A NOTE ON THE INTERACTIONS OF NONLINEAR WAVES GOVERNED BY THE GENERALIZED BOUSSINESQ EQUATION

$H. DEMIRAY^1$

ABSTRACT. In this work, based on a one dimensional model, the interaction of two solitary waves propagating in opposite directions in a fluid whose equations are governed by the generalized Boussinesq equation, by use of the Poincaré-Lighthill-Kuo (PLK) method. It is shown that bidirectional solitary waves are propagated, and the head-on collision of these two solitons occur. The phase shifts and the trajectories of these two solitons after the collisions are obtained.

Keywords: Head-on Collision, Generalized Boussinesq Equation, Solitary Waves.

AMS Subject Classification: 35Q53.

1. Introduction

It is well-known that one of the striking features of solitons is their asymptotic preservation of form when they undergo a collision, as first remarked by Zabusky and Kruskal [10]. The unique effect due to the collision is their phase shift. In a one dimensional system, there are two distinct soliton interactions. The first one is the overtaking collision, and the other is the headon collision [7]. Because of the multisoliton solutions of the Korteweg-deVries (KdV) equation, the overtaking collision of solitary waves can be studied by the inverse scattering transformation method [2] and Zou and Su [11]. For the numerical analysis of overtaking collisions of solitary waves, it is worth mentioning the works by Li and Sattinger [5] and Haragus et al [3]. However, for a head of collision between two solitary waves, we first examine two solitary waves propagating in opposite directions, and hence we need to employ a suitable asymptotic expansion to solve the original governing equations. Using the extended Poincaré-Lighthill-Kuo(PLK) method, Mirie and Su [7], and Su and Mirie [8], studied the head-on collision of solitary waves in a shallow water theory. Huang and Velarde [4] studied the head-on collision of two concentric cylindrical ion-acoustic waves and obtained the phase shifts of the right and left going waves. In this context, it is worth of mentioning the works by Xue [9] on head -on collision of blood solitary waves, and Demiray [1] on head on collision in solitary waves in fluid-filled elastic tubes.

In the present work, based on a one dimensional model, the interaction of two solitary waves propagating in opposite directions in a fluid whose equations of motion is governed by the generalized Boussinesq equation, is investigated by use of the extended Poincaré-Lighthill-Kuo (PLK) method [2, 4, 7]. It is shown that bi-directional solitary waves are propagated, and the head-on collision of these two waves occur. The phase shifts and trajectories of these two solitons after the collision are obtained.

2. Head-on collision of waves.

In this section, we shall study the interaction of two nonlinear acoustical waves governed by the generalized Boussinesq equation

$$u_{tt} - u_{xx} + u_{xxxx} - \frac{1}{n+1} (u^{n+1})_{xx} = 0,$$
(1)

¹Department of Mathematics, Isik University, 34980 Sile, Istanbul, Turkey, e-mail: demiray@isikun.edu.tr *Manuscript received 2 June 2013.*

where $n \ge 1$ is a positive integer, and u is the velocity in the x direction. The dispersion relation of linearized form of the equation (1) may be given by

$$\omega = k(1+k^2)^{1/2},\tag{2}$$

where ω is the angular frequency and k is the wave number. To study the collision of solitary waves for equation (1), it is convenient to introduce the following stretched coordinates

$$\epsilon^{n/2}(x-t) = \xi + \epsilon^n P_0(\eta, \tau) + \epsilon^{2n} P_1(\xi, \eta, \tau) + ...,$$

$$\epsilon^{n/2}(x+t) = \eta + \epsilon^n Q_0(\xi, \tau) + \epsilon^{2n} Q_1(\xi, \eta, \tau) + ...,$$
(3)

where $P_0, Q_0, P_1, Q_1, ...$ are some unknown functions to be determined from the solution. From equation (3), the following operators may be defined

