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An Application of the Modified Reductive 
Perturbation Method to a Generalized Boussinesq 
Equation

Abstract: In this work, we apply “the modified reduc­
tive perturbation method” to the generalized Boussinesq 
equation and obtain various form of generalized KdV 
equations as the evolution equations. Seeking a localized 
travelling wave solutions for these evolution equations 
we determine the scale parameters 1g  and 2g , which cor­
responds to the correction terms in the wave speed, so 
as  to remove the possible secularities that might occur. 
Depending on the sign and the values of certain param­
eters the resulting solutions are shown to be a solitary 
wave or a periodic solution. The suitability of the method 
is also shown by comparing the results with the exact 
travelling wave solution for the generalized Boussinesq 
equation.
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1 �Introduction
Due to nonlinearity of the governing equations in fluid-
filled elastic tubes, in shallow water waves and in colli­
sionless cold plasma, in expanding the field quantities 
into perturbation series for weakly dispersive case, the 
lowest order term in the perturbation expansion is gov­
erned by the Korteweg–de Vries equation (Davidson [1], 
Demiray [2]). The use of the classical reductive perturba­
tion method in studying the higher order terms in the per­
turbation expansion leads to some secular terms in the 
solution. In order to eliminate such secularities Sugimoto 
and Kakutani [3] introduced some slow scale variables, 
Kodama and Taniuti [4] presented the re-normalization 
procedure. Another attempt to remove such secularities is 

made by Kraenkel et al. [5] for long water waves by use of 
the multiple time scale expansion.

In order to remove these uncertainties, Malfliet and 
Wieers [6] presented a dressed solitary wave approach, 
which is based on the assumption that the field variables 
admit localized travelling wave solution. Then, for the 
long wave limit, they expanded the field variables and 
the wave speed into a power series of the wave number, 
which is assumed to be the only smallness parameter, and 
obtained the explicit solution for various order terms in 
the expansion. However, this approach can only be used 
when one studies progressive wave solution to the original 
nonlinear equations and it does not give any idea about 
the form of evolution equations governing the various 
order terms in the perturbation expansion. In our previ­
ous paper [7], we have presented the modified reductive 
perturbation method to examine the contributions of 
higher order terms in the perturbation expansion and 
applied it to weakly dispersive ion-acoustic plasma waves 
and solitary waves in a fluid filled elastic tube [8]. In 
these  works, we have shown that the lowest order term 
in  the  perturbation expansion is governed by the non­
linear Korteweg–de Vries equation, whereas the higher 
order terms in the expansion are governed by the degener­
ate (linearized) Korteweg–de Vries equation with non-
homogeneous term. By employing the hyperbolic tangent 
method a progressive wave solution was sought and the 
possible secularities were removed. The basic idea in this 
method was the inclusion of higher order dispersive 
effects through the introduction of the scaling parameter 
g, to balance the higher order nonlinearities with disper­
sion. The negligence of higher order dispersive effects in 
the classical reductive perturbation method leads to the 
imbalance between the nonlinearity and the dispersion, 
which resulted in some secular terms in the solution of 
evolution equations.

In the present work, we apply the modified reduc­
tive  perturbation method to the generalized Boussinesq 
equation and obtained various form of generalized KdV 
equations as the evolution equations. Seeking a localized 
travelling wave solutions to these evolution equations 
we  determined the scale parameters 1g  and 2g , which 
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corresponds to the correction terms to the wave speed, so 
as to remove the possible secularities. Depending on the 
sign and the values of certain parameters the resulting 
solutions are shown to be a solitary wave or a periodic 
solution. The suitability of the method is also shown by 
comparing the result with the exact travelling wave solu­
tion of the generalized Boussinesq equation.

2 �Modified reductive perturbation 
formalism for the generalized 
Boussinesq equation

The one dimensional form of the generalized Boussinesq 
equation is given by [9]

+− + −
+

11 ( ) = 0.
1

n
tt xx xxxx xxu u u u

n
(1)

where ≥ 1n  is a positive integer and u is the velocity in the 
x direction. The dispersion relation of the linearized form 
of equation (1) may be given by

ω + 2 1/2= (1 ) ,k k (2)

where ω is the angular frequency and k is the wave 
number. For our future purposes, it will be convenient to 
introduce the following stretched coordinates

ξ ε τ ε−/2 3 /2= ( ), = ,n nx t gt (3)

where ε 2/= nk  is the smallness parameter and g is a scale 
parameter to be determined from the solution of the field 
equations. We shall further assume that the field variable 
u and the scale parameter g can be expanded into pertur­
bation series in ε as

ε ξ τ ε

∞ ∞
+
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1

=0 =1
= ( , ), = 1 ,nl nl

l l
l l

u u g g (4)

where the coefficient functions ξ τ( , )lu  and the constants 
gl are to be determined from the solution of the field equa­
tions. Introducing (3) and (4) in equation (1) and setting 
the coefficients of like powers of ε equal to zero, the fol­
lowing sets of differential equations are obtained:
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where 
 
 
 
 

n

m
 is the Binomial coefficient.

