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A NEW CLASS OF NON NORMAL OPERATORS

ON HILBERT SPACES

AISSA NASLI BAKIR1,§

Abstract. We introduce the class of (M,k)-quasi-parahyponormal operators on a sep-
arable Hilbert space as an extension of the classes of parahyponormal and k-quasi-
parahyponormal operators given in [13]. The matrix representation of an (M,k)-quasi-
parahyponormal operator, the finite ascent, the SVEP and other several properties of
such class of operators are also presented.
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1. Introduction

Let B(H) denote the Banach algebra of bounded linear operators on an infinite dimen-
sional separable complex Hilbert space H. For an operator T ∈ B(H), ker(T ) and ran(T )
denote respectively, the null space and the range of T. Recall that T ∈ B(H) is said to be
paranormal if T ?2T 2 − 2λT ?T + λ2 ≥ 0 for all λ > 0, and k-paranormal for some integer
k ≥ 2, if ‖Tx‖k ≤ ‖T kx‖ for all unit vector x in H. An operator T is said to be quasi-class

A, if T ?|T |2T ≤ T ?|T 2|T, where |T | = (T ?T )
1
2 is the module of T. Also, T is called k-quasi-

paranormal if T ∗k(T ?2T 2 − 2λT ?T + λ2)T k ≥ 0. This class is introduced by S. Mecheri
in [10], and it is a generalization of the class of quasi-paranormal operators, and it con-
tains the class of quasi-class A operators, see [9]. It is also shown in [4] that quasi-class
A operators satisfy Weyl’s Theorem. Authors in [3, 13] and [16] introduced the class of
parahyponormal and M -parahyponormal operators, and gave several properties for such
operators. In the present paper, we introduce a new class of (M,k)-quasi-parahyponormal
operators as a generalization of the class of k-quasi-parahyponormal operators. We give
the matrix representation, the ascent and the SVEP. Different related properties are also
proved.
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2. Class of k-quasi-parahyponormal operators

Definition 2.1. [13][16] An operator T ∈ B(H) is said to be parahyponormal if

(TT ?)2 − 2λT ?T + λ2 ≥ 0

for all λ > 0.

Definition 2.2. [13] An operator T ∈ B(H) is said to be k-quasi-parahyponormal for
some integer k if

T ?k((TT ?)2 − 2λT ?T + λ2)T k ≥ 0

for all λ > 0.

This definition is equivalent to

‖T k+1x‖2 ≤ ‖T kx‖‖TT ?T kx‖
for all x ∈ H. In this section, we give some complement properties for this class of opera-
tors.

Theorem 2.1. Let S be the bilateral weighted shift defined on the usual Hilbert space `2
by Sen = αnen+1, where (en)n is the standard basis, and (αn)n is a decreasing complex
sequence. Then, S is k-quasi-parahyponormal if and only if

|αn+k| ≤ |αn+k−1|2

for all n.

Proof. We have

‖Sk+1en‖2 ≤ ‖Sken‖‖SS?Sken‖
Hence, for all n,

k∏
i=0

|αn+i|2 ≤ |αn+k−1|2
k−1∏
i=0

|αn+i|2

Thus,

|αn+k| ≤ |αn+k−1|2

for all n. �

Theorem 2.2. A unitarily equivalent operator to a k-quasi-parahyponormal operator is
also k-quasi-parahyponormal.

Proof. Let T be a k-quasi-parahyponormal operator, and let A ∈ B(H) be unitarily equiv-
alent to T. Then, there exists a unitary operator U on H satisfying A = U?TU. Hence,

A?k((AA?)2 − 2λA?A+ λ2)Ak =

= U?T ?kU(U?(TT ?)2U − 2λU?T ?TU + λ2)U?T kU

= U?T ?k(TT ?)2T kU − 2λU?T ?kT ?TT kU + λ2U?T ?kT kU

= U?T ?k((TT ?)2 − 2λT ?T + λ2)T kU ≥ 0

Thus, A is k-quasi-parahyponormal. �

Theorem 2.3. Let T ∈ B(H) be a k-quasi-parahyponormal operator, and let S ∈ B(H)
be an isometry. If T commutes with S, then TS is k-quasi-parahyponormal.
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Proof. Since T is k-quasi-parahyponormal,