$$\frac{\partial}{\partial x} = \epsilon^{n/2} \left[\left(\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} \right) - \epsilon^n \left(\frac{\partial P_0}{\partial \eta} \frac{\partial}{\partial \xi} + \frac{\partial Q_0}{\partial \xi} \frac{\partial}{\partial \eta} \right) + \dots \right],$$

$$\frac{\partial}{\partial t} = \epsilon^{n/2} \left[\left(-\frac{\partial}{\partial \xi} + \frac{\partial}{\partial \eta} \right) + \epsilon^n \left(\frac{\partial}{\partial \tau} - \frac{\partial P_0}{\partial \eta} \frac{\partial}{\partial \xi} + \frac{\partial Q_0}{\partial \xi} \frac{\partial}{\partial \eta} \right) + \dots \right]$$
(4)

We further assume that the field quantity u can be expanded into the asymptotic series in ϵ as:

$$u = \epsilon u_1 + \epsilon^{n+1} u_2 + \epsilon^{2n+1} u_3 + \dots$$
 (5)

where $u_1, u_2, u_3, ...$ are functions of the variables ξ, η, τ . Introducing the expansions (4) and (5) into equation (1), and setting the coefficients of alike powers of ϵ equal to zero, the following differential equations are obtained:

 $O(\epsilon)$ equation:

$$-4\frac{\partial^2 u_1}{\partial \xi \partial \eta} = 0. ag{6}$$

 $O(\epsilon^{n+1})$ equation:

$$-4\frac{\partial^{2} u_{2}}{\partial \xi \partial \eta} - 2\frac{\partial^{2} u_{1}}{\partial \xi \partial \tau} + 2\frac{\partial^{2} u_{1}}{\partial \eta \partial \tau} + 4\frac{\partial P_{0}}{\partial \eta} \frac{\partial^{2} u_{1}}{\partial \xi^{2}} + 4\frac{\partial Q_{0}}{\partial \xi} \frac{\partial^{2} u_{1}}{\partial \eta^{2}} + \frac{\partial^{4} u_{1}}{\partial \xi^{4}} + \frac{\partial^{4} u_{1}}{\partial \eta^{4}} + 4\frac{\partial^{4} u_{1}}{\partial \xi^{3} \partial \eta} + 6\frac{\partial^{4} u_{1}}{\partial \xi^{2} \partial \eta^{2}} + 4\frac{\partial^{4} u_{1}}{\partial \xi \partial \eta^{3}} - \frac{1}{n+1} \left(\frac{\partial^{2}}{\partial \xi^{2}} + \frac{\partial^{2}}{\partial \eta^{2}} + 2\frac{\partial^{2}}{\partial \xi \partial \eta}\right) (u_{1}^{n+1}) = 0.$$
 (7)

2.1. Solution of the field equations. From the solution of equation (6), one obtains

$$u_1 = U(\xi, \tau) + V(\eta, \tau), \tag{8}$$

where $U(\xi,\tau)$ and $V(\eta,\tau)$ are two unknown functions of their arguments whose governing equations will be obtained from the higher order perturbation expansion.

Inserting (8) into equation (7), we have

$$-4\frac{\partial^{2} u_{2}}{\partial \xi \partial \eta} + \frac{\partial}{\partial \xi} \left[-2\frac{\partial U}{\partial \tau} - U^{n} \frac{\partial U}{\partial \xi} + \frac{\partial^{3} U}{\partial \xi^{3}} \right] + \frac{\partial}{\partial \eta} \left[2\frac{\partial V}{\partial \tau} - V^{n} \frac{\partial V}{\partial \eta} + \frac{\partial^{3} V}{\partial \eta^{3}} \right] +$$

