ON THE COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT FUNCTIONS BY USING SĂLĂGEAN DIFFERENTIAL OPERATORS

A. MOTAMEDNEZHAD ${ }^{1}$, §

Abstract

Making use of Sǎlăgean differential operator, in this paper, we introduce and investigate an interesting subclass $S_{\Sigma}^{h, p}(k, \lambda)$ of bi-univalent functions in the open unit disk \mathbb{U}. Furthermore, we find estimates on the $\left|a_{2}\right|$ and $\left|a_{3}\right|$ coefficients for functions in this subclass. The results presented in this paper would generalize and improve some recent works.

Keywords: bi-univalent functions, coefficient estimates, univalent functions, Sǎlăgean differential operator.

AMS Subject Classification: 30C45, 30C50.

1. Introduction

Let \mathcal{A} be a class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. Also we let \mathcal{S} to denote the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}.
Some of the important and well-investigated subclasses of the univalent function class \mathcal{S} include (for example) the class $\mathcal{S}^{*}[\alpha]$ of starlike functions of order α in \mathbb{U} and the class $\mathcal{K}[\alpha]$ of convex functions of order α in \mathbb{U}. By definition, we have

$$
\mathcal{S}^{*}[\alpha]=\left\{f: f \in \mathcal{S}, \mathfrak{R}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \mathbb{U}, 0 \leq \alpha<1\right\}
$$

and

$$
\mathcal{K}[\alpha]=\left\{f: f \in \mathcal{S}, \mathfrak{R}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbb{U}, 0 \leq \alpha<1\right\}
$$

[^0]The Koebe one-quarter Theorem [6] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. So every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdot \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U} (see[13]).
Let Σ denote the class of bi-univalent functions defined in \mathbb{U} given by (1).
Examples of functions in the class Σ are

$$
\frac{z}{1-z},-\log (1-z), \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

and so on. However, the familiar Koebe function $\left(\frac{z}{(1-z)^{2}}\right)$ is not a member of Σ. Other common examples of functions in \mathcal{S} such as

$$
z-\frac{z^{2}}{2} \text { and } \frac{z}{1-z^{2}}
$$

are also not members of Σ.
Lewin [8] investigated the class Σ of bi-univalent functions and showed that $\left|a_{2}\right|<1.51$ for the functions belonging to Σ. Subsequently, Brannan and Clunie [2] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Netanyahu [10], on the other hand, showed that $\max _{f \in \Sigma}\left|a_{2}\right|=\frac{4}{3}$.
Various subclasses of the bi-univalent functions class Σ were introduced and non-sharp estimates on the first two coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$ in the Taylor-Maclaurin series expansion (1) were found in several recent investigations (see, for example, $[1,3,12,13,17,19]$).

In 1983, Sǎlǎgean [11] introduced differential operator $D^{k}: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
D^{k} f(z)=D\left(D^{k-1}\right) f(z)=z\left(D^{k-1} f(z)\right)^{\prime}, k=1,2,3, \ldots
\end{gathered}
$$

We note that

$$
D^{k} f(z)=z+\sum_{n=2}^{\infty} n^{k} a_{n} z^{n}, k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}
$$

Jothibasu [7] introduced the following two subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses.
Definition 1.1. (see [7]) Let $0 \leq \alpha<1,0 \leq \lambda<1$ and $k \in \mathbb{N}_{0}$. A function $f(z)$ given by (1) is said to be in the class $\mathcal{S}_{\Sigma}^{k, \lambda}(\alpha)$ if the following conditions are satisfied:

$$
f \in \Sigma \text { and }\left|\arg \left(\frac{D^{k+1} f(z)}{(1-\lambda) D^{k} f(z)+\lambda D^{k+1} f(z)}\right)\right|<\frac{\alpha \pi}{2}(z \in \mathbb{U})
$$

and

$$
\left|\arg \left(\frac{D^{k+1} g(w)}{(1-\lambda) D^{k} g(w)+\lambda D^{k+1} g(w)}\right)\right|<\frac{\alpha \pi}{2}(w \in \mathbb{U})
$$

where the function g is given by (2).
Remark 1.1. Taking $\lambda=0$ in the class $\mathcal{S}_{\Sigma}^{k, \lambda}(\alpha)$, we have $\mathcal{S}_{\Sigma}^{k, 0}(\alpha)=\mathcal{S}_{\Sigma}^{k}(\alpha)$ and $f \in \mathcal{S}_{\Sigma}^{k}(\alpha)$ if the following conditions are satisfied:

$$
f \in \Sigma \text { and }\left|\arg \left(\frac{D^{k+1} f(z)}{D^{k} f(z)}\right)\right|<\frac{\alpha \pi}{2}(0 \leq \alpha<1, z \in \mathbb{U})
$$

and

$$
\left|\arg \left(\frac{D^{k+1} g(w)}{D^{k} g(w)}\right)\right|<\frac{\alpha \pi}{2}(0 \leq \alpha<1, w \in \mathbb{U})
$$

where the function g is given by (2).
We note that for $k=0$ and $\lambda=0$ the class $\mathcal{S}_{\Sigma}^{0,0}(\alpha)=\mathcal{S}_{\Sigma}^{*}[\alpha]$ is class of strongly bi-starlike functions of order $\alpha(0 \leq \alpha<1)$ which defined as following.