2.1 �Solution of the field equations

Integrating (5) with respect to ξ one gets

τ
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where τ( )f  is an arbitrary function of its argument and 
can  be chosen to be zero. Then, the evolution equation 
becomes

τ ξ ξ
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+ −
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Here, the equation (9) is known as the generalized 
Korteweg–de Vries equation.

Inserting (9) into (6), the ε
+1( )nO  equation takes the 

following form
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Integrating the equation (10) with respect to ξ and setting 
the resulting arbitrary function equal to zero the following 
equation is obtained
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where 1 1( )S u  is defined by
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Here the equation (11) is the degenerate form of the 
generalized Korteweg–de Vries equation with a non-
homogeneous term.

Finally, to obtain the solution for ε
+2 1( )nO  equation we 

introduce the equations (9) and (11) into (7) and obtain the 
following evolution equation

τ ξ ξ
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+ −
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where 2 1 2( , )S u u  is defined by
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Again, the equation (13) is the degenerate form of the 
generalized KdV equation and it is linear in u3 and con­
tains the inhomogeneous term 2 1 2( , )S u u . Here, one should 
note that g1 and g2 remain as some unknown constants 
and they should be determined from the removal of some 
secular term that might occur in the travelling wave 
solution.

2.2 Progressive wave solution

In this sub-section we shall give a progressive wave solu­
tion to the evolution equations described in (9), (11) and 
(13). To this aim, the following type of solution is proposed

= ( ), = ( ), ( = 1,2,3),i iu U v iζ ζ α ξ τ− (15)

where α and v are two constants to be determined from the 
solution. Substituting (15) into (9) yields

2
1 1 1 1
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2 2

nvU U U Uα′ ′ ′′′− + − (16)

Here a prime denotes the differentiation of the corre­
sponding quantity with respect to ζ. By integrating (16) 
with respect to ζ and employing the localization condition 
i.e., U1 and its various order derivatives vanish as ζ →±∞, 
one gets

α
+ ′′− + −

+
1 2

1 1 1
1 1 = 0.

2( 1) 2
nvU U U

n
(17)

This nonlinear differential equation admits the solution of 
the form

ζ
2/

1 = sech ,nU a (18)

where a is the wave amplitude. Inserting (18) into equa­
tion (17) and setting the coefficients of like powers of 
sech ζ equal to zero one obtains

α
α + +

+ +

2 2
2

2
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na n v

n n n
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As is seen from equation (19), depending on the sign of a 
and the value of n, α becomes real or purely imaginary. We 
shall study the following cases separately: (i) a < 0 and n 
is an odd integer, (ii) n is an even integer.

(i) For this case setting a = −b (b > 0) and n = 2m + 1, 
where  m is a positive integer, from equation (19) one  
has
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+ + +

2 2 1 2
2

2
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(20)

and the solution for U1 becomes

ζ
+− 2/(2 1)

1 = sech .mU b (21)

The solution (21) is a typical solitary wave.
Introducing (15) into equation (11) one has
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2 1 2 2

2
2 2

1 1 1 1

1 1( )
2 2

= ( ) .
4 8( 1)

m

m

vU U U U

vg vU vU U
m

α

α

+

+

′ ′ ′′′− + −

′ ′′′ ′− +
+

(22)

Integrating (22) with respect to ζ utilizing the localiza­
tion condition and inserting the solution (20) and (21) we 
have

2
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Here, the term on the right side causes to the secularity 
in the solution. Thus, the coefficient of ζ

+2/(2 1)sech m  must 
vanish, which yields

α

+

2

1 2
= .

