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STABILITY ANALYSIS OF A FRACTIONAL ORDER

CORONAVIRUS(COVID-19) EPIDEMIC MODEL

M. KHUDDUSH1∗, K. R. PRASAD2, §

Abstract. In this paper a six-compartmental coronavirus(COVID-19) epidemic model
is developed. We have divided the total population into five classes, namely susceptible,
exposed, infected, treatment, recovered and the concentration of the coronavirus in the
environment reservoir class. The basic reproduction number R0 is calculated using the
next-generation matrix method. The stability analysis of the model shows that the
system is locally asymptotically stable at the disease-free equilibrium (DFE) E0 when
R0 < 1. When R0 > 1, an endemic equilibrium E ∗ exists and the system becomes locally
asymptotically stable at E ∗ under some conditions.

Keywords: Coronavirus(COVID-19); Caputo fractional derivative; reproduction number,
next-generation matrix.
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1. Introduction

Coronavirus comprises a large family of viruses that are common in human beings as well
animals (camels, cattle, cats, and bats). There are seven different strains of coronavirus
namely 229E (alpha coronavirus), NL63 (alpha coronavirus), OC43 (beta coronavirus),
HKU1 (beta coronavirus), MERS-CoV (the beta coronavirus that causes Middle East
Respiratory Syndrome, or MERS), SARS-CoV (the beta coronavirus that causes severe
acute respiratory syndrome, or SARS), SARS-CoV-2 (the novel coronavirus that causes
coronavirus disease 2019, or COVID-19) for more details see [1].

Sometimes coronavirus from animals infect people and spread further via human to
human transmission such as with MERS-CoV, SARS-CoV, and now with this COVID
19 (Corona disease 2019). The virus that causes COVID-19 is designated severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2); previously, referred to as 2019-nCoV.
Towards December 2019, this novel coronavirus was identified as a cause of upper and lower
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respiratory tract infections in Wuhan, a city in the Hubei province of China. It rapidly
spread, resulting in an epidemic throughout China and then gradually spreading to other
parts of the world in pandemic proportions. It has affected almost every continent in this
world, except Antarctica. In February 2020, the world health organization designated the
disease COVID-19, which stands for coronavirus disease 2019 (see [11]).

Several factors complicate the infection dynamics of COVID-19 and add challenges to
the disease control. First, the origin of the infection is still uncertain, although it is widely
speculated that wild animals such as bats, civets and minks are responsible for starting
the epidemic [28]. Second, clinical evidence shows that the incubation period of this dis-
ease ranges from 2 to 14 days. During this period of time, infected individuals may not
develop any symptoms and may not be aware of their infection, yet they are capable of
transmitting the disease to other people [18]. Researchers suggested many mathematical
models to analyze the dynamical behavior and spread of the novel virus which can help to
predict the future situation and even control of the COVID-19 pandemic. In the analysis of
mathematical models of coronavirus, the basic reproductive number has a significant role
in describing the nonlinear dynamics of physical and biological engineering problems. The
basic reproduction number indicates that COVID-19 has been continuously increasing or
has been controlled. In [25], Wu et al., proposed SEIR model to describe the transmission
dynamics, and estimated that the basic reproduction number for COVID-19 was about
2.68. In [17] Read et al. reported a value of 3.1 for the basic reproduction number based
on data fitting of an SEIR model, using an assumption of Poisson-distributed daily time
increments. In [23], Tang et al., proposed a deterministic compartmental model incorpo-
rating the clinical progression of the disease, the individual epidemiological status, and the
intervention measures and estimated the reproduction number could be as high as 6.47,
and reported that the quarantine and isolation can effectively reduce the control repro-
duction number and the transmission risk. More recently, Yang and wang [27] proposed a
COVID-19 model with multiple transmission pathways in the infection dynamics, and em-
phasizes the role of the environmental reservoir in the transmission and spread of disease.
Through data fitting, they obtained an estimate of basic reproduction number, R0 = 4.25.
The recent works on Covid-19 outbreak can be found in [3,4,12,21] and references therein.

