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A NOTE ON THE INTERACTIONS OF NONLINEAR WAVES GOVERNED
BY THE GENERALIZED BOUSSINESQ EQUATION

H. DEMIRAY1

Abstract. In this work, based on a one dimensional model, the interaction of two solitary waves
propagating in opposite directions in a fluid whose equations are governed by the generalized
Boussinesq equation, by use of the Poincaré-Lighthill-Kuo (PLK) method. It is shown that bi-
directional solitary waves are propagated, and the head-on collision of these two solitons occur.
The phase shifts and the trajectories of these two solitons after the collisions are obtained.
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1. Introduction

It is well-known that one of the striking features of solitons is their asymptotic preservation
of form when they undergo a collision, as first remarked by Zabusky and Kruskal [10]. The
unique effect due to the collision is their phase shift. In a one dimensional system, there are two
distinct soliton interactions. The first one is the overtaking collision, and the other is the head-
on collision [7]. Because of the multisoliton solutions of the Korteweg-deVries (KdV) equation,
the overtaking collision of solitary waves can be studied by the inverse scattering transformation
method [2] and Zou and Su [11]. For the numerical analysis of overtaking collisions of solitary
waves, it is worth mentioning the works by Li and Sattinger [5] and Haragus et al [3]. However,
for a head of collision between two solitary waves, we first examine two solitary waves propagating
in opposite directions, and hence we need to employ a suitable asymptotic expansion to solve the
original governing equations. Using the extended Poincaré-Lighthill-Kuo(PLK) method, Mirie
and Su [7], and Su and Mirie [8], studied the head-on collision of solitary waves in a shallow
water theory. Huang and Velarde [4] studied the head-on collision of two concentric cylindrical
ion-acoustic waves and obtained the phase shifts of the right and left going waves. In this
context, it is worth of mentioning the works by Xue [9] on head -on collision of blood solitary
waves, and Demiray [1] on head on collision in solitary waves in fluid-filled elastic tubes.

In the present work, based on a one dimensional model, the interaction of two solitary waves
propagating in opposite directions in a fluid whose equations of motion is governed by the
generalized Boussinesq equation, is investigated by use of the extended Poincaré-Lighthill-Kuo
(PLK) method [2, 4, 7]. It is shown that bi-directional solitary waves are propagated, and the
head-on collision of these two waves occur. The phase shifts and trajectories of these two solitons
after the collision are obtained.

2. Head-on collision of waves.

In this section, we shall study the interaction of two nonlinear acoustical waves governed by
the generalized Boussinesq equation

utt − uxx + uxxxx − 1
n + 1

(un+1)xx = 0, (1)
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where n ≥ 1 is a positive integer, and u is the velocity in the x direction. The dispersion relation
of linearized form of the equation (1) may be given by

ω = k(1 + k2)1/2, (2)

where ω is the angular frequency and k is the wave number. To study the collision of solitary
waves for equation (1), it is convenient to introduce the following stretched coordinates

εn/2(x− t) = ξ + εnP0(η, τ) + ε2nP1(ξ, η, τ) + ...,

εn/2(x + t) = η + εnQ0(ξ, τ) + ε2nQ1(ξ, η, τ) + ..., (3)

where P0, Q0, P1, Q1, ... are some unknown functions to be determined from the solution. From
equation (3), the following operators may be defined

∂

∂x
= εn/2[(

∂

∂ξ
+

∂

∂η
)− εn(

∂P0

∂η

∂

∂ξ
+

∂Q0

∂ξ

∂

∂η
) + ...],

∂

∂t
= εn/2[(− ∂

∂ξ
+

∂

∂η
) + εn(

∂

∂τ
− ∂P0

∂η

∂

∂ξ
+

∂Q0

∂ξ

∂

∂η
) + ...] . (4)

We further assume that the field quantity u can be expanded into the asymptotic series in ε as:

u = εu1 + εn+1u2 + ε2n+1u3 + ... (5)

where u1, u2, u3, ... are functions of the variables ξ, η, τ . Introducing the expansions (4) and (5)
into equation (1), and setting the coefficients of alike powers of ε equal to zero, the following
differential equations are obtained:

O(ε) equation:

−4
∂2u1

∂ξ∂η
= 0. (6)

