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Abstract: In the present work, employing a one-
dimensional model of a plasma composed of a cold elec-
tron fluid, hot electrons obeying a trapped/vortex-like
distribution and stationary ions, we study the amplitude
modulation of electron-acoustic waves by use of the con-
ventional reductive perturbation method. Employing the
field equations with fractional power type of nonlinearity,
we obtained the nonlinear Schrödinger equation as the
evolution equation of the same order of nonlinearity.
Seeking a harmonic wave solution with progressive
wave amplitude to the evolution equation it is found
that the NLS equation with fractional power assumes
envelope type of solitary waves.
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1 Introduction

The concept of electro-acoustic mode had been conceived
by Fried and Gould [1] during the numerical solutions of
the linear electrostatic dispersion equation in an unmag-
netized, homogeneous plasma. Besides the well-known
Langmuir and ion-acoustic waves, they noticed the exis-
tence of a heavily damped acoustic-like solution of dis-
persion equation. It was later shown that in the presence
of two distinct groups (cold and hot) of electrons and
immobile ions, one indeed obtains a weakly damped
electron-acoustic mode (Watanabe and Taniuti [2]), the
properties of which significantly differ from those of the
Langmuir waves.

To study the properties of electron-acoustic
solitary wave structure Dubouloz et al. [3] considered a

one-dimensional, unmagnetized collisionless plasma
consisting of cold electrons, Maxwellian hot electrons
and stationary ions. However, in practice, the hot elec-
trons may not follow a Maxwellian distribution, due to
the formation of phase space holes caused by the trap-
ping of hot electrons in a wave potential. Accordingly, in
most space plasma the hot electrons follow the trapped/
vortex-like distribution (Schamel [4, 5], Abbasi et al. [6]).
Therefore, in the present work, we shall consider a
plasma model consisting of a cold electron fluid, hot
electrons obeying a non-isothermal (trapped/vortex-like)
distribution, and stationary ions.

The propagation of small-but-finite amplitude waves
in a one-dimensional ion-acoustic model had been stu-
died by several researchers (see, for instance, Washimi
and Taniuti [7]) and one-dimensional electron-acoustic
model by Schamel [4, 5], Mamun and Shukla [8] by use
of the classical reductive perturbation method (Taniuti
[9]) and Demiray [10] by use of the modified PLK
(Poincaré-Lighthill-Kuo) method, wherein the contribu-
tion of higher order terms is also investigated.

Due to its central importance to the theory of quan-
tum mechanics, the nonlinear equations of Schrödinger
type are of great interest. They arise in many nonlinear
problems such as water waves [11–15], waves in plasmas
[16–20], nonlinear waves in fluid-filled elastic or viscoe-
lastic tubes [21–23] and other nonlinear waves of similar
nature. In all these works the nonlinear equations with
integer power had been taken into consideration.
However, when the nonlinearity is of the type of frac-
tional order of certain field quantities much more careful
analysis of the problem has to be made.

In the present work, employing the one-dimensional
model of a plasma composed of a cold electron fluid, hot
electrons obeying a trapped/vortex-like distribution and
stationary ions, we study the amplitude modulation of
electron-acoustic waves through the use of the reductive
perturbation method. Due to physics of this problem, the
field equations involve nonlinearity of fractional power
(3/2) of the electrostatic potential and the resulting evolu-
tion equation is found to be the nonlinear Schrödinger
(NLS) equation of the same fractional order of nonlinear-
ity. Seeking harmonic wave solution with progressing
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amplitude to the evolution equation it is found that the
NLS equation with fractional power assumes envelope
type of solitary waves.

2 Governing equations

We consider a one-dimensional, collisionless plasma con-
sisting of a cold electron fluid, hot electrons obeying a
trapped/vortex-like distribution and stationary ions. The
dynamics of electron-acoustic waves is governed by the
following equations:

@nc
@t

þ @

@x
ðuc ncÞ ¼ 0; ð1Þ

@uc
@t

þ uc
@uc
@x

� α
@f
@x

¼ 0; ð2Þ

@2f
@x2

¼ 1
α
nc þ nh � ð1þ 1αÞ; ð3Þ

where nc is the normalized cold electron number density,
nh is the normalized hot electron number density, uc is
the cold electron fluid velocity, f is the electrostatic
potential and the coefficient α is defined by α ¼ nh0=nc0,
where nc0 and nh0 are the equilibrium values of the cold
and hot electron number densities, respectively. The hot
electron number density nh (for β<0) can be expressed
by (Schamel [4])

nh ¼ IðfÞ þ 2ffiffiffiffiffiffiffiffiffi�πβ
p WDð

ffiffiffiffiffiffiffiffiffiffi
�βf

p
Þ; ð4Þ

with the definitions

IðxÞ ¼ ½1� erf ð ffiffiffi
x

p Þ� expðxÞ;

WDðxÞ ¼ expð�x2Þ
ðx
0
expðy2Þdy;

ð5Þ

where erf ðxÞ is the error function. For f<< 1, eq. (4) gives
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Here we note that nh depends on the fractional power of
the electrostatic potential. Denoting the fluctuation of the
cold electron number density from its equilibrium value
by n, i.e., nc ¼ 1þ n, eqs (1–3) can be written as
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These equations will be used as we study the amplitude
modulation of nonlinear waves propagating in such a
plasma.