$$+ \frac{\partial^{2}}{\partial \xi \partial \eta} \left[4M(\eta) \frac{\partial U}{\partial \xi} + 4N(\xi) \frac{\partial V}{\partial \eta} - \frac{2}{n+1} (U+V)^{n+1} - \frac{1}{n+1} \sum_{k=2}^{n} \binom{n+1}{k} \times \left[\int_{0}^{\eta} V^{n+1-k}(\eta') d\eta' \frac{\partial (U^{k})}{\partial \xi} + \int_{0}^{\xi} U^{n+1-k}(\xi') d\xi' \frac{\partial (V^{k})}{\partial \eta} \right] = 0, \tag{9}$$

where $\binom{m}{n}$ is the Binomial coefficient, $M(\eta)$ and $N(\xi)$ are defined by

$$M(\eta) = P_0 - \frac{1}{4} \int_{-\infty}^{\eta} V^n(\eta') d\eta', \quad N(\xi) = Q_0 - \frac{1}{4} \int_{-\infty}^{\xi} U^n(\xi') d\xi'.$$
 (10)

Integrating the equation (9) with respect to ξ and η we obtain

$$u_{2} = F(\xi, \tau) + G(\eta, \tau) - \frac{1}{2} \left(\frac{\partial U}{\partial \tau} + \frac{1}{2} U^{n} \frac{\partial U}{\partial \xi} - \frac{1}{2} \frac{\partial^{3} U}{\partial \xi^{3}}\right) \eta + \frac{1}{2} \left(\frac{\partial V}{\partial \tau} - \frac{1}{2} V^{n} \frac{\partial V}{\partial \eta} + \frac{1}{2} \frac{\partial^{3} V}{\partial \eta^{3}}\right) \xi +$$

$$+ M(\eta) \frac{\partial U}{\partial \xi} + N(\xi) \frac{\partial V}{\partial \eta} - \frac{1}{2(n+1)} (U+V)^{n+1} - \frac{1}{4(n+1)} \sum_{k=2}^{n} {n+1 \choose k} \times$$

$$\times \left[\int V^{n+1-k}(\eta') d\eta' \frac{\partial (U^{k})}{\partial \xi} + \int U^{n+1-k}(\xi') d\xi' \frac{\partial (V^{k})}{\partial \eta}\right], \tag{11}$$

where $F(\xi,\tau)$ and $G(\eta,\tau)$ correspond to the homogeneous solution of the differential equation (7).

As is seen from equation (11), u_2 approaches to infinity as $(\xi, \eta) \to \pm \infty$. Therefore, in order to remove the secularity, the coefficients of ξ and η in equation (11) must vanish, i. e.,

$$\frac{\partial U}{\partial \tau} + \frac{1}{2} U^n \frac{\partial U}{\partial \xi} - \frac{1}{2} \frac{\partial^3 U}{\partial \xi^3} = 0, \tag{12}$$

$$\frac{\partial V}{\partial \tau} - \frac{1}{2} V^n \frac{\partial V}{\partial \eta} + \frac{1}{2} \frac{\partial^3 V}{\partial \eta^3} = 0, \tag{13}$$

These evolution equations are two generalized Korteweg-deVries equations.

If the evolution equation for the higher order term, say for $F(\xi,\tau)$, is studied, the resulting governing equation will be of the following form

$$\frac{\partial F}{\partial \tau} + \frac{1}{2} \frac{\partial}{\partial \xi} (U^n F) - \frac{1}{2} \frac{\partial^3 F}{\partial \xi^3} = S_1(U). \tag{14}$$

This is the degenerate (linearized) generalized KdV equation with non-homogeneous term $S_1(U)$ (see, for instance [1]). As is well-known, $\partial U/\partial \xi$ is the solution of the homogeneous equation obtained from (14). Therefore, id $S_1(U)$ contains a term proportional to $\partial U/\partial \xi$, and it causes the secularity in the solution. Based on this explanation, although the terms in equation (11) proportional to $\partial U/\partial \xi$ and $\partial V/\partial \eta$, do not cause any secularity at this order, it might cause to secularity at higher order solutions. In order to remove such secularities, the coefficients $M(\eta)$ and $N(\xi)$ must vanish, which yields

$$P_0 - \frac{1}{4} \int_{-\pi}^{\eta} V^n(\eta') d\eta' = 0, \quad Q_0 - \frac{1}{4} \int_{-\pi}^{\xi} U^n(\xi') d\xi' = 0.$$
 (15)

