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Abstract: An arbitrary amount of entanglement shared among nodes of a quantum network might be
nondistillable if the nodes lack the information on the entangled Bell pairs they share. Making such a
system distillable, which is called the superactivation of bound entanglement (BE), was shown to be
possible through systematic quantum teleportation between the nodes, requiring the implementation
of controlled-gates scaling with the number of nodes. In this work, we show in two scenarios that the
superactivation of BE is possible if nodes implement the proposed local quantum Zeno strategies
based on only single qubit rotations and simple threshold measurements. In the first scenario we
consider, we obtain a two-qubit distillable entanglement system as in the original superactivation
proposal. In the second scenario, we show that superactivation can be achieved among the entire
network of eight qubits in five nodes. In addition to obtaining all-particle distillable entanglement, the
overall entanglement of the system in terms of the sum of bipartite cuts is increased. We also design a
general algorithm with variable greediness for optimizing the QZD evolution tasks. Implementing
our algorithm for the second scenario, we show that a significant improvement can be obtained by
driving the initial BE system into a maximally entangled state. We believe our work contributes to
quantum technologies from both practical and fundamental perspectives bridging nonlocality, bound
entanglement and the quantum Zeno dynamics among a quantum network.

Keywords: quantum networks; quantum communication; quantum entanglement; bound entanglement;
superactivation; quantum Zeno dynamics; frequent measurements; quantum algorithms; optimized
evolution

1. Introduction

Bound entanglement (BE) is one of the most interesting features of quantum mechan-
ics [1]. Although a BE state is inseparable from the prior entanglement required to form it,
no entanglement can be distilled from it [2–4]. Therefore, inseparable quantum systems that
cannot be written in product form can be categorized as either free (FE) or bound entangled
depending on whether finite entanglement can be distilled or not, yielding negative or
positive partial transpose, respectively. BE can exist in two-qutrit systems as the smallest
dimension, and in qubit systems, the minimum number of qubits to observe BE is four [2].

For qubits interacting directly or indirectly through ancillary qubits, strategies were
designed to liberate BE [5–7]. Limited to local operations and classical communications
(LOCC), though, one way to benefit from BE systems is to find particular tasks impossible
to realize with separable systems yet not requiring free entanglement, such as powering up
quantum heat engines [8], distilling private keys for QKD [9], converting pure states shared
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between distant parties [10], and quantum metrology [11]. The other way is to activate [12]
or superactivate [13] BE. In [12], Horodecki et al. considered two spatially separated parties
sharing a bipartite mixed FE system and many copies of a bipartite BE system, and all the
particles are qutrits. In an iterative fashion, each party applies a two-qutrit operation on the
particle of the FE state and the particle of one of the BE states. Then they measure the latter
particle on a z-basis and communicate the results. If the results match, the entanglement
of the FE state is increased in each iteration. Otherwise, it is not decreased. In the next
iteration, a new BE state is used.

As will be detailed below, Shor et al. considered two four-qubit BE states shared
among five nodes of a quantum network [13]. By teleporting the unknown state of particles,
nodes can obtain a two-qubit distillable FE state, which is called the superactivation of BE.

In this work, we seek the possibility of superactivating bound entanglement via quan-
tum Zeno dynamics (QZD). Beyond a practical point of view, by removing the controlled
gates, our work contributes to the fundamentals of quantum entanglement and measure-
ments. What is more, following the distillation of two-qubit entanglement as in the original
superactivation work [13], our first major contribution is to show how all the qubits in the
quantum network among five nodes can be made free entangled by implementing a simple
QZD procedure. Our second major contribution is the design of a general algorithm for
optimizing the QZD evolution.

This paper is organized as follows. First, we introduce the superactivation of BE by
Shor et al. [13] and review the basics of QZD. In Section 2, we present our QZD procedure
and how to confirm the superactivation, and we present our optimization algorithm. In
Section 3, we present two scenarios for the superactivation of BE and apply the algorithm to
the second scenario. We discuss various aspects of our scenarios, including the drawbacks
and future works.

1.1. Superactivation of Bound Entanglement

The four two-qubit maximally entangled Bell states are given as [1]

|Φ±〉 = |00〉 ± |11〉√
2

, |Ψ±〉 = |01〉 ± |10〉√
2

. (1)

For simplicity, we consider the following assignment |Ψ1〉 = |Φ+〉, |Ψ2〉 = |Φ−〉,
|Ψ3〉 = |Ψ+〉, and |Ψ4〉 = |Ψ−〉. In their work on the family of bound entangled states that
can be activated, Dür and Cirac presented a four-party state that Alice (A) and Bob (B) are
given one of the four Bell states, but they do not know which one [4]. Charlie (C) and Dave
(D) are also given the same state, and they do not know which one either. This state can be
written as

ρABCD =
1
4

3

∑
i=0
|Ψi〉AB〈Ψi| ⊗ |Ψi〉CD〈Ψi|. (2)

Because neither pair knows which state they possess, they have a maximally mixed
state that they cannot use to realize any quantum task such as teleportation. If Alice and
Bob can bring their qubits together, due to the orthogonality of Bell states, they can perform
a Bell measurement to find out which Bell state they are given. Receiving the measurement
result over a classical channel, Charlie and Dave learn which Bell state they have. Therefore,
their state is now a maximally entangled Bell state. However, in accordance with the
notion of quantum networks, if parties remain spatially separated, no entanglement can be
distilled from ρABCD [4]. Because this state is entangled but nondistillable, it is a BE state.