The rest of the paper is organized in the following fashion. In Section 2, mathematical
formulation of the model is discussed. In Section 3, useful lemmas and basic properties
of the model are discussed. In Section 4, the basic reproduction number R0 is calculated
using the next-generation matrix method and locally asymptotically stable at the disease-
free equilibrium (DFE) E0 when R0 < 1. When R0 > 1, an endemic equilibrium E ∗ exists
and the system becomes locally asymptotically stable at E ∗ under some conditions are
discussed. Finally, as an application, numerical siummulations are provided.

2. Mathematical Formulation of the Model

Following the work in [27], where the authors developed a framework for understanding
the impact of environmental reservoir in the transmission and spread of disease, we use the
same model with adding treatment compartment. We divide the total human population
into five compartments: the susceptible S, the exposed E (individuals in this class are
in the incubation period; they do not show symptoms but are still capable of infecting
others), the infected I (individuals in this class have fully developed disease symptoms and
can infect other people), the infected population in treatment T, the recovered R and the
concentration of the coronavirus in the environment reservoir V19. We study the following
model which describes the transmission dynamics of the Covid-19 epidemic:
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CDa
0+S(t) =π− f(E)SE− g(I)SI− h(T)ST− `(V19)SV19 − δS

CDa
0+E(t) = f(E)SE + g(I)SI + h(T)ST + `(V19)SV19 − [ε + δ]E

CDa
0+I(t) = εE− [τ + η + δ]I

CDa
0+T(t) = τI− [%+ µ + δ]T

CDa
0+R(t) = %T− δR

CDa
0+V19(t) =αE + βI + γT− σV19,


(C19)

where CDa
0+ denotes the Caputo fractional derivative of order 0 < a ≤ 1. The parameters

of the model are described in Table 1.

Table 1. Parameter description and estimates for COVID-19 in Wuhan,
China

Parameter
symbols

Parameter description Value Sou-
rce

π the population influx 271.23 /day [2]
δ natural death rate of population 3.01×10−5

/day
[2]

1/ε incubation period 7 days [22]
τ the proportion of infective population

who enter treatment
1.8887×
10−7/day

[23]

η disease-related death rate of infective
population who are not in treatment

0.01/day [2]

µ disease-related death rate of infective
population who are in treatment

1.7826×
10−5/day

[23]

% recovery rate of infective population
in treatment

1
15/day [22]

α rate of the exposed individuals contributing
the coronavirus to the environmental reservoir

2.3 /per-
son/day

[27]

β rate of the infected individuals contributing
the coronavirus to the environmental reservoir

0 /per-
son/day

[27]

γ rate of the infected individuals who are
in treatment contributing the coronavirus to
the environmental reservoir

0 /per-
son/day

As-
sumed

σ the removal rate of the coronavirus
from the environment

01
per day

[8]

A schematic representation of the model (C19) is shown in the following Fig. 1. The
functions f(E), g(I) and h(T) represent the direct, human-to-human transmission rates
between the exposed and susceptible individuals, between the infected and susceptible
individuals, and between the infected population in the treatment and susceptible individ-
uals, respectively, and the function `(V19) represents the indirect, environment-to-human
transmission rate. We assume that f(E), g(I), h(T) and `(V19) are all functions such that
the higher values of E, I, T and V19 would motivate stronger control measures that could
reduce the transmission rates.

We will investigate the system (C19) subject to the initial conditions

S(0) = S0 > 0, E(0) = E0 > 0, I(0) = I0 > 0,
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Figure 1. Schematic representation of the mathematical model (C19)

T(0) = T0 > 0, R(0) = R0 > 0, V19(0) = V0 > 0.

We make the following assumptions hold throughout the paper:

(C1) The functions f(E), g(I), h(T) and `(V19) are all positive.
(C2) The derivatives CDa

0+f(E) ≤ 0, CDa
0+g(I) ≤ 0, CDa

0+h(T) ≤ 0 and CDa
0+`(V19) ≤ 0.

In epidemiology, many works involving fractional order derivative have been done, and
most of them are mainly concerned with SIR-type models with linear incidence rate [7,9,
15,20]. In [19] Saeedian et al., studied the memory effect of an SIR epidemic model using
the Caputo fractional derivative and showed that the memory effect plays an essential role
in the spreading of diseases. Therefore, our model generalizes [7, 9, 15,19,20].