(TS)∗k((TS)(TS)?)2− 2λ(TS)?TS + λ2)(TS)k =

= T ?kS?k
[
STT ?TT ?S? − 2λT ?T + λ2

]
SkT k

= T ?kS?k−1 [S?S(TT ?)2S?S − 2λS?T ?TS + λ2S?S
]
Sk−1T k

= T ?kS?k−1 [(TT ?)2 − 2λT ?T + λ2
]
Sk−1T k

= S?k−1T ?k
[
(TT ?)2 − 2λT ?T + λ2

]
T kSk−1 ≥ 0

�

Let T ∈ B(H). Denote by R(σ(T )) for the set of all rational analytic functions on the
spectrum σ(T ) of T.

Definition 2.3. [8] The operator T is said to be n-multicyclic, if there exist n (generating)
vectors x1, x2, .., xn in H such that∨

{g(T )xi , 1 ≤ i ≤ n , g ∈ R(σ(T ))} = H

We have then

Theorem 2.4. If T is an n-multicyclic k-quasi-parahyponormal operator, then its restric-

tion on ran(T k) is also n-multicyclic.

Proof. Put

T =

(
T1 T2
0 T3

)
on the decomposition H = ran(T k)⊕ ker(T ?k). Since σ(T1) ⊂ σ(T ) by [13, Theorem 2.3],
R(σ(T1)) ⊂ R(σ(T )). The operator T is n-multicyclic. Then, there exist n generating
vectors x1, x2, .., xn ∈ H for which∨

{g(T )xi, 1 ≤ i ≤ n, g ∈ R(σ(T ))} = H

Put yi = T kxi, 1 ≤ i ≤ n. Hence,∨
{g(T1)yi, 1 ≤ i ≤ n, g ∈ R(σ(T ))} =

∨{
g(T1)T

kxi, 1 ≤ i ≤ n, g ∈ R(σ(T ))
}

=
∨{

g(T )T kxi, 1 ≤ i ≤ n, g ∈ R(σ(T ))
}

=
∨{

T kg(T )xi, 1 ≤ i ≤ n, g ∈ R(σ(T ))
}

= ran(T k)

But ∨
{g(T1)yi, 1 ≤ i ≤ n, g ∈ R(σ(T ))} ⊂

∨
{g(T1)yi, 1 ≤ i ≤ n, g ∈ R(σ(T1))}

Thus,

ran(T k) ⊂
∨
{g(T1)yi, 1 ≤ i ≤ n, g ∈ R(σ(T1))}

Therefore, {yi}ni=1 are n-generating vectors of T1, and T1 is n-muticyclic. �
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3. Class of (M,k)-quasi-parahyponormal operators

Important properties of (M,k)-quasi-parahyponormal operators are shown in this sec-
tion. In particular, the matrix representation, the finite ascent and the SVEP of (M,k)-
quasi-parahyponormal operators are presented.

Definition 3.1. [12][13] An operator T ∈ B(H) is said to be M -parahyponormal if there
exists M > 0, satisfying

M(TT ?)2 − 2λT ?T + λ2 ≥ 0

Definition 3.2. An operator T ∈ B(H) is said to be (M,k)-quasi-parahyponormal for
some integer k, if there exists M > 0, satisfying

T ?k(M(TT ?)2 − 2λT ?T + λ2)T k ≥ 0

This definition is clearly equivalent to

‖T k+1x‖2 ≤
√
M‖T kx‖‖TT ?T kx‖ (1)

for all x ∈ H.
Inequality (1) shows that this class of operators is nested with respect to M, i.e., an

(M1, k)-quasi-parahyponormal operator is (M2, k)-quasi-parahyponormal for 0 < M1 <
M2.

Example 3.1. Let’s consider the unilateral weighted right shift on `2(N) defined by Ten =
αnen+1, where α1 = α3 = 1

2 , α2 = 1
4 , αn = 1, n ≥ 4, and (en) is the satandard basis of

`2(N). By a direct computation, we can show that T is M -quasi-parahyponormal. However,

‖Te1‖2 =
1

4
>
√
M‖e1‖‖TT ?e1‖ = 0

which contradicts the inequality (1). Hence, T is not M -parahyponormal.