Considering two such BE states shared among five parties, Shor et al. showed that
bound entanglement can be superactivated [13]. As illustrated in Figure 1a, the first state
is shared among Alice and Charlie and Bob and Dave, while the second state is shared
among Alice and Bob and Charlie and Emma (E). Therefore, parties Alice, Bob, and Charlie
each have a system of two qubits, while parties Dave and Emma each have a system of one
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qubit. Denoting the first system as ρA1C1B1D and the second system as ρA2B2C2E, the joint
system is

ρinit := ρA1C1B1D ⊗ ρA2B2C2E, (3)

which we rewrite for a more intuitive representation considering the qubits held by each
party as

ρ := ρA1 A2B1B2C1C2DE. (4)

Figure 1. Superactivation of bound entanglement (BE) introduced by Shor et al. [13]. (a) Alice and
Charlie are given a Bell state of qubits A1 and C1, but they do not know which Bell state it is. The
same state is given to Bob and Dave (qubits B1 and D), and they do not know which state is given,
too. In the same way, pairs Alice and Bob, and Charlie and Emma, are each given an unknown
but the same Bell states of qubits A2–B2 and C2–E. Both four-qubit systems are BE. (b) Following a
systematic teleportation procedure, qubits D and E are left in a Bell state.

Because four-qubit bound entangled states are separable, no entanglement can be
distilled from this eight-qubit system ρ, i.e., ρ is also bound entanglement. However, it was
shown in [13] that it can be superactivated by the following simple teleportation procedure.

(i) Alice teleports A2 to Charlie by using the A1C1 pair.
(ii) Bob teleports B2 to Dave by using the B1D1 pair.
(iii) Charlie performs a Bell measurement on the two qubits he now possesses, and

communicates the result to Dave and Eve.

Because the A1C1 and B1D1 states are unknown, each teleportation process adds a
factor of a Pauli operator to the teleported qubit. However, these factors cancel each other,
leaving a known EPR pair between Dave and Emma, as shown in Figure 1b. In summary,
a two-qubit maximally entangled Bell state can be distilled from an eight-qubit bound
entangled state distributed to a quantum network of five nodes through a teleportation
mechanism. This process is recognized as the superactivation of bound entanglement,
and it was experimentally demonstrated by Jia et al. in a continuous-variable optical
system [14]. Four-qubit bound entangled Smolin state, and its entanglement unlocking
were also experimentally demonstrated [15].

1.2. Quantum Zeno Dynamics

Let Ĥ be the Hamiltonian acting on a quantum system prepared initially in the |1〉
state. Then the probability of finding the system in the same state at time t is [16]

p(t) =
∣∣∣∣〈e
∣∣∣∣exp

(
− i

h̄
Ĥt
)∣∣∣∣e〉∣∣∣∣2. (5)
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If the system is subjected to n projective measurements with sufficiently short intervals
τ, the probability of finding it in the initial state pn(τ) ≈ exp[−(〈V2〉τ/h̄2)t] increases with
decreasing τ, and approaches unity for τ → 0 [17]. This shows that carefully designed
frequent measurements can slow down the evolution of a quantum system, which is known
as the quantum Zeno effect (QZE).

QZE is promising for protecting a quantum system by slowing down its interactions
with its environment [18–22]. Frequent measurements can also speed up the interaction of a
quantum system and its environment, which is known as the anti-Zeno effect [17]. The anti-
Zeno effect has been recently attracting attention to improve our understanding of the decay
of quantum systems [23–26] and has been finding interesting applications, such as enabling
advantages in quantum heat engines [27]. QZE is also studied in nonlinear systems [28,29]
and is considered to be playing an important role in understanding quantum tunneling [30]
and the transition from the quantum to the classical world [31].

As will be detailed in Section 2, let us consider an iteration step consisting of a set of
quantum operations implementing ρ → ρr and projective measurements implementing
ρr → ρrm. Through a sufficient number of iterations, the system can be driven to a target
state that is known as the quantum Zeno dynamics (QZD), and it has been finding interest-
ing applications in quantum information. A key study in the field by Wang et al. showed
that entanglement could be created between two initially separated qubits requiring no two-
qubit controlled-gates but only single-qubit gates and simple threshold measurements [32].
Ozaydin et al. recently showed that BE activation of Horodecki et al. [12] can be realized
via QZD without requiring difficult to implement three-level controlled gates [33]. Bayrakci
and Ozaydin have designed a QZD-based entanglement swapping protocol and extended
it to realize quantum repeaters for long-distance quantum communications [34].