3. Basic Properties

In this section we provide some definitions, lemmas and basic properties of solutions of
the model (C19).
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Definition 3.1. [13,16] The Riemann-Liouville fractional integral of order γ for a func-
tion f is defined as

Ia0+f(t) :=
1

Γ(γ)

∫ t

0
(t− s)a−1f(s)ds, a > 0.

Definition 3.2. [13, 16] For a function f given on the interval [0,+∞), the Caputo
derivative of fractional order a for the function f continuous on (0,+∞) is defined as

CDa
0+f(t) =

1

Γ(m− a)

∫ t

0
(t− s)m−a−1f (m)(s)ds, m = [a] + 1,

where [a] denotes the integer part of a.

Lemma 3.1. [6] Consider the initial value problem of multi-order fractional order dif-
ferential system in the Caputo sense,

CDai
0+
xi(t) = Fi

(
t, x1(t), x2(t), · · · , xn(t)

)
, 0 < ai ≤ 1, t ∈ [0,T], i = 1, 2, · · · , n, (1)

with initial conditions,
xi(0) = ci, i = 1, 2, · · · , n. (2)

Assume that the functions Fi : [0,T]×Rn → R, i = 1, 2, · · · , n are continuous and satisfy
Lipschitz conditions with respect to all their arguments except for the first. Then the initial
value problem (1)-(2) admits a unique continuous solution.

Lemma 3.2. [14] Suppose that ϕ(t) ∈ C[a, b] and CDα
a+ϕ(t) ∈ C[a, b] for 0 < α ≤ 1,

ϕ(t) = ϕ(a) +
1

Γ(α)
CDα

a+ϕ(c)(t− a)α, a < c < t, ∀ t ∈ (a, b].

Lemma 3.3. [14] Suppose that ϕ(t) ∈ C[a, b] and CDα
a+ϕ(t) ∈ C[a, b] for 0 < α ≤ 1.

If CDα
a+ϕ(t) ≥ 0 ∀ t ∈ [a, b], then ϕ(t) is nondecreasing for each t ∈ [a, b]. If CDα

a+ϕ(t) ≤
0 ∀ t ∈ [a, b], then ϕ(t) is nonincreasing for each t ∈ [a, b].

Lemma 3.4. [16] Let a, b be positive real numbers and c be a complex number. The
Laplace transform of

x(t) = tb−1Ea,b(±cta),
where Ea,b(z) is the two parameter Mittag-Leffler function with parameters a and b, is
given by

x̂(λ) =
λa−b

λa ∓ c
. (3)

In particular,

L(taEa,a+1(−δta)) =
λ−1

λa + δ
, (4)

L(Ea,1(−δta)) =
λa−1

λa + δ
. (5)

Lemma 3.5. [16] Let a and b be real numbers with a < 2. Then there exits a constant
CE such that

|Ea,b(z)| ≤
CE

1 + |z|
for all z ∈ C.

Theorem 3.1. Let ℘ =
{

(S, E, I, T, R, V19) ∈ R6 : max{|S|, |E|, |I|, |T|, |R|, |V19|}< K
}
,

where K is sufficiently large number. Further, suppose the following hold:

(i) |f(E)− f(Ē)| ≤ |E− Ē|,
(ii) |g(I)− g(Ī)| ≤ |I− Ī|,
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(iii) |h(T)− h(T̄)| ≤ |T− T̄|,
(iv) |`(V19)− `(V̄19)| ≤ |V19 − V̄19|.

Then the system (C19) has a unique continuous solution on [0,T]× ℘, where T < +∞.

Proof. Let

F1(t, S, E, I, T, R, V19) =π− f(E)SE− g(I)SI− h(T)ST− `(V19)SV19 − δS,

F2(t, S, E, I, T, R, V19) = f(E)SE + g(I)SI + h(T)ST + `(V19)SV19 − [ε + δ]E,

F3(t, S, E, I, T, R, V19) = εE− [τ + η + δ]I,

F4(t, S, E, I, T, R, V19) = τI− [%+ µ + δ]T,

F5(t, S, E, I, T, R, V19) = %T− δR,

F6(t, S, E, I, T, R, V19) =αE + βI + γT− σV19.