These conditions make it possible to determine the unknown functions $P_0(\eta, \tau)$ and $Q_0(\xi, \tau)$. Then, the final form of the solution for u_2 may be given by

$$u_{2} = F(\xi, \tau) + G(\eta, \tau) - \frac{1}{2(n+1)} (U+V)^{n+1} - \frac{1}{4(n+1)} \sum_{k=2}^{n} {n+1 \choose k} \times \left[\int_{0}^{\eta} V^{n+1-k}(\eta') d\eta' \frac{\partial (U^{k})}{\partial \xi} + \int_{0}^{\xi} U^{n+1-k}(\xi') d\xi' \frac{\partial (V^{k})}{\partial \eta} \right].$$
(16)

As is well-known, the generalized KdV equations given in (12) and (13) assume the solitary wave solution when n is an odd integer, whereas they have a periodic solution when n is an even

integer. Therefore, we shall be concerned with the solution when n = 2m + 1, where m is a positive integer. In this case, equations (12) and (13) have the following solitary wave solution

$$U = -U_A \operatorname{sech}^{2/2m+1} \zeta_A, \quad \zeta_A = \alpha(\xi + v_A \tau)$$

$$\alpha^2 = \frac{(U_A)^{2m+1} (2m+1)^2}{4(m+1)(2m+3)}, \quad v_A = \frac{(U_A)^{2m+1}}{2(m+1)(2m+3)},$$
(17)

$$V = -U_B \operatorname{sech}^{2/2m+1} \zeta_B, \quad \zeta_B = \beta(\eta + v_B \tau)$$

$$\beta^2 = \frac{(U_B)^{2m+1} (2m+1)^2}{4(m+1)(2m+3)}, \quad v_B = \frac{(U_B)^{2m+1}}{2(m+1)(2m+3)}, \quad (18)$$

where U_A and U_B are the amplitudes of the corresponding solitary waves.

Thus, from equation (15) we obtain the functions P_0 and Q_0 as

$$P_0 = -\frac{(U_B)^{m+1/2}[(m+1)(2m+3)]^{1/2}}{2(2m+1)} \tanh \zeta_B,$$
(19)

$$Q_0 = -\frac{(U_A)^{m+1/2}[(m+1)(2m+3)]^{1/2}}{2(2m+1)} \tanh \zeta_A.$$
(20)

Hence, up to $O(\epsilon^2)$, the trajectories of two solitary waves for weak head-on collisions are

$$\epsilon^{m+1/2}(x-t) = \xi - \epsilon^{2m+1} \frac{(U_B)^{m+1/2} [(m+1)(2m+3)]^{1/2}}{2(2m+1)} \tanh \zeta_B$$

$$+ O(\epsilon^{4m+2}), \quad \epsilon^{m+1/2}(x+t) = \eta$$

$$- \epsilon^{2m+1} \frac{(U_A)^{m+1/2} [(m+1)(2m+3)]^{1/2}}{2(2m+1)} \tanh \zeta_A + O(\epsilon^{4m+2}). \tag{21}$$

To obtain the phase shift after head-on collision of two solitary waves, we shall assume that the solitary waves characterized by U_A and U_B are asymptotically far from each other at the initial time $(t=-\infty)$, the solitary wave U_A is at $\xi=0$, $\eta=-\infty$, and the solitary wave U_B is at $\eta=0$, $\xi=+\infty$, respectively. After the collision $(t=+\infty)$, the solitary wave U_B is far to the right of the solitary wave U_A , i.e., the solitary wave U_B is at $\xi=0$, $\eta=+\infty$ and the solitary wave U_A is at $\eta=0$, $\xi=-\infty$. Following Su and Mirie [8] and Xue [9], and using the equation (21), the corresponding phase shifts Δ^+ and Δ^- may be obtained as follows.