3 Modulation of nonlinear waves

In this section we shall study the amplitude modulation
of nonlinear waves propagating in such a plasma med-
ium. For this purpose we introduce the following slow
variables:

� ¼ �ðx � λtÞ τ ¼ �2t; ð10Þ
where � is a small parameter characterizing the band-
width of superposed waves and λ is an unknown constant
to be determined from the solution. The field variables
are assumed to be functions of the fast variables ðx; tÞ as
well as the slow variablesð�; τÞ. Then the following differ-
ential relations hold true:
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Introducing eq. (11) into the field equations (7–9) the
following equations are obtained:
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For our future purposes it is convenient to assume that
the field quantities can be expanded into a power series
of � in the following form:

n ¼ �4ðnð1Þ þ �nð2Þ þ �2nð3Þ þ � � �Þ;
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uc ¼ �4ðuð1Þc þ �uð2Þc þ �2uð3Þc þ � � �Þ;

f ¼ �4ðfð1Þ þ �fð2Þ þ �2fð3Þ þ � � �Þ; ð13Þ

where nð1Þ; :::::::;fð3Þ are functions of the fast ðx; tÞ as well
as the slow ð�; τÞ variables.

Introducing the expansion (13) into the field equa-
tions (12) and setting the coefficients of like powers of �
equal to zero, the following sets of differential equations
are obtained:

O(�4) equations:
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O(�5) equations:
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O(�6) equations:
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3.1 Solution of the field equations

For the solution of eq. (14), we shall seek a solution of the
form

ðnð1Þ; uð1Þc ;fð1ÞÞ ¼ ðNð1Þ;Uð1Þ
c ; ’1ÞexpðiθÞ þ c:c:;

θ ¼ ωt � kx;
ð17Þ

where ω is the angular frequency, k is the wave number,
Nð1Þ; Uð1Þ

c ; ’1 are some complex functions of the slow

variables ð�; τÞ and c.c. stands for the complex conjugate
of the corresponding quantities. Introducing eq. (17) into
the field equations (14) we obtain

Uð1Þ
c ¼ �α

k
ω
’1; Nð1Þ ¼ �α

k2

ω2 ’1; ð18Þ

provided that the following dispersion relation is satisfied:

ω2 ¼ k2

k2 þ 1
; ð19Þ

where ’1ð�; τÞ is an unknown complex function whose
governing equation will be obtained later.

Introducing eqs (17) and (18) into the field equations
(15) we have
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α
� fð2Þ þ c:c: ¼ 0: ð20Þ

The form of eq. (20) suggests us to seek a solution to the
field variables nð2Þ; uð2Þc ; fð2Þ of the following form:

ðnð2Þ; uð2Þc ;fð2ÞÞ ¼ ðNð2Þ;Uð2Þ
c ; ’2Þ expðiθÞ þ c:c:; ð21Þ

where Nð2Þ;Uð2Þ
c ; ’2 are complex functions of the slow

variables ð�; τÞ.
Introducing eq. (21) into the field equations (20) we

obtain the following set of differential equations:

iðωNð2Þ � kUð2Þ
c Þ þ α
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λ
k
ω
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� �
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α
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From the solution of the set (22) one obtains
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� �
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Here, in obtaining the last equation in eq. (23) we have
utilized the dispersion relation (19). In order to have a
non-zero solution for ’1 the coefficient of @’1=@� must
vanish, i.e.,

λ
k
ω2 �

1
k2

¼ 0; or λ ¼ ω3

k3
: ð24Þ

Here λ is the group velocity.
To obtain the solution for O(�6) equations, we intro-

duce the solutions (18) and (23) into eqs (16) we obtain
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@uð3Þc

@t
� α

@fð3Þ

@x
þ
�
α λ

k
ω
� 1

� �
@’2

@�
� i

α
ω
λ λ

k
ω
� 1

� �
@2’1

@�2

� α
k
ω
@’1

@τ

�
expðiθÞ þ c:c: ¼ 0;

ð26Þ
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@x2
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α
� fð3Þ þ 4
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ffiffiffi
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p ð1� βÞðfð1ÞÞ3=2
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@’2
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For our future purposes we need only the equations
related to the coefficients of expðiθÞ terms. In order to
obtain such an equation we have to examine the term
ðfð1ÞÞ3=2, which can be written as

ðfð1ÞÞ3=2 ¼ j’1j3=2jeiðsþθÞ þ e�iðsþθÞj3=2

¼ 2
ffiffiffi
2

p
j’1j3=2j cos3=2ðsþ θÞj;

ð28Þ

where j’1j is the modulus and s is the argument of the
complex variable ’1.