Now, we show that each Fi satisfies the Lipschitz condition with respect to each of its
arguments except for the first. For any (S, E, I, T, R, V19) ∈ ℘ and (S̄, Ē, Ī, T̄, R̄, V̄19) ∈ ℘, we
have

|F1(S, E, I, T, R, V19)− F1(S̄, Ē, Ī, T̄, R̄, V̄19)|
≤ |f(E)SE− f(Ē)S̄Ē|+ |g(I)SI− g(Ī)S̄Ī|+ |h(T)ST− h(T̄)S̄T̄|

+ |`(V19)SV19 − `(V̄19)S̄V̄19|+ δ|S− S̄|
≤ |f(E)− f(Ē)||S||E|+ f(Ē)|SE− S̄Ē|+ |g(I)− g(Ī)||S||I|+ g(Ī)|SI− S̄Ī|

+ |h(T)− h(T̄)||S||T|+ h(T̄)|ST− S̄T̄|+ |`(V19)− `(V̄19)||S||V19|
+ `(V̄19)|SV19 − S̄V̄19|+ δ|S− S̄|.

Since

|SE− S̄Ē| ≤ |S||E− Ē|+ |E||S− S̄| ≤ K (|E− Ē|+ |S− S̄|) . (6)

Similarly, we can have

|SI− S̄Ī| ≤ K (|I− Ī|+ |S− S̄|) , (7)

|ST− S̄T̄| ≤ K (|T− T̄|+ |S− S̄|) , (8)

and

|SV19 − S̄V̄19| ≤ K (|V19 − V̄19|+ |S− S̄|) . (9)

Therefore, from the above inequalities (6)-(9), and (i), (ii), (iii) and (iv), we have

|F1(S, E, I, T, R, V19)− F1(S̄, Ē, Ī, T̄, R̄, V̄19)|
≤ |f(E)− f(Ē)||S||E|+ |g(I)− g(Ī)||S||I|+ |h(T)− h(T̄)||S||T|+ |`(V19)− `(V̄19)||S||V19|

+ [Kf(Ē) +Kg(Ī) +Kh(T̄) +K`(V̄19) + δ]|S− S̄|
+Kf(Ē)|E− Ē|+Kg(Ī)|I− Ī|+Kh(T̄)|T− T̄|+K`(V̄19)|V19 − V̄19|
≤ [Kf(Ē) +Kg(Ī) +Kh(T̄) +K`(V̄19) + δ]|S− S̄|+ [|S||E|+Kf(Ē)]|E− Ē|

+ [|S||I|+Kg(Ī)]|I− Ī|+ [|S||T|+Kh(T̄)]|T− T̄|+ [|S||V19|+K`(V̄19)]|V19 − V̄19|
≤ [Kf(E0) +Kg(I0) +Kh(T0) +K`(V0) + δ]|S− S̄|+ [K2 +Kf(E0)]|E− Ē|

+ [K2 +Kg(I0)]|I− Ī|+ [K2 +Kh(T0)]|T− T̄|+ [K2 +K`(V0)]|V19 − V̄19|
≤
[
K2 +Kf(E0) +Kg(I0) +Kh(T0) +K`(V0) + δ

]
×
[
|S− S̄|+ |E− Ē|+ |I− Ī|+ |T− T̄|+ |R− R̄|+ |V19 − V̄19|

]
.
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In similar fashion, we can check for the rest of the functions. Hence, Fi(t, S, E, I, T, R, V19),
i = 1, 2, 3, 4, 5, 6 satisfy the Lipschitz condition on ℘. Consequently, according to Lemma
3.1, the system (C19) has a unique continuous solution on [0,T]× ℘. �

Theorem 3.2. All solutions of the system (C19) that start in R6
+ are nonnegative.

Proof. From (C19), we have

CDa
0+S(t)|S=0 =π ≥ 0,

CDa
0+E(t)|E=0 = g(I)SI + h(T)ST + `(V19)SV19 ≥ 0,

CDa
0+I(t)|I=0 = εE ≥ 0,

CDa
0+T(t)|T=0 = τI ≥ 0,

CDa
0+R(t)|R=0 = %T ≥ 0,

CDa
0+V19(t)|V19=0 =αE + βI + γT ≥ 0.