2. Materials and Methods
2.1. Rotate–Measure Operation for QZD

We consider an iterative two-qubit local QZD procedure. First, the same procedure
is considered for the two-qubit systems A1 A2, B1B2, and C1C2, for the spatially separated
parties Alice, Bob, and Charlie, respectively, for simplicity. Later, an optimization algorithm
will be proposed and tested. Each iteration consists of single-qubit rotations and simple
threshold measurements. Each party applies the following single-qubit rotation operator
on his/her qubits separately.

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (6)

Then, the following two-qubit threshold measurement is performed

J1 = |i〉〈i| ⊗ |j〉〈j|, J0 = I⊗2 − J1. (7)

Here, i, j ∈ 0, 1 and I is the identity operator for a single-qubit. Note that this is a
simple measurement that does not require Bell measurement, the implementation of two-
qubit controlled gates, or synchronization [32]. Following the threshold measurement, the
system is either collapsed to J1 subspace with probability ε or projected to the J0 subspace
with probability 1− ε. With a careful design of parameters, ε can be made very small
throughout the iterative process. This can be considered the inhibition of the J1 subspace,
and through single-qubit rotations, the system can be driven to a target state through the
evolution in the J0 subspace.

Three separated parties, Alice, Bob, and Charlie, each apply the rotate-measure opera-
tion in each iteration, and qubits D and E are untouched. The state of the eight-qubit system
ρ = ρA1 A2B1B2C1C2DE evolves through the rotate-measure procedure as ρ→ ρr → ρrm where

ρr = [R(θ)⊗2 ⊗ R(θ)⊗2 ⊗ R(θ)⊗2 ⊗ I ⊗ I] ρ [R(θ)⊗2 ⊗ R(θ)⊗2 ⊗ R(θ)⊗2 ⊗ I ⊗ I]† (8)
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and

ρrm =
(J0 ⊗ J0 ⊗ J0 ⊗ I ⊗ I) ρr (J0 ⊗ J0 ⊗ J0 ⊗ I ⊗ I)†

Tr[(J0 ⊗ J0 ⊗ J0 ⊗ I ⊗ I) ρr (J0 ⊗ J0 ⊗ J0 ⊗ I ⊗ I)†]
. (9)

Note that the overall rotation operators and threshold measurements with identity
operators on the system of eight qubits can be written in a more compact way as R(θ)⊗6 ⊗
I⊗2 and J⊗3

0 ⊗ I⊗2, respectively, though from the perspective of a quantum network with
spatially separated nodes possessing two-qubit systems, we find it more intuitive to write
in the form of Equations (8) and (9).

Similar to the QZD procedure in [32–34], as the QZD iterations start, the initially
separated two-qubit systems become entangled. Because the initially separated qubits
held by parties (nodes of the quantum network) Alice, Bob, and Charlie are entangled to
qubits in other nodes, as shown in Figure 1a, implementing the local QZD on their initially
separable qubits and entangling them, all the eight qubits in the network are entangled
without performing teleportation or Bell measurements.

In the first scenario for distilling a two-qubit entangled state shared by Dave and
Emma, after a sufficient number of iterations, Alice, Bob, and Charlie measure their qubits
on a z-basis, and communicate the results with Dave and Emma.

2.2. Logarithmic Negativity of Bipartitions as KPI

To quantify the bipartite entanglement, we use the standard logarithmic negativity
measure as the key performance indicator (KPI), which is an entanglement monotone and
normalized to yield 0 for separable (or PPT) states, and 1 for maximally entangled Bell
states. The negativity of a bipartite state ρ is calculated via the absolute sum of its negative
eigenvalues µi of its partial transpose ρΓA with respect to subsystem A, or equivalently
as [35,36]

N(ρ) ≡ ||ρ
ΓA ||1 − 1

2
(10)

where ||X||1 is the trace norm of operator X [37]. Logarithmic negativity is calculated based
on negativity as [38]

LN(ρ) = log[1 + 2N(ρ)]. (11)

In our second scenario, which is the major contribution of the present work, we show
that by implementing the QZD with a sufficient number of iterations, all the eight qubits in
five nodes of the network are entangled without requiring quantum state teleportation, Bell
measurements, or even the z-basis measurements as in the final step of the first scenario.