(2 1)
g

m
(24)

This gives the first correction term to the wave speed. 
Thus, the particular solution for U2 will be zero. Here, it 
is to be noted that, without loosing the generality of the 
problem we may take U2 = 0 and 1 1( ) = 0S U .
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To obtain the particular solution for the evolution 
equation (13) we set U2 = 0 and it reduces to

2 1 2 2
3 1 3 3 2 1 1

1 1( ) =( ) .
2 2

mvU U U U g v g v Uα
+′ ′ ′′′ ′− + − + (25)

Integrating (25) with respect ζ and utilizing the localiza­
tion condition we obtain

α
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2
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2 2

m mvU U U U bv g vg
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Here, again, in order to remove the secularity the coeffi­
cient of ζ

+2/(2 1)sech m  must vanish; which results in

α
+

+

4

2 1 2 4
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(2 1)

g vg g
m

(27)

Here, g2 is the second correction term to the wave speed 
and the particular solution for U3 may be taken to be zero. 
Thus, the solution takes the following form

ε ζ
+− 2/(2 1)= sech ,mu b (28)

with
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If one sets m = 0 (n = 1) in equations (20)–(29) the result 
will be exactly the same with that of [11].

(ii) The case of n is an even positive integer

In this case n can be expressed as n = 2m, where m is a 
positive integer. Then, from equation (19), it is seen that α 
is purely imaginary number with the expression

β
α β β

+ +

2

1/2 2
= , = , = .

[( 1)(2 1)] 2
ma mi v

m m m
(30)

Then, the progressive wave solution of the first order term 
in the perturbation expansion reduces to

π
ζ ζ β ξ τ ζ− <1/

1 = sec , = ( ), | | .
2

mU a v (31)

The solution defined on the finite domain π
ζ < 2| |  is known 

as the periodic solution.

Introducing (31) into equation (11) one obtains
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The term on the right hand side of (32) causes to the secu­
larity. Thus, the coefficient of sec1/m ζ must vanish
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4 4
g g
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The particular solution of equation (32) may be taken to be 
zero, i.e., U2 = 0. In this case, the evolution (13) takes the 
following form
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In order to remove the secularity in the solution on must 
have

4 4
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g g
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Thus, the total solution up to ε
+2 1( )nO  takes the following 

form
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2.3 �Comparison of the result with exact 
solution

In this sub-section we shall compare the result obtained 
here through the use of modified reductive perturbation 
method with the exact solution of generalized Boussinesq 
equation. For that, we shall seek a progressive wave solu­
tion to the equation (1) of the form

1/= sech , = ( ),nU a x ctζ ζ γ − (37)

provided that the following relations hold true

2 2
2 2

2
= 0, 1 4 = 0.
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Authenticated | demiray@isikun.edu.tr author's copy
Download Date | 10/20/15 10:23 AM



� H. Demiray, An Application of the Modified Reductive Perturbation Method   31

The parameter γ will be a real number when a = −d, (d > 0) 
and n is an odd integer, i.e. n = 2m + 1, the equation (38) 
becomes

2 2 1 2
2 2

2

(2 1)= , 1 4 = 0.
4( 1)(2 3) (2 1)

mm d c
m m m

γ
γ

++
− +

+ + +
(39)

In this case the solution reads

2/(2 1)= sech , = ( ).mU d x ctζ ζ γ
+− − (40)

Setting d = εb, where the constant b is the same as in (21), 
the solution becomes

2/(2 1) 2 2 1 2= sech , = .m mU bε ζ γ ε α
+ +− (41)

Here α is the same as in (23) and ζ takes the following form
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Expanding (42) into a power series of the smallness pa­
rameter ε we obtain
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This solution is exactly the same with that of given in (29).
When n is an even integer, say n = 2m, γ becomes 

purely imaginary number and the solution takes the fol­
lowing form

1/= sec , = ( ),mU f x ctζ ζ Γ − (44)

with

2 2 2
2

2
= , = 1 .

( 1)(2 3)
mm f c

m m m
Γ
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where f is the constant amplitude.
Setting f = εa, where the constant a is the same as in 

equation (36), the solution becomes

2
1/ 2

2
= sec , = ( ), = 1 .m m mU a x ct c

m
β

ε ζ ζ ε β ε− + (46)

Here β is the same as defined in (30). Expanding c into a 
power series of the smallness parameter ε one obtains

2 4
2 4

2 4
= .

2 8
m m mx t t t

m m
β β

ζ ε β ε ε
 

− − + − 
 

 (47)

This result is exactly the same with that of given in (36).

3 Concluding remarks
The modified reductive method is applied to the general­
ized Boussinesq equation (1) to determine the higher order 
correction terms by assuming that the solution is free from 
secular terms.
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