Therefore, from Lemmas 3.1 and 3.2, all solutions of the system (C19) that start in R6
+

are nonnegative. �

Theorem 3.3. The closed set

Ω =

{
(S, E, I, T, R, V19) ∈ R6 : 0 ≤ S + E + I + T + R ≤ N, 0 ≤ V19 ≤ N̂,

where N ≥ π

δ
CE, N̂ ≥

(α + β + γ)N

σ
ĈE
}

is an attracting set of the system (C19), where CE and ĈE are constants defined in Lemma
3.5.

Proof. Let M(t) = S(t) + E(t) + I(t) + T(t) + R(t) and adding first five equations of (C19),
we obtain

CDa
0+M(t) =π− δM(t)− ηI− µT

≤π− δM(t).

Applying Laplace transform, we have

λaL(M(t))− λa−1M(0) ≤ πλ−1 − δL(M(t)),

i.e., (λa + δ)L(M(t)) ≤ πλ−1 + λa−1M(0).

Now by using the Laplace transform properties (4) and (5), we get

L(M(t)) ≤ πλ−1

λa + δ
+

λa−1

λa + δ
M(0)

≤πL(taEa,a+1(−δta)) + M(0)L(Ea,1(−δta)).

By inverse Laplace transform, we get

M(t) ≤ π taEa,a+1(−δta) + M(0)Ea,1(−δta).

Furthermore, by Lemma 3.5, we have

|M(t)| ≤ π taCE
1 + δta

+
M(0)CE
1 + δta

.

As t→∞, |M(t)| ≤ N, where N ≥ π

δ
CE.
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Next, from the last equation of the system (C19), we have

CDa
0+V19(t) =αE + βI + γT− σV19

≤ (α + β + γ)(S(t) + E(t) + I(t) + T(t) + R(t))− σV19

≤ (α + β + γ)N− σV19.

Similar to the above argument, we get |V19(t)| ≤ N̂, where N̂ ≥ (α + β + γ)N

σ
ĈE. Hence,

the closed set Ω is attracting all solutions of the system (C19). �

4. Basic Reproduction Number

In this section, we derive the basic reproduction number by the general compartment
method [24] and also using the notation of Van den Driessche and James Watmough [24].
The matrices F and V are respectively the rate of appearance of new infections and
the rate of transfer from the group of infections. Also the matrices F and V stand for
the new infection terms and the remaining terms respectively. The basic reproduction
number is found by R0 = ρ(FV−1) where ρ(FV−1) is the spectral radius of the matrix
FV−1. The basic reproduction number R0 represents the average number of secondary
infections caused by a single infectious in an entirely susceptible population during entire
infection period. If R0 < 1, the number of infectives caused by a single infective less than
1. Then the infectious disease gradually dies out from the population. On the other hand
if R0 > 1, the number of infectives caused by a single infective is greater than 1. Then
there is a large outbreak of the infectious disease.

Let x = (S, E, I, T, R, V19), then the system (C19) can be written as

CDa
0+x(t) = F (x)− V (x),

where

x =


E

I

T

R

V19
S

 , F (x) =


f(E)SE + g(I)SI + h(T)ST + `(V19)SV19

0
0
0
0
0

 ,

and

V (x) =


[ε + δ]E

[τ + η + δ]I− εE
[%+ µ + δ]T− τI

δR− %T
σV19 − (αE + βI + γT)

δS + f(E)SE + g(I)SI + h(T)ST + `(V19)SV19 − π

 .

Therefore,

F = Jacobian of F at disease-free equilibrium =


f(0)S0 g(0)S0 h(0)S0 `(0)S0

0 0 0 0
0 0 0 0
0 0 0 0

 and

V = Jacobian of V at disease-free equilibrium =


ε + δ 0 0 0
−ε $1 0 0
0 −τ $2 0
−α −β −γ σ

 ,
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where $1 = τ + η + δ and $2 = %+ µ + δ. So, the next generation matrix for the system
is

FV−1 =


A B C D
0 0 0 0
0 0 0 0
0 0 0 0

 ,

where

A =
f(0)S0
ε + δ

+
g(0)S0ε

(ε + δ)$1
+

h(0)S0ετ

(ε + δ)$1$2
+
`(0)S0($1$2α +$2βε + εγτ)