Witnessing all-particle genuine entanglement requires inseparability (or non-zero
entanglement) among all bipartite cuts. Inseparability in all bipartite cuts is also stated
in [13] as a necessary condition for entanglement distillation between E and D. For the
eight-qubit system, we take the following seven bipartite cuts ρi:8−i with i = 1, 2, . . . , 7. Due
to the existence of PPT in systems beyond two-qutrits or four-qubits, inseparability does
not imply distillable entanglement or a non-zero entanglement measure value. However, a
non-zero entanglement value such as LN(ρ) > 0 implies inseparability.

Bipartite cuts assume that qubits in each cut are in one site so that global operations
such as Bell measurements are applicable in each cut. Hence, considering the ρ1:7 cut, for
example, the result of a Bell measurement on C2 and E qubits can be communicated to
Alice and Bob so that entanglement between A2 and B2 qubits can be made distillable,
yielding LN(ρ1:7) = 1. Therefore, while the logarithmic negativity of bipartite cuts of ρini

are {1, 0, 1, 0, 1, 0, 1}, after rewriting the state, the logarithmic negativity of bipartite cuts of
ρ, as illustrated in Figure 2, yield {1, 2, 1, 0, 1, 2, 1}. Because the entanglement between A1
and C1, also between B1 and D, illustrated with orange lines in Figure 2d, is unknown to the
parties, the bipartite system of A1 A2B1B2 and C1C2DE is separable, yielding LN(ρ4:4) = 0.
Therefore, due to this separability, considering the five nodes spatially separated, no
entanglement can be distilled from ρ, implying bound entanglement.
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Figure 2. Bipartite cuts ρi:8−i with i = 1, 2, . . . , 7 of the eight-qubit system ρ are presented from (a–g).
Cuts are denoted with dashed red lines. The ρ4:4 cut shown in (d) is separable. Please see text for details.

After presenting the results of Scenario 1 in Figures 3 and 4, our aim will be to show
that it is possible to make all the bipartite cuts of the eight qubits in five nodes inseparable
through a simple QZD procedure, illustrated with the transition of a network’s state from
Figure 5a,b. Note that the blue lines connecting qubits in Figure 5b do not imply a cyclic
entanglement but rather show that all the qubits in the system are entangled.

ρ
DE

1 ρ
DE

40 ρ
DE

3345

Figure 3. Bar plots of density matrices ρ1
DE, ρ40

DE, and ρ3345
DE for visualizing how distillable entangle-

ment is obtained between D and E throughout QZD.
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Figure 4. Logarithmic negativity of ρDE after the implementation of quantum Zeno dynamics with n
iterations. The numerical simulation yields LN(ρn

DE) ≈ 0.8 for n = 3345, showing the superactivation
of bound entanglement of the initial ρA1 A2B1B2C1C2DE state following the scenario in Figure 1 but
without requiring quantum state teleportations or Bell measurements.

Figure 5. Superactivation of BE in (a) by entangling all the qubits via QZD results in a genuine
eight-qubit FE state in (b).

2.3. Proposed Algorithm for Optimizing the QZD Evolution

In the raw QZD evolution, the same threshold operators are considered for all the
qubits in all the iterations, potentially screening the achievable performance of our contri-
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bution. To overcome this problem, we propose an algorithm with a variable greediness
level for optimizing the evolution throughout QZD. Unlike the raw evolution with a single
threshold operator corresponding to a fixed inhibited subspace, our algorithm starts with
applying all the available threshold operators in parallel for t iterations. In other words,
the QZD evolution takes place in all the possible 64 uninhibited subspaces in parallel
universes for t iterations. Next, the best result based on the chosen KPI is evaluated, and
the corresponding ρrm system is set as the new starting point for the next evolution block
of t iterations. Repeating this step k times, the overall n = kt iterations are completed.

Without loss of generalization, the algorithm is illustrated in Figure 6 for the present
problem as an example where QZD is performed on six qubits, implying 64 available thresh-
old operators in each iteration running from J1

1 = (|0〉〈0|)⊗6 and J2
1 = (|0〉〈0|)⊗5 ⊗ |1〉〈1|,

to J64
1 = (|1〉〈1|)⊗6. Here, note that the Ji

0 = I⊗6 − Ji
1 operator is applied in each rotate–

measure step, and in the presentation, we omit the identity operators for the untouched
two qubits, D and E, for simplicity.

Figure 6. Algorithm for optimizing the QZD evolution. For t iterations, the evolution takes place
in all the possible uninhibited subspaces with the threshold operators Ji

0 = I⊗6 − Ji
1 as the basic

evolution block. Then the best ρrm is chosen and set as the new starting point for the next block
of t operations. Repeating the block of t operations for k times, the overall n = kt operations are
completed. Parameter t determines the level of the greediness of the algorithm. Please see the text for
details.

Parameter t determines the level of greediness where t = 1 corresponds to the greediest
case such that the KPI evaluation is performed and the best system is set as the new starting
point in every single iteration. Similar to Dijkstra’s algorithm, considering that acting upon
a small gain in each iteration might miss a greater gain in the longer run, we will consider
t > 1 scenarios as well.