Example (3.1) shows that the classes of (M,k)-quasi-parahyponormal operators do not
coincide.

Proposition 3.1. The class of (M,k)-quasi-parahyponormal operators is

1. Closed for the multiplication by scalars.
2. Not convex.
3. Not translation invariant.

Proof. 1. Let T be an (M,k)-quasi-parahyponormal operator, and let α be any complex
scalar. For all x ∈ H we have

‖(αT )k+1x‖2 = |α|2k+2‖T k+1x‖2 ≤ |α|2k+2
√
M‖T kx‖‖TT ?T kx‖

=
√
M‖(αT )kx‖‖(αT )(αT )?(αT )kx‖

Then, αT is also (M,k)-quasi-parahyponormal.

2. On the other hand, operators T =

(
1 1
0 1

)
and S=

(
−1 0
0 −1

)
areM -parahyponormal

for M ≥ 1
4 , in particular M = 2. However, the operator A = 1

2(T + S) is not 2-

parahyponormal. Indeed, for x = (0, 1) ∈ C2, we get

‖A(0, 1)‖2 =
1

4
>
√

2‖(0, 1)‖‖AA?(0, 1)‖ = 0

This contradicts the inequality (1). Hence, the above class is not convex.
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3. For T =

(
1 1
0 1

)
, α = 1, β = −1, and x = (0, 1), the operator

R = αT + β = T − I =

(
0 1
0 0

)
verifies

‖R(0, 1)‖2 = 1 >
√

2‖(0, 1)‖‖RR?(0, 1)‖ = 0

Hence, R is not 2-parahyponormal. Thus, the considered class is not translation invariant.
�

With the same arguments of Theorems 2.2 and 2.3, we can state the following result

Theorem 3.1. 1. Unitarily equivalent operators to an (M,k)-quasi-parahyponormal op-
erator are also (M,k)-quasi-parahyponormal.
2. The product TS is (M,k)-quasi-parahyponormal whenever T is (M,k)-quasi-parahyponormal
and S is an isometry that commutes with T.

Remark 3.1. Assertion (1) of Theorem 3.1 is in general false if the operators are similar
to the (M,k)-quasi-parahyponormal operator and not unitarily equivalent.
Indeed, the bilateral weighted shift T defined on the Hilbert space `2(Z) by

Ten =

{
en+1, n ≤ 1 or n ≥ 3√

2e3, n = 2

is M -parahyponormal for M ≥ 8, by inequality (1). In particuliar it is 8-parahyponormal,
and the operator

Uen =

{
en+1, n ≤ 1 or n ≥ 3
1
3e3, n = 2

is invertible and not unitary. Nonetheless, the operator B = U−1TU is not 8-parahyponormal
since

Ben =


en+1, n ≤ 0 or n ≥ 3

3
√

2e2, n = 1
1

3
e3, n = 2

and

‖Be1‖2 = 18 >
√

8‖e1‖‖BB?e1‖ =
√

8

Theorem 3.2. Let T ∈ B(H) be an (M,k)-quasi-parahyponormal operator. If ran(T k)
is dense in H, then T is M -parahyponormal.

Proof. Let x ∈ H. By the hypothesis, there exists a sequence (xn)n in H such that x =
lim
n→∞

T kxn. Since T is (M,k)-quasi-parahyponormal,

√
M‖x‖‖TT ?x‖ =

√
M‖ lim

n→∞
(‖T kxn‖‖TT ?T kxn‖)

= lim
n→∞

√
M‖T kxn‖‖TT ?T kxn‖

≥ lim
n→∞

‖T k+1xn‖2

≥ ‖ lim
n→∞

T k+1xn‖2

= ‖Tx‖2

by the continuity of the inner product. Hence, T is M -parahyponormal. �
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Corollary 3.1. Let T be a nonzero (M,k)-quasi-parahyponormal operator but not M -
parahyponormal. Then, T admits at least a non trivial closed invariant subspace.