(ε + δ)$1$2σ
,

B =
g(0)S0
$1

+
h(0)S0τ

$1$2
+
`(0)S0($2β + γτ)

$1$2σ
,

C =
h(0)S0
$2

+
`(0)S0γ

$2σ
,

D =
`(0)S0

σ
,

and the eigenvalues of FV−1 are 0, 0, 0, A. Therefore, the basic reproduction number

R0 = the spectral radius of FV−1, i.e., ρ(FV−1)
= the dominant eigenvalue of FV−1

=A

=
f(0)S0
ε + δ

+
g(0)S0ε

(ε + δ)$1
+

h(0)S0ετ

(ε + δ)$1$2
+
`(0)S0($1$2α +$2βε + εγτ)

(ε + δ)$1$2σ

:= R1 + R2 + R3 + R4,

which provides a quantification of the disease risk. The first three parts R1, R2 and R3

measure the contributions from the human-to-human transmission routes i.e., exposed-
to-susceptible, infected-to-susceptible and infected persons in treatment-to-susceptible re-
spectively, and the third part R4 represents the contribution from the environment-to-
human transmission route. These four transmission modes collectively shape the overall
infection risk for the COVID-19 outbreak.

Theorem 4.1. The disease-free equilibrium E0(π/δ, 0, 0, 0, 0, 0) of the model (C19) is glob-
ally asymptotically stable if R0 < 1.

Proof. Let U = (E, I, T, V19)
T . Then from (C19), we have

CDa
0+U =


f(E)S g(I)S h(T)S `(V19)S

0 0 0 0
0 0 0 0
0 0 0 0

 U−


ε + δ 0 0 0
−ε $1 0 0
0 −τ $2 0
−α −β −γ σ

 U

≤ (F − V)U.

After certain calculations, we obtained that ρ(FV−1) = ρ(V−1F) = R0.
Next, let ϑ = (f(0), g(0), h(0), `(0)). Then it can be seen that ϑ is the left eigenvector

of V−1F corresponding to the eigenvalue R0. That is ϑ
(
V−1F

)
= R0ϑ.

Consider the Lyapunov function,

L = ϑV−1U.
Then by differentiating, we get

CDa
0+L = ϑV−1(CDa

0+U) ≤ ϑV−1(F − V)U = ϑ(R0 − 1)U. (10)
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If R0 < 1, the equality CDa
0+L = 0 implies from (10) that ϑU = 0. Since components of

ϑ are positive, it follows that E = I = T = V19 = 0. So, when R0 < 1, we have S = S0,
and E = I = T = V19 = 0. Thus, the invariant set on which CDa

0+L = 0 contains only the
point E0.

If R0 = 1, then CDa
0+L = 0 gives

[f(E)S

S0
+
g(I)η

$1
+
h(T)ητ

$1$2
+
`(V19)($1$2α +$2βη + ηγτ)

$1$2σ
− η + δ

S0

]
E

+
[g(I)S

S0
− g(0)

]
I +

[h(T)S

S0
− h(0)

]
T +

[`(V19)S
S0

− `(0)
]
V19 = 0.

Since g(I)S
S0
≤ g(0), h(T)S

S0
≤ h(0), `(V19)S

S0
≤ `(0) and

f(E)S

S0
+
g(I)η

$1
+
h(T)ητ

$1$2
+
`(V19)($1$2α +$2βη + ηγτ)

$1$2σ
− η + δ

S0
≤ η + δ

S0

[
R0 − 1

]
= 0,

it follows that E = I = T = V19 = 0 or f(E) = f(0), g(I) = g(0), h(T) = h(0), `(V19) = `(0)
and S = S0. From the above arguments, we conclude that the largest invariant set of
{(S, E, I, T, R, V19) : CDa

0+L = 0} is the singleton {E0}. Consequently, from Lemma 4.6
in [10], E0 is globally asymptotically stable. �

Theorem 4.2. If R0 > 1, then the endemic equilibrium E ∗ of the model (C19) is globally
asymptotically stable.