O(εn+1) equation:

−4
∂2u2

∂ξ∂η
− 2

∂2u1

∂ξ∂τ
+ 2

∂2u1

∂η∂τ
+ 4

∂P0

∂η

∂2u1

∂ξ2
+ 4

∂Q0

∂ξ

∂2u1

∂η2
+

∂4u1

∂ξ4
+

∂4u1

∂η4
+

+4
∂4u1

∂ξ3∂η
+ 6

∂4u1

∂ξ2∂η2
+ 4

∂4u1

∂ξ∂η3
− 1

n + 1
(

∂2

∂ξ2
+

∂2

∂η2
+ 2

∂2

∂ξ∂η
)(un+1

1 ) = 0. (7)

2.1. Solution of the field equations. From the solution of equation (6), one obtains

u1 = U(ξ, τ) + V (η, τ), (8)

where U(ξ, τ) and V (η, τ) are two unknown functions of their arguments whose governing equa-
tions will be obtained from the higher order perturbation expansion.

Inserting (8) into equation (7), we have

−4
∂2u2

∂ξ∂η
+

∂

∂ξ
[−2

∂U

∂τ
− Un ∂U

∂ξ
+

∂3U

∂ξ3
] +

∂

∂η
[2

∂V

∂τ
− V n ∂V

∂η
+

∂3V

∂η3
]+

+
∂2

∂ξ∂η
[4M(η)

∂U

∂ξ
+ 4N(ξ)

∂V

∂η
− 2

n + 1
(U + V )n+1 − 1

n + 1

n∑

k=2

(
n + 1

k

)
×

×[

η∫
V n+1−k(η′)dη′

∂(Uk)
∂ξ

+

ξ∫
Un+1−k(ξ′)dξ′

∂(V k)
∂η

] = 0, (9)
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where
(

m
n

)
is the Binomial coefficient, M(η) and N(ξ) are defined by

M(η) = P0 − 1
4

η∫
V n(η′)dη′, N(ξ) = Q0 − 1

4

ξ∫
Un(ξ′)dξ′. (10)

Integrating the equation (9) with respect to ξ and η we obtain

u2 = F (ξ, τ) + G(η, τ)− 1
2
(
∂U

∂τ
+

1
2
Un ∂U

∂ξ
− 1

2
∂3U

∂ξ3
)η +

1
2
(
∂V

∂τ
− 1

2
V n ∂V

∂η
+

1
2

∂3V

∂η3
)ξ+

+M(η)
∂U

∂ξ
+ N(ξ)

∂V

∂η
− 1

2(n + 1)
(U + V )n+1 − 1

4(n + 1)

n∑

k=2

(
n + 1

k

)
×

×[

η∫
V n+1−k(η′)dη′

∂(Uk)
∂ξ

+

ξ∫
Un+1−k(ξ′)dξ′

∂(V k)
∂η

], (11)

where F (ξ, τ) and G(η, τ) correspond to the homogeneous solution of the differential equation
(7).

As is seen from equation (11), u2 approaches to infinity as (ξ, η) → ±∞. Therefore, in order
to remove the secularity, the coefficients of ξ and η in equation (11) must vanish, i. e.,

∂U

∂τ
+

1
2
Un ∂U

∂ξ
− 1

2
∂3U

∂ξ3
= 0, (12)

∂V

∂τ
− 1

2
V n ∂V

∂η
+

1
2

∂3V

∂η3
= 0, (13)

These evolution equations are two generalized Korteweg-deVries equations.
If the evolution equation for the higher order term, say for F (ξ, τ), is studied, the resulting

governing equation will be of the following form

∂F

∂τ
+

1
2

∂

∂ξ
(UnF )− 1

2
∂3F

∂ξ3
= S1(U). (14)

This is the degenerate(linearized) generalized KdV equation with non-homogeneous term S1(U)
( see, for instance [1]). As is well-known, ∂U/∂ξ is the solution of the homogeneous equation
obtained from (14). Therefore, id S1(U) contains a term proportional to ∂U/∂ξ, and it causes
the secularity in the solution. Based on this explanation, although the terms in equation (11)
proportional to ∂U/∂ξ and ∂V/∂η, do not cause any secularity at this order, it might cause to
secularity at higher order solutions. In order to remove such secularities, the coefficients M(η)
and N(ξ) must vanish, which yields