In order to ensure that ðfð1ÞÞ3=2 remains real we must
restrict the variation of ðsþ θÞ as jðsþ θÞj � π=2. Since
cosðsþ θÞ is a periodic function in ðsþ θÞ we can expand
the expression of ðfð1ÞÞ3=2 into a Fourier cosine series of
the following form:

2
ffiffiffi
2

p
j’1j3=2j cosðsþ θÞj3=2 ¼

X1
n¼0

an cos nðsþ θÞ; ð29Þ

where the coefficient an is defined by

an ¼ 4
ffiffiffi
2

p

π
j’1j3=2

ðπ=2
0

cos 3=2ðsþ θÞ cos nðsþ θÞdðsþ θÞ:
ð30Þ

For our future purposes we need only the coefficient a1,
which can be expressed as

a1 ¼ 4
ffiffiffi
2

p

π
j’1j3=2

ðπ=2
0

cos 3=2ðsþ θÞ cosðsþ θÞdðsþ θÞ:
ð31Þ

Noting the integral relation

ðπ=2
0

ðcos xÞ5=2dx ¼ 0:718884

the expression of a1 becomes

a1 � 1:3j’1j3=2: ð32Þ
If we write the Fourier cosine series in complex notation
we have

X1
n¼0

an cos nðsþ θÞ ¼
X1
n¼0

½cneiðsþθÞ þ cne�iðsþθÞ�

we obtain c1 ¼ a1=2 ¼ 0:65j’1j3=2. Returning to eqs. (25–27),
the equations related to the coefficients of expðiθÞ terms we
can write
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1
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� �
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� α

k2
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@τ
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ð33Þ
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� �
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þ iα �λ2
k
ω2 þ

λ
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@�2
� α

k
ω
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@τ
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ð34Þ
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α
þ 0:65

4
3
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π

p ð1� βÞj’1j1=2’1

� 2ik
@’2

@�
þ @2’1

@�2
¼ 0;

ð35Þ
Here we sought a solution for Nð3Þ;Uð3Þ

c and fð3Þ of the
following form:

ðNð3Þ;Uð3Þ
c ;fð3ÞÞ ¼

X1
n¼0

ðNð3nÞ;Uð3nÞ
c ;fð3nÞ expðinθÞ þ c:c::

ð36Þ
EliminatingNð31Þ;Uð31Þ;fð31Þ and’2 between these equations
through the use of dispersion relation and the definition of
group velocity λ, we obtain the following NLS equation:

i
@’1

@τ
þ μ1

@2’1

@�2
þ μ2j’1j1=2’1 ¼ 0; ð37Þ
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where the coefficients μ1 and μ2 are defined by

μ1 ¼
3λk

2ðk2 þ 1Þ ; μ2 ¼
1:3λk
3

ffiffiffi
π

p ð1� βÞ: ð38Þ

3.2 Progressive wave solution

In this sub-section we shall give a progressive wave
solution to the evolution equation (37). As is well
known, the form of the progressive wave solution of the
NLS equation depends on the sign of the product of the
coefficients μ1 and μ2. As is seen from eq. (38) this pro-
duct is positive for all wave numbers. Thus, we shall seek
a progressive wave solution to the evolution equation of
the form

’1 ¼ f ðζ Þ exp½iðΩτ � K�Þ�; ζ ¼ cð� þ 2μ1KτÞ; ð39Þ
where f ðζ Þ is a real function of its argument c;Ω and K
are some constants. Introducing eq. (39) into eq. (37) one
has

μ1c
2f 00 � ðΩþ μ1K

2Þf þ μ2f
3=2 ¼ 0: ð40Þ

Here, a prime denotes the differentiation of the corre-
sponding quantity with respect to ζ . Since the coefficients
μ1 and μ2 satisfy the inequality μ1μ2 >0, the solution for
f ðζ Þ may be given by

f ðζ Þ ¼ a sech4ζ ; ð41Þ
where a is the constant amplitude of the solitary wave
and other quantities are defined by

c ¼ μ2
20μ1

� �1=2

a1=4; Ω ¼ 4μ2
5

a1=2 � μ1K
2: ð42Þ

This result shows that the NLS equation with ð3=2Þth
order nonlinearity assumes the envelope solitary wave
solution as given in eq. (41). One should also note that
the frequency of the harmonic wave is proportional to the
square root of the solitary wave amplitude.

4 Conclusions

In the present work, employing a one-dimensional model
of a plasma composed of a cold electron fluid, hot elec-
trons obeying a trapped/vortex-like distribution and sta-
tionary ions, we studied the amplitude modulation of
electron-acoustic waves. Due to the nature of the physics
of the problem the nonlinearity of the field equations is of
fractional order (3/2), which causes serious difficulties in
studying modulation problems. To surmount this diffi-
culty, we expanded this nonlinear term of fractional

order into Fourier cosine series of the phase function
and obtained the NLS equation of the same fractional
order of nonlinearity as the evolution equation. Seeking
a harmonic wave with progressive amplitude to the evo-
lution equation it is found that the NLS equation with
fractional order of nonlinearity assumes an envelope type
of solitary wave solution.
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