Proof. Let

L(y) = y∗ϕ(y),

where ϕ(y) = y–1– ln(y), y > 0. It is clear that ϕ(y) ≥ 0. Then by Lemma 3.1 in [5], we
have

CDa
0+L(S) =

[
S− S∗

S

]
CDa

0+S

≤
[
S− S∗

S

] [
f∗(E)S∗E∗ − f(E)SE + g∗(I)S∗I∗ − g(I)SI + h∗(T)S∗T∗ − h(T)ST

+ `∗(V19)S
∗V∗19 − `(V19)SV19

]
≤ f∗(E)S∗E∗

[S− S∗

S
+

S− S∗

S

f(E)SE

f∗(E)S∗E∗

]
+ g∗(I)S∗I∗

[S− S∗

S
+

S− S∗

S

g(I)SI

g∗(I)S∗I∗

]
+ h∗(T)S∗T∗

[S− S∗

S
+

S− S∗

S

h(T)ST

h∗(T)S∗T∗

]
+ `∗(E)S∗E∗

[S− S∗

S
+

S− S∗

S

`(V19)SV19
`∗(V19)S∗V∗19

]
≤ f∗(E)S∗E∗

[
1− S∗

S
− f(E)SE

f∗(E)S∗E∗
+

f(E)E

f∗(E)E∗

]
+ g∗(I)S∗I∗

[
1− S∗

S
− g(I)SI

g∗(I)S∗I∗
+

g(I)I

g∗(I)I∗

]
+ h∗(T)S∗T∗

[
1− S∗

S
− h(T)ST

h∗(T)S∗T∗
+

h(T)T

h∗(T)T∗

]
+ `∗(V19)S

∗V∗19

[
1− S∗

S
− `(V19)SV19
`∗(V19)S∗E∗

+
`(V19)V19
`∗(V19)V∗19

]
,
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and

CDa
0+L(E) =

[
E− E∗

E

]
CDa

0+E

=

[
E− E∗

E

] [
f(E)SE + g(I)SI + h(T)ST + `(V19)SV19 − [ε + δ]E

]
≤ f∗(E)S∗E∗

[
1− E

E∗
+

f(E)SE

f∗(E)S∗E∗
− f(E)S

f∗(E)S∗

]
+ g∗(I)S∗I∗

[
1− E

E∗
− g(I)SE∗I

g∗(I)S∗EI∗
+

g(I)SI

g∗(I)S∗I∗

]
+ h∗(T)S∗T∗

[
1− E

E∗
− h(T)SE∗T

h∗(T)S∗ET∗
+

h(T)ST

h∗(T)S∗T∗

]
+ `∗(V19)S

∗V∗19

[
1− E

E∗
− `(V19)SV19E

∗

`∗(V19)S∗V∗19E
+

`(V19)V19S

`∗(V19)V∗19S
∗

]
.

Now adding above two inequalities and using the same technique of [27], we obtain

CDa
0+L(S) + CDa

0+L(E) ≤ g∗(I)I∗S∗
[
I

I∗
− E

E∗
− ln

(
I

I∗

)
+ ln

(
E

E∗

)]
+ h∗(T)T∗S∗

[
T

T∗
− E

E∗
− ln

(
T

T∗

)
+ ln

(
E

E∗

)]
+ `∗(V19)V

∗
19S
∗
[
V19

V∗19
− E

E∗
− ln

(
V19

V∗19

)
+ ln

(
E

E∗

)]
.

Similarly, we have

CDa
0+L(I) ≤ εE∗

[
E

E∗
− I

I∗
+ ln

(
I

I∗

)
− ln

(
E

E∗

)]
,

CDa
0+L(T) ≤ τI∗

[
I

I∗
− T

T∗
+ ln

(
T

T∗

)
− ln

(
I

I∗

)]
,

CDa
0+L(V19) ≤ αE∗

[
E

E∗
− V19

V∗19
+ ln

(
V19

V∗19

)
− ln

(
E

E∗

)]
+ βI∗

[
I

I∗
− V19

V∗19
+ ln

(
V19

V∗19

)
− ln

(
I

I∗

)]
+ γT∗

[
T

T∗
− V19

V∗19
+ ln

(
V19

V∗19

)
− ln

(
T

T∗

)]
.