The raw QZD algorithm can be considered the special case of the optimized algorithm
where only the rightmost branch in Figure 6 is performed in every iteration with k = 1
and t = n. Recording throughout the simulation which threshold operator yields the best
throughput in each block of t iterations provides the guideline for experimentalists to
choose the optimal subspace to inhibit the evolution.

The current optimization’s drawback is the increased computational complexity. In
addition to finding the best throughput system after each block of t iterations by maximiza-
tion over the KPI, not a single but b times rotate–measure operations are performed in each
iteration, b being the branching factor, which is b = 64 in the present problem.

Note that if all the possible threshold measurement operators are applied after each
measurement, i.e., all the possible b branches follow each branch in Figure 6, better results
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can be expected with the drawback of further increasing the computational complexity of
the simulation by performing the rotate–measure operation b2 times.

For simplicity, we assumed a fix t throughout the evolution. However, similar to the
iterative deepening search strategy, t can be varied on the go, such as setting greater t in
the beginning and then smaller t for fine tuning.

3. Results
3.1. Scenario 1

In our first scenario, we show how to superactivate bound entanglement by obtaining
distillable two-qubit entanglement between qubits D and E, as in the original superac-
tivation work [13] via implementing a simple QZD procedure, which does not require
teleportation or Bell measurements. Through numerical solutions, we find that choosing
J1 = |1〉〈1| ⊗ |1〉〈1| with J0 = I⊗2 − J1 and θ = π/180 for parties Alice, Bob, and Charlie
in all the iterations suffice to achieve the superactivation. As we will discuss in the next
section, we do not claim that this choice of parameters is the best, and choosing different
values in each iteration and for each party found by intelligent techniques potentially
increases the performance of QZD and decreases the number of iterations significantly,
which we consider for future work. In this work, we aim to present a proof of concept that
due to the power of QZD, even with an arbitrary choice of parameters, bound entanglement
can be superactivated by only single-qubit operations and simple threshold measurements.

With J0 and R(π/180), we implement QZD by repeating the ρ → ρr → ρrm step
and denote the obtained state as ρn after the nth iteration. In each iteration, each of the
first six qubits are measured on a z-basis, and the results are communicated to Dave and
Emma, potentially leaving the system ρn

DE of spatially separated and never interacted
qubits D and E entangled, which is detected by calculating the logarithmic negativity using
Equation (11). Although LN(ρn

DE) becomes non-zero after around 70 iterations, showing
the superactivation of bound entanglement, we continue the iteration to obtain a more
entangled state ρDE.

Tracing out the first six qubits from the initial state ρ in Equation (4), i.e., before starting
the QZD procedure, ρ0

DE is left in the maximally mixed state, and if the first six qubits
are measured on a z-basis and are all found in the |0〉 state, for example, ρ0

DE is left in the
|0〉 ⊗ |0〉 state. If a single iteration of QZD is performed with the same z-measurement
results, ρ1

DE is found in the following state

ρ1
DE =


0.998174 −0.212339× 10−4 −0.212339× 10−4 0

−0.212339× 10−4 −0.212339× 10−4 0 −0.194086× 10−7

−0.212339× 10−4 0 0.912369× 10−3 −0.194086× 10−7

0 −0.194086× 10−7 −0.194086× 10−7 8.3394× 10−7

, (12)

and in the following state if two iterations are performed

ρ2
DE =


0.992723 −0.169098× 10−3 −0.169098× 10−3 0.283254× 10−7

−0.169098× 10−3 0.363174× 10−2 0.283537× 10−7 −0.618621× 10−6

−0.169098× 10−3 0.283537× 10−7 0.363174× 10−2 −0.618621× 10−6

0.283254× 10−7 −0.618621× 10−6 −0.618621× 10−6 0.132863× 10−4

 (13)

with LN(ρ1
DE) ≈ LN(ρ2

DE) ≈ 0. However, after 40 iterations, LN(ρ40
DE) ≈ 0.0023 is achieved

with state

ρ40
DE =


0.250417 −0.241961 −0.241961 0.213032
−0.241961 0.254323 0.235704 −0.231646
−0.241961 0.235704 0.254323 −0.231646
0.213032 −0.231646 −0.231646 0.240936

, (14)
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providing the proof of concept for the superactivation of BE via QZD. If QZD is executed
for 76 iterations, LN(ρ76

DE) ≈ 0.14 is achieved with state

ρ76
DE =


0.00369126 0.0264018 0.0264018 0.00317834
0.0264018 0.495455 0.0547474 0.023323
0.0264018 0.0547474 0.495455 0.023323

0.00317834 0.023323 0.023323 0.00539837

. (15)

We find that after 3345 iterations, LN(ρ3345
DE ) ≈ 0.8 can be achieved where

ρ3345
DE =


0.470202 −0.0115331 −0.0115331 0.36229
−0.0115331 0.00220691 0.00192791 −0.0257913
−0.0115331 0.00192791 0.00220691 −0.0257913

0.36229 −0.0257913 −0.0257913 0.525385

. (16)

For a better visualization, we present the bar plots of elements of ρDE after 1, 40, and
76 iterations in Figure 3 and present the logarithmic negativity results of our numerical
simulation in Figure 4 for up to 3500 iterations.