Proof. Suppose that T has no non trivial closed invariant subspace. Since T 6= 0, ker(T ) 6=
H and ran(T ) 6= {0} are non trivial closed invariant subspaces for T. Thus, we must

have ker(T ) = {0} and ran(T ) = H. By Theorem 3.2, T is M -parahyponormal, which
contradicts the hypothesis. �

Note that the existence of nontrivial closed invariant subspaces for operators on Hilbert
spaces remains until now, one of the hot open problems in operator theory, see [6, 11] for
further details.

Theorem 3.3. Let T ∈ B(H) be an (M,k)-quasi-parahyponormal operator. If ran(T k) 6=
H, then T admits the matrix representation

T =

(
T1 T2
0 T3

)
on H = ran(T k) ⊕ ker(T ?k). Furthermore, T1 is M -parahyponormal, T3 is nilpotent of
order k, and σ(T ) = σ(T1) ∪ {0} .

Proof. Since T is (M,k)-quasi-parahyponormal,

〈T ?k(M(TT ?)2 − 2λT ?T + λ2)T ky, y〉 ≥ 0

for all y ∈ H. Hence,

〈(M(TT ?)2 − 2λT ?T + λ2)T ky, T ky〉 ≥ 0

Thus, for all x ∈ ran(T k),〈
(M(TT ?)2 − 2λT ?T + λ2)x, x

〉
=
〈
(M(T1T

?
1 )2 − 2λT ?

1 T1 + λ2)x, x
〉
≥ 0

Consequently, T1 is M -parahyponormal. Let now P be the orthogonal projection on

ran(T k). For all x = x1 + x2, y = y1 + y2 ∈ H, we have〈
T k
3 x2, y2

〉
=
〈
T k(I − P )x, (I − P )y

〉
=
〈

(I − P )x, T ∗k(I − P )y
〉

= 0

Thus, T k
3 = 0. Furthermore, σ(T1) ∪ σ(T3) = σ(T ) ∪ Ω, where Ω is the union of holes in

σ(T ) which happen to be a subset of σ(T1)∩ σ(T3) by [7, Corollary 7], with σ(T1)∩ σ(T3)
has no interior point, and T3 is nilpotent. Thus, σ(T ) = σ(T1) ∪ {0} . �

Corollary 3.2. Let T ∈ B(H) be (M,k)-quasi-parahyponormal. If the restriction T1 =

T
∣∣∣ran(T k) is invertible, then T is similar to the sum of an M -parahyponormal operator

and a nilpotent operator.

Proof. Let

T =

(
T1 T2
0 T3

)
on H = ran(T k)⊕ ker(T ∗k)

Then, T1 is M -parahyponormal by Theorem 3.3. Since T1 is invertible, 0 /∈ σ(T ). Hence,
σ(T1) ∩ σ(T3) = ∅. By Rosenblum’s Corollary [14], [15], there exists S ∈ B(H) for which
T1S − ST3 = T2. Thus,

T =

(
I −S
0 I

)(
T1 0
0 T3

)(
I S
0 I

)
=

(
I S
0 I

)−1
(T1 ⊕ T3)

(
I S
0 I

)
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�

Definition 3.3. [1] An operator T in B(H) is said to have the Single Valued Extension
Property, briefly SVEP, at a complex number α, if for each open neighborhood V of α, the
unique analytic function f : V → H satisfying

(T − λ)f(λ) = 0

for all λ ∈ V is f ≡ 0.
Furthermore, T is said to have SVEP if T has SVEP at every complex number.

Definition 3.4. [1] For T ∈ B(H), the smallest integer m such that ker(Tm) = ker(Tm+1)
is said to be the ascent of T, and is denoted by α(T ). If no such integer exists, we shall
write α(T ) =∞.

Definition 3.5. [1] The smallest integer m such that ran(Tm) = ran(Tm+1) is said to be
the descent of T, and is denoted by δ(T ). If no such integer exists, we set δ(T ) =∞.

According to [1], if α(T ) and δ(T ) are both finite, then α(T ) = δ(T ). For more details on
these notions, reader can see [1, 2] and [5]. Now, we’ll show that the considered operators
have finite ascent and SVEP.