$$\Delta^{+} = \epsilon^{m+1/2} (x-t)|_{\xi=0,\eta=\infty} - \epsilon^{m+1/2} (x-t)|_{\xi=0,\eta=-\infty} =$$

$$= -\epsilon^{2m+1} (U_B)^{m+1/2} \frac{[m+1)(2m+3)]^{1/2}}{(2m+1)}$$

$$\Delta^{-} = \epsilon^{m+1/2} (x+t)|_{\eta=0,\xi=-\infty} - \epsilon^{m+1/2} (x+t)_{\eta=0,\xi=\infty} =$$

$$= \epsilon^{2m+1} (U_A)^{m+1/2} \frac{[m+1)(2m+3)]^{1/2}}{(2m+1)}.$$
(22)

3. Conclusion

By use of the extended PLK method, head-on collisions of two solitary waves propagating in a fluid whose governing equations are characterized by the generalized Boussinesq equation is examined. The result shows that, up to $O(\epsilon^{4m+2})$, the head-on collision of two solitary waves is elastic, and the solitons preserve their original properties after the collision. The leading order analytical phase shifts of head-on collision between two solitary waves are derived explicitly. The higher order corrections may give additional information about the structure of the collision event. This is especially true for large amplitudes.

REFERENCES

- [1] Demiray, H. Head-on collision of solitary waves in fluid-filled elastic tubes, *Appl. Math. Lett.*, V.18, N.8, 2005, pp.941-950.
- [2] Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R. Method for solving the KdV equation, M. Phys. Rev. Lett., V.19, N.19, 1967, pp.1095-1097.
- [3] Haragus, M., Nicholls, D.P., Sattinger, D.H.J. Solitary wave interactions of the Euler-Poisson equations, Math. Fluid Mech., V.5, N.1, 2003, pp.92-118.
- [4] Huang, G., Velarde, M.G. Head-on collision of two cocentric cylindrical ion-acoustic solitary waves, *Phys. Rev. E*, V.53, N.3, 1996, pp.2988-2991.
- [5] Li, Y., Sattinger, D.H. Soliton collisions in the ion-acoustic plasma equations, Math. Fluid Mech., V.1, N.1, 1999, pp.117-130.
- [6] Liu, Y. Instability of solitary waves for generalized Boussinesq equations, Dynamics and Diff. Eqs., V.5, N.3, 1993, pp.537-558.
- [7] Mirie, R. M., Su, C.H. Collisions between two solitary waves, Part 2. A numerical study, J. Fluid Mech., V.115, N.2, 1982, pp.475-492.
- [8] Su, C.H., Mirie, R.M. On head-on collisions between two solitary waves, J. Fluid Mech., V.98, N.6, 1980, pp.509-525.
- [9] Xue, J.K. Head-on collisions of blood solitary waves, Phys. Lett. A, V.331, N.6, 2004, pp.409-413.
- [10] Zabusky, N.J., Kruskal, M.D. Interactions of solitons in a collisionless plasma and the recurrence of initial states, *Phys. Rev. Lett.*, V.15, N.3, 1965, pp.240-243.
- [11] Zou, Q., Su, C.H. Overtaking collision between two solitary waves, Phys. Fluids, V.29, N.7, 1986, pp.2113-2123.

H. Demiray - was born in Adana (Turkey) in 1942. He obtained his Ph.D. degree in Aerospace and Mechanical Sciences from Princeton University (USA) in 1971. In 1982, he became a full professor in the Department of Engineering Sciences of Istanbul Technical University. Between 1986-1993 he served as the Director of Research Institute for Basic Sciences (TUBITAK) and Founding Dean of the Faculty of Arts and Sciences (1999-2005) of Isik University. His research interest covers the mathematical modeling of soft biological tissues and nonlinear waves. He is a member of the Science Academy of Turkey.