had been the chairperson of Department of Electronics 
Engineering, Defense Technologies and Director of School 
of Technical Sciences of Istanbul University over the years 
1990-1996. He was the Founding President of Isik 
University.  

He had been a visiting professor at Ruhr University, Bo-
chum (1987-1994), Germany and Tokyo Institute of Tech-
nology, Japan (2006-2008). Currently, he is the chairman 
of the Department of Electrical-Electronics Engineering 
and the Scientific Research Projects Coordinator of Istan-
bul University. Lately, he also serves as the member of the 
Board of Trustees of Isik University. Dr. Yarman published 
more than 300 scientific and technical papers in the field of 
Electrical-Electronics Engineering, Microwave Engineer-
ing, Computer Engineering, Mathematics and Manage-



686 R. KÖPRÜ, H. KUNTMAN, B. S. YARMAN, NOVEL APPROACH TO DESIGN UWB MICROWAVE AMPLIFIERS… 

ment. He holds four US patents assigned to US Air Force. 
He is the author of the books titled “Design of Ultra Wide-
band Antenna Matching Networks” by Springer 2008 and 
“Design of Ultra Wideband Power Networks” by Wiley 
2010. He received the Young Turkish Scientist Award in 
1986, the Technology Award in 1987 of the National Re-
search and Technology Counsel of Turkey. He received the 

Research Fellowship award of Alexander Von Humboldt 
Foundation, Bonn, Germany, in 1987. He became the 
Member of New York Academy of Science in1994. He was 
named as the “Man of the year in Science and Technology” 
in 1998 of Cambridge Biography Center, UK and elevated 
to IEEE Fellow for his contribution to “Computer Aided 
design of Broadband Amplifiers”. 

 