3.2. Scenario 2

Our second scenario is to superactivate bound entanglement by entangling all the
qubits in the nodes of the given quantum network, as illustrated in Figure 5, via QZD.
Note that the blue lines connecting qubits do not imply a cyclic entanglement, they only
show that every qubit is entangled. The obtained free entangled state of the eight-qubit
system is not a GHZ or W state, but it can be considered a generic graph state. Unlike
the first scenario and the original superactivation [13], where a two-qubit entangled state
is obtained, the eight-qubit bound entangled state, we show that an eight-qubit genuine
multiparticle entanglement can be obtained. Moreover, because no qubit is measured
on a z-basis, our second scenario is free from the probabilistic results, which enables the
superactivation to have a significantly smaller number of iterations.

Distillable entanglement in the eight-qubit system requires inseparability among all
bipartite cuts. In the initial state ρ, the ρ4:4 cut is separable, i.e., m := mini(LN(ρi:8−i)) = 0.
Then the question turns to find a QZD procedure achieving m > 0.

Not surprisingly, it is straightforward to show that implementing the proposed QZD
procedure, m > 0 can be easily obtained. We plot the results of our numerical simu-
lations up to 700 iterations in Figure 7, and the maximum m is achieved in 611 itera-
tions with m ≈ 0.86. The logarithmic negativity of all bipartite cuts of ρ611 is found as
{0.99429, 1.9038, 1.3436, 0.8581, 1.2888, 1.9831, 0.99867}.

While ∑i LN(ρi:8−i) = 8, achieving a greater value would show that QZD increases
the amount of total entanglement in the network. Therefore, we plot in Figure 8 the sum of
logarithmic negativity values of bipartite cuts of the system throughout the QZD procedure
and find that ∑i LN(ρ611

i:8−i) = 9.37. By implementing QZD, this result shows that as an EPR
pair was obtained out of two separable qubits in [32] and entanglement swapping was
achieved by entangling initially separable qubits in [33], the procedure proposed herein
both superactivates bound entanglement and also increases the total entanglement in terms
of the sum of entanglement of bipartite cuts.

In order to confirm that no bipartite cut of ρ611 is separable in that writing, we also
rewrite it in the same order of qubits, i.e., A1C1B1DA2B2C2E as in ρinit and denote it σ.
Then we find LN(σi:8−i) = {0.99429, 0.56478, 1.16463, 0.52604, 1.17306, 0.62304, 0.99869}
for i = 0, 1, .., 8 with m ≈ 0.526. We further detail our analysis on σ by investigating the
inseparability of its subsystems. We first trace out the first and the last four qubits of σ,
respectively, and calculate the logarithmic negativity of bipartite cuts of the remaining
subsystem. Due to the symmetry of the system, for both subsystems, we find

LN(trA1C1B1D(σ)i:4−i) = LN(trA2B2C2E(σ)i:4−i) = {0.82073, 0.105191, 0.821025} (17)
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where i = 0, 1, 2, 3, 4.
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Figure 7. Minimum logarithmic negativity of all bipartite cuts of the eight-qubit system after n
iterations of QZD procedure, i.e., m := mini(LN(ρn

i:8−i)). Obtaining m > 0 implies no separable
bipartite cut, therefore, superactivation of bound entanglement among all the qubits of the network.
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Figure 8. Sum of logarithmic negativity of bipartite cuts of the eight-qubit system throughout QZD,
i.e., ∑i LN(ρn

i:8−i). Because this sum is initially equal to 8, yet the entanglement is nondistillable,
achieving a greater value shows that in addition to superactivating bound entanglement, our QZD
procedure increases the amount of entanglement of the quantum network.

In both scenarios above and, in general, in QZD, the idea of the threshold measure-
ments is that throughout the iterative process, the probability ε that the system collapses
to the inhibited subspace is very small and the probability that the system continues its
evolution in the uninhibited subspace upon successful projection to it is close to unity.
However, in reality, an arbitrary ε depending on the initial state and chosen threshold
operators is observed in the first iteration, which then approaches unity throughout the
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QZD. Here, an important factor is the fraction of the dimension of the inhibited subspace
to the entire space, which is 1/4 and 1/9 in the cases of a two-qubit system as in [32], and a
two-qutrit system as in [33], respectively. In the latter, the successful projection probability
starts with 1− ε = 0.78 in the first iteration, jumps to 1− ε = 0.999 in the second iteration
and stays very close to unity throughout the evolution.