Finally, we consider a Lyapunov function F for the system (C19) as

LF = L(S) + L(E) + κ1L(I) + κ2L(T) + κ3L(V19),

where

κ1 =
g∗(I)I∗S∗

εE∗
+
h∗(T)T∗S∗

εE∗
+

(τ +$2β)`∗(V19)V
∗
19S
∗

(α$1$2 + βε$2 + γτε)E∗
,

κ2 =
h∗(T)T∗S∗

τI∗
+

`∗(V19)V
∗
19S
∗$1

(α$1$2 + βε$2 + γτε)E∗
,

κ3 =
`∗(V19)V

∗
19S
∗$1$2

(α$1$2 + βε$2 + γτε)E∗
.
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Table 2. Estimates for maximum values of the transmission rates

Parameter
symbols

Value Source

f(E0) 3.11× 10−8/person/day [23]
g(I0) 0.02× 10−8/person/day [23]
h(T0) 0.13× 10−8/person/day [23]
`(V0) 1.03× 10−8/person/day [27]
r 1.01× 10−4 [27]

Then, it is clear from the definition of L(y) that LF ≥ 0 and

CDa
0+LF ≤

[
g∗(I)I∗S∗ + h∗(T)T∗S∗ + `∗(V19)V

∗
19S
∗ − κ1εE∗ − κ3αE∗

] [
ln

(
E

E∗

)
− E

E∗

]
+
[
g∗(I)I∗S∗ − κ1εE∗ + κ2τI

∗ + κ3βI
∗] [ I

I∗
− ln

(
I

I∗

)]
+
[
h∗(T)T∗S∗ − κ2τI∗ + κ3γT

∗] [ T

T∗
− ln

(
T

T∗

)]
+
[
`∗(V19)V

∗
19S
∗ − κ3(αE∗ + βI∗ + γT∗)

] [V19
V∗19
− ln

(
V19

V∗19

)]
≤ 0.

Therefore, CDa
0+LF ≤ 0, if and only if (S, E, I, T, V19) = (S∗, E∗, I∗, T∗, V∗19). Furthermore,

the largest invariant set of
{

(S, E, I, T, V19) ∈ R5 : CDa
0+LF = 0

}
is only the singleton {E ∗}.

Hence, by LaSalle’s invariance principle [10], E ∗ is globally asymptotically stable. �

5. Numerical Simulations

We now apply our model to study the COVID-19 outbreak in the city of Wuhan, based
on sources available by WHO and [8, 22, 23, 27]. We implement our model and conduct
numerical simulation for an epidemic period starting from Jan 23-July 27, 2021.

To conduct the numerical simulation, we consider the following functions(see [26]) for
the four transmission rates in our model.

f(E) =
f(E0)

1 + rE
, g(I) =

g(I0)

1 + rI
, h(T) =

h(T0)

1 + rT
, `(V19) =

`(V0)

1 + rV19
,

where the positive constants f(E0), g(I0), h(T0) and `(V0) denote the maximum values of
these transmission rates, and r is a positive constant and whose value are listed in the
Table 2. From the tabular values, we get

R1 = 1.961273503,R2 = 0.1796372041,R3 = 0.3305611304× 10−5,R4 = 1.493973290.

Thetrefore, the basic reproduction number R0 = 3.634887303. Among these four com-
ponents, the largest one R1 comes from the exposed-to-susceptible transmission, since
exposed individuals show no symptoms and can easily spread the infection to other peo-
ple with close contact, often in an unconscious manner. The smallest component R3

comes from infected persons in treatment-to-susceptible and R2 comes from the infected-
to-susceptible transmission, possibly due to the strict isolation policy on the symptomatic
infected individuals. In addition, we observe that R4 = 1.493973290, showing a significant
contribution from the environmental reservoir toward the overall infection risk.
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Figure 2. Dynamics of model (C19)

6. Conclusion

In this study, the nonlinear mathematical model was proposed and analyzed to under-
stand the dynamics of the COVID-19 pandemic. The equilibrium point relating to the
formulated model was computed. Using the next generation matrix approach, the basic
reproduction number denoted as relating to the model was also computed. Moreover, this
study also showed that if the R0 is denoted as R0 < 1, then the pandemic will die out.
However, if R0 < 1, then the pandemic will remain in the population. Additionally, the
global asymptotical stability of the disease-free and endemic equilibrium points has been
proved. Numerical simulations were carried out to support the model analysis. The real
data were also fitted to the model for predicting the infected population cases in real life.
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