P0 − 1
4

η∫
V n(η′)dη′ = 0, Q0 − 1

4

ξ∫
Un(ξ′)dξ′ = 0. (15)

These conditions make it possible to determine the unknown functions P0(η, τ) and Q0(ξ, τ).
Then, the final form of the solution for u2 may be given by

u2 = F (ξ, τ) + G(η, τ)− 1
2(n + 1)

(U + V )n+1 − 1
4(n + 1)

n∑

k=2

(
n + 1

k

)
×

×[

η∫
V n+1−k(η′)dη′

∂(Uk)
∂ξ

+

ξ∫
Un+1−k(ξ′)dξ′

∂(V k)
∂η

]. (16)

As is well-known, the generalized KdV equations given in (12) and (13) assume the solitary
wave solution when n is an odd integer, whereas they have a periodic solution when n is an even
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integer. Therefore, we shall be concerned with the solution when n = 2m + 1, where m is a
positive integer. In this case, equations (12) and (13) have the following solitary wave solution

U = −UAsech2/2m+1ζA, ζA = α(ξ + vAτ)

α2 =
(UA)2m+1(2m + 1)2

4(m + 1)(2m + 3)
, vA =

(UA)2m+1

2(m + 1)(2m + 3)
, (17)

V = −UBsech2/2m+1ζB, ζB = β(η + vBτ)

β2 =
(UB)2m+1(2m + 1)2

4(m + 1)(2m + 3)
, vB =

(UB)2m+1

2(m + 1)(2m + 3)
, (18)

where UA and UB are the amplitudes of the corresponding solitary waves.
Thus, from equation (15) we obtain the functions P0 and Q0 as

P0 = −(UB)m+1/2[(m + 1)(2m + 3)]1/2

2(2m + 1)
tanhζB, (19)

Q0 = −(UA)m+1/2[(m + 1)(2m + 3)]1/2

2(2m + 1)
tanhζA. (20)

Hence, up to O(ε2), the trajectories of two solitary waves for weak head-on collisions are

εm+1/2(x− t) = ξ − ε2m+1 (UB)m+1/2[(m + 1)(2m + 3)]1/2

2(2m + 1)
tanhζB

+O(ε4m+2), εm+1/2(x + t) = η

−ε2m+1 (UA)m+1/2[(m + 1)(2m + 3)]1/2

2(2m + 1)
tanhζA + O(ε4m+2. (21)

To obtain the phase shift after head-on collision of two solitary waves, we shall assume that
the solitary waves characterized by UA and UB are asymptotically far from each other at the
initial time (t=−∞ ), the solitary wave UA is at ξ = 0, η = −∞, and the solitary wave UB is at
η = 0, ξ = +∞, respectively. After the collision (t= +∞ ), the solitary wave UB is far to the
right of the solitary wave UA, i.e., the solitary wave UB is at ξ = 0, η = +∞ and the solitary
wave UA is at η = 0, ξ = −∞. Following Su and Mirie [8] and Xue [9], and using the equation
(21), the corresponding phase shifts ∆+ and ∆− may be obtained as follows.

∆+ = εm+1/2(x− t)|ξ=0,η=∞ − εm+1/2(x− t)|ξ=0,η=−∞ =

= −ε2m+1(UB)m+1/2 [m + 1)(2m + 3)]1/2

(2m + 1)

∆− = εm+1/2(x + t)|η=0,ξ=−∞ − εm+1/2(x + t)η=0,ξ=∞ =

= ε2m+1(UA)m+1/2 [m + 1)(2m + 3)]1/2

(2m + 1)
. (22)

3. Conclusion

By use of the extended PLK method, head-on collisions of two solitary waves propagating in
a fluid whose governing equations are characterized by the generalized Boussinesq equation is
examined. The result shows that, up to O(ε4m+2), the head-on collision of two solitary waves is
elastic, and the solitons preserve their original properties after the collision. The leading order
analytical phase shifts of head-on collision between two solitary waves are derived explicitly.
The higher order corrections may give additional information about the structure of the collision
event. This is especially true for large amplitudes.
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