In the present work, where QZD is applied to six qubits, the dimension of the inhibited
subspace is 1/64 of the entire space. Therefore, a higher success probability can be expected
in the first iteration in general, which is found to be 1 − ε = 0.984 and greater than
1− ε > 0.999 throughout the QZD in both scenarios studied herein.

3.3. Testing the Optimized QZD Evolution Algorithm

We test the performance of our optimized algorithm on Scenario 2 with three different
greediness levels, t = 10, t = 5, and t = 1, corresponding to the greediest case. In
accordance with the results of the raw scenario, we run the optimized simulation for
n = tk = 700 parallel iteration sets. As shown in Figure 9, while each of the three choices of t
provides a significant improvement over the raw QZD evolution, in this particular problem,
the greediest choice with t = 1 performs the best. Because the sum of logarithmic negativity
of all linear bipartite cuts of an eight-qubit system can yield maximum ∑7

i=1 LN(σi:8−i) =
1 + 2 + 3 + 4 + 3 + 2 + 1 = 16, we find that our proposed algorithm with t = 1 can even
yield a maximally entangled state in only around 300 iterations.
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Figure 9. Sum of logarithmic negativity of all bipartite cuts of the eight-qubit system throughout
QZD with three choices for greediness, t = 1, t = 5, and t = 10, as explained in the flowchart of the
algorithm in Figure 6. The greediest choice t = 1 performs the best, driving the system to a maximally
entangled state with ∑7

i=1 LN(σi:8−i) ≈ 16 in only around 300 iterations.

4. Discussions

Although the result in Scenario 1 is not the major contribution of our work and we
considered it only to show that the original superactivation of bound entanglement by
Shor et al. in [13] can be realized by leaving two-qubit distillable entanglement via QZD,
is worth discussing its drawbacks in detail. Following n iterations, the first three pairs
of qubits, each possessed by Alice, Bob, and Charlie, are measured on a z-basis. Because
QZD is inhibiting the subspace |1〉 ⊗ |1〉 for each pair, and the evolution of the system takes
place in the uninhibited subspace; the z-measurements have 63 possible outcomes with
probabilities oscillating around 1/63 throughout the evolution. The result we presented
achieving LN(ρ3345

DE ) ≈ 0.8 is for the outcome |0〉⊗6. Superactivation is actually observed in
several outcomes with almost all n > 0, though achieving smaller logarithmic negativity.
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However, for the proof of concept in Scenario 1, we considered a simple QZD proce-
dure with the same threshold measurement operator J0 and single-qubit rotation angle θ
for all the parties and all the iterations. In [32], for creating entanglement between initially
separable two qubits via QZD, Wang et al. were able to find an intelligent evolution strategy
after 100 iterations; they implement a single-qubit quantum operation followed by another
50 iterations, which improves the overall procedure.

As also discussed by Ozaydin et al. in [33], due to the size of the parameter search
space, a brute force approach for finding an optimal set of measurement operators and
rotations for each iteration is not feasible, requiring artificial intelligence (AI) techniques.
Finding an optimal parameter set, the final distillable two-qubit entanglement could be
made even closer to a maximally entangled Bell state. More importantly, if it could be
obtained regardless of the outcome of z-basis measurements, then after implementing
QZD, the first six qubits can be simply traced out, also eliminating the final classical
communications for the outcomes. Therefore, we point out developing a quantum AI-
based search strategy for improving the proposed QZD procedure.

Scenario 2 is free from z-measurements, and in addition to superactivation bound en-
tanglement, it increases the total amount of entanglement among the eight-qubit quantum
network in terms of bipartite cuts. Further, a significantly smaller number of iterations is
sufficient to obtain these results. Nevertheless, it would benefit from such an intelligent
evolution, too. More importantly, in this work, we have not considered a particular class
of quantum network such as GHZ [1], W [39], or a generic unweighted [40] and even
weighted [41] graph state for one-way quantum computation. Therefore, quantum AI
strategies could help generate multipartite entangled systems in particular classes via QZD.

As the second major contribution of this work, we designed a universal optimization
algorithm with variable greediness that can be applied to QZD evolution in both qubit
systems, such as in [32,34], and higher dimension systems, such as in [33], with an ar-
bitrary number of particles. We implemented the algorithm for the present setting and
showed that while the raw (un-optimized) evolution can increase the entanglement from
∑i LN(ρn

i:8−i) = 8 to ≈ 9.4 in 700 iterations, the optimization algorithm can increase it up
to 16, the maximum value in only around 300 iterations.

This algorithm aimed to increase the entanglement of the system. However, it would
be an interesting problem to modify it to drive the system into a particular state.