Theorem 3.4. An (M,k)-quasi-parahyponormal operator T ∈ B(H) has finite ascent.

Proof. Let x ∈ ker(T k+1). Since T is (M,k)-quasi-parahyponormal operator, there exists
M > 0 such that

T ?k(M(TT ?)2 − 2λT ?T + λ2)T k ≥ 0

Hence,

〈T ?k(M(TT ?)2T kx, x〉 − 2λ〈T ?kT ?TT kx, x〉+ λ2〈T ?kT kx, x〉 ≥ 0

for all λ > 0. Thus,

M‖TT ?T kx‖2 + λ2‖T kx‖2 ≥ 0

for all λ > 0. Therefore, T kx = 0, which implies that x ∈ ker(T k). This finishes the proof
since clearly ker(T k) ⊂ ker(T k+1). �

Corollary 3.3. (M,k)-quasi-parahyponormal operators have SVEP at 0.

Proof. Immediate consequence of Theorem 3.4 and [1, Theorem 3.8]. �

Definition 3.6. [1] For an operator T ∈ B(H), the local resolvent set of T at a vector
x ∈ H, denoted by ρT (x), is defined to consist of complex elements z0 such that there
exists an analytic function f(z) defined in a neighborhood of z0, with values in H, for
which (T − z)f(z) = x.

Definition 3.7. [1] The set σT (x) = C \ ρT (x) is called the local spectrum of T at x.

We’ve then the following important result

Theorem 3.5. Let

T =

(
T1 T2
0 T3

)
be an (M,k)-quasi-parahyponormal operator with respect to the decomposition H = ran(T k)⊕
ker(T ?k). Then, for all x = x1 + x2 ∈ H :

(a) σT3(x2) ⊂ σT (x1 + x2).
(b) σT1(x1) = σT (x1 + 0).
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Proof. a. Let z0 ∈ ρT (x1+x2). Then, there exists a neighborhood U of z0 and an analytic
function f(z) defined on U, with values in H, for which

(T − z)f(z) = x, z ∈ U (2)

Let f = f1 + f2 where f1, f2 are in the spaces O(U, ran(T k)), O(U, ker(T ?k)) respectively,
consisting of analytic functions on U with values in H, with respect to the uniform topology
[1]. Equality (2) can then be written(

T1 − z T2
0 T3 − z

)(
f1(z)
f2(z)

)
=

(
x1
x2

)
Then (T3 − z)f2(z) = x2, z ∈ U. Hence, z0 ∈ ρT3(x2). Thus, (a) holds by passing to the
complement.

b. If z1 ∈ ρT (x1+0), then there exists a neighborhood V1 of z1 and an analytic function
g defined on V1 with values in H verifying

(T − z)f(z) = x1 + 0, z ∈ V1 (3)

Let g = g1 + g2, where g1 ∈ O(V1, ran(T k)), g2 ∈ O(V1, ker(T
?k)) are as in (a). From

equation (3) we obtain

(T1 − z)g1(z) + T2g2(z) = x1 and (T3 − z)g2(z) = 0, z ∈ V1
Since T3 is nilpotent by Theorem 3.3, T3 has SVEP by [1]. Thus, g2(z) = 0. Consequently,
(T1 − z)g1(z) = x1. Therefore, z1 ∈ ρT1(x1), and then ρT (x1 + 0) ⊂ ρT1(x1). Thus,
σT1(x1) ⊂ σT (x1 + 0).

Now, if z2 ∈ ρT1(x1), then, there exists a neighborhood V2 of z2 and an analytic function
h from V2 onto H, such that (T1 − z)h(z) = x1 for all z ∈ V2. Hence,

(T − z)(h(z) + 0) = (T1 − z)h(z) = x1 = x1 + 0

Thus, z2 ∈ ρT (x1 + 0). �

4. Conclusion

We’ve shown certain fundamental properties of the given class of operators in the present
article. The ascent, the matrix representation, the restriction on invariant subspaces and
the n-multicyclicity as well as other considerable properties are established.
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