In Scenario 1, while ρ76
DE is of |Ψ+〉–type, ρ3345

DE is of |Φ+〉–type entanglement. We
observed such flip-flops throughout the numerical simulation. As a matter of fact, as can
be seen in Figure 4, a successive process of entanglement death and revival between D and
E is obtained after a number of iterations. The resulting ρn

DE state after n iterations with
logarithmic negativity achieving each local maximum in Figure 4 is one of the Bell state
types in Equation (1). Hence, the flip-flop is potentially (but not necessarily) observed in
each revival leading to a new local maximum of the logarithmic negativity. We interpret this
process as follows. After each entanglement death, QZD leads to the revival entanglement
of one of the four types, which is then reinforced in the following iterations until it reaches
the local maximum. In other words, we observe a meandering process of entanglement
formation towards one of the four Bell states.

Unlike Scenario 1, where the entanglement of the system of only two-qubits is consid-
ered in one of the four orthogonal Bell-type states, in Scenario 2, the entanglement of the
eight-qubit system is considered, which is more sophisticated, making it more difficult to
observe and interpret the entanglement dynamics such as the oscillations in the type of en-
tanglement. Hence, it would be interesting to study the meandering type of entanglement
formation in genuine multiparticle entanglement (GME) settings.

Regarding the generation of W-type multipartite entangled states via QZD, we would
like to raise two interesting questions for future works. Fusion and expansion are the
two widely recognized strategies for generating large-scale W or W-type states. In the
fusion strategy, one qubit from each small W state, say of sizes n and m, are sent to
a fusion mechanism with a non-zero probability, the two W states are fused, and the
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result is a W state of size ≈ n + m [42–47]. In addition to the qubit loss-free mechanism
for W states [48], a special fusion mechanism was designed for fusing W-type states for
perfect teleportation and superdense coding [49]. Deterministic expansion strategy expands
an n-qubit W state with n ancillary qubits to a 2n-qubit W state [50–52] by applying
two two-qubit controlled operations for each pair of qubits, the first being a qubit of
the W state and the second being the ancillary qubit. Therefore, its drawback is that it
requires 2n controlled two-qubit operations. What is more, this strategy only works for
W states and a strategy for the W-type states for teleportation and superdense coding
is missing. Considering the quantum circuit complexity reduction by eliminating the
controlled operations in generating two-qubit entanglement from separable qubits [32], as
well as the new entanglement swapping protocol and quantum repeater design [34], both
the probabilistic fusion and the deterministic expansion strategy can greatly benefit from
designing new QZD procedures with intelligent evolution.

Due to experimental difficulties and desired success probability, especially considering
the scalability of the quantum task, regardless of the physical qubits and technology used to
realize it, implementing single-qubit gates is preferred over multi-qubit gates [1]. Hence, a
trade-off appears between the traditional circuit model requiring a few two-qubit controlled
gates and QZD requiring only single-qubit gates and simple threshold measurements, but
many of them.

The implementation of the single-qubit rotation operator is straightforward. In [32],
Wang et al. presented the implementation of two-qubit threshold measurements, which
can be directly adapted to the procedure presented in this work. Further, the analysis they
performed shows the robustness of the overall QZD procedure in similar settings to the
one herein.

5. Conclusions

Through a systematic quantum state teleportation sequence, Shor et al. showed that
bound entanglement (BE) distributed among eight qubits of a quantum network of five
nodes can be superactivated by obtaining a distillable quantum system of two qubits [13]. In
this work, we showed that the superactivation of BE can be realized without implementing
quantum teleportations, each requiring the realization of two-qubit controlled gates. Our
proposal is based on quantum Zeno dynamics (QZD), which requires the realization of only
single-qubit gates and simple threshold measurements. In our first application scenario, we
showed that the original scenario of Shor et al. [13] can be realized by obtaining a distillable
entangled system of two qubits. The first major contribution of this work is that in our
second scenario, we showed that superactivation can be obtained among all the nodes
in the quantum network. In particular, we showed that the eight-qubit BE state can be
transformed into an eight-qubit FE state by implementing local QZD procedures at each
node. As the second major contribution, we designed an algorithm with variable greediness
for optimizing the QZD evolution in a given task. Implementing our algorithm for the
second scenario, we showed that a significant improvement could be obtained by driving
the initially BE system into a maximally entangled state. We also raised several open
questions for future research.
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8. Tuncer, A.; Izadyari, M.; Dağ, C.B.; Ozaydin, F.; Müstecaplıoğlu, Ö.E. Work and heat value of bound entanglement. Quantum Inf.

Process. 2019, 18, 373. [CrossRef]
9. Horodecki, K.; Horodecki, M.; Horodecki, P.; Oppenheim, J. Secure key from bound entanglement. Phys. Rev. Lett. 2005,

94, 160502. [CrossRef]
10. Ishizaka, S. Bound entanglement provides convertibility of pure entangled states. Phys. Rev. Lett. 2004, 93, 190501. [CrossRef]
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