Definition 1.2. (see [13]) Let $0 \leq \alpha<1$. A function $f(z)$ given by (1) is said to be in the class $\mathcal{S}_{\Sigma}^{*}[\alpha]$ if the following conditions are satisfied:

$$
f \in \Sigma \text { and }\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2}(z \in \mathbb{U})
$$

and

$$
\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2}(w \in \mathbb{U})
$$

where the function g is given by (2).
When $k=1$ and $\lambda=0$ the class $\mathcal{S}_{\Sigma}^{1,0}(\alpha)=\mathcal{K}_{\Sigma}[\alpha]$ is class of strongly bi-convex functions of order $\alpha(0 \leq \alpha<1)$ which defined as following.

Definition 1.3. (see [13]) Let $0 \leq \alpha<1$. A function $f(z)$ given by (1) is said to be in the class $\mathcal{K}_{\Sigma}[\alpha]$ if the following conditions are satisfied:

$$
f \in \Sigma \text { and }\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\alpha \pi}{2}(z \in \mathbb{U})
$$

and

$$
\left|\arg \left(1+\frac{w g^{\prime \prime}(w)}{g^{\prime}(w)}\right)\right|<\frac{\alpha \pi}{2}(w \in \mathbb{U})
$$

where the function g is given by (2).
Theorem 1.1. (see [7]) Let $f(z)$ given by (1) be in the class $\mathcal{S}_{\Sigma}^{k, \lambda}(\alpha)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{4 \alpha(1-\lambda) 3^{k}+\left[2 \alpha\left(\lambda^{2}-1\right)-(\alpha-1)(1-\lambda)^{2}\right] 2^{2 k}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\alpha}{3^{k}(1-\lambda)}+\frac{4 \alpha^{2}}{2^{2 k}(1-\lambda)^{2}}
$$

Definition 1.4. (see [7]) Let $0 \leq \beta<1,0 \leq \lambda<1$ and $k \in \mathbb{N}_{0}$. A function $f(z)$ given by (1) is said to be in the class $\mathcal{M}_{\Sigma}^{k, \lambda}(\alpha)$ if the following conditions are satisfied:

$$
f \in \Sigma \text { and } \Re\left(\frac{D^{k+1} f(z)}{(1-\lambda) D^{k} f(z)+\lambda D^{k+1} f(z)}\right)>\beta(z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(\frac{D^{k+1} g(w)}{(1-\lambda) D^{k} g(w)+\lambda D^{k+1} g(w)}\right)>\beta(w \in \mathbb{U})
$$

where the function g is given by (2).
Remark 1.2. Taking $\lambda=0$ in the class $\mathcal{M}_{\Sigma}^{k, \lambda}(\beta)$, we have $\mathcal{M}_{\Sigma}^{k, 0}(\beta)=\mathcal{M}_{\Sigma}^{k}(\beta)$ and $f \in \mathcal{M}_{\Sigma}^{k}(\beta)$ if the following conditions are satisfied:

$$
f \in \Sigma \text { and } \mathfrak{R}\left(\frac{D^{k+1} f(z)}{D^{k} f(z)}\right)>\beta(z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(\frac{D^{k+1} g(w)}{D^{k} g(w)}\right)>\beta(w \in \mathbb{U})
$$

where the function g is given by (2).
We note that for $k=0$ and $\lambda=0$ the class $\mathcal{M}_{\Sigma}^{0,0}(\beta)=\mathcal{S}_{\Sigma}^{*}(\beta)$ is class of strongly bistarlike functions of order $\beta(0 \leq \beta<1)$. When $k=1$ and $\lambda=0$ the class $\mathcal{M}_{\Sigma}^{1,0}(\beta)=\mathcal{K}_{\Sigma}(\beta)$ is class of strongly bi-convex functions of order $\beta(0 \leq \beta<1)$.

Theorem 1.2. (see [7]) Let $f(z)$ given by (1) be in the class $\mathcal{M}_{\Sigma}^{k, \lambda}(\beta)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2^{2 k}\left(\lambda^{2}-1\right)+2(1-\lambda) 3^{k}}}
$$

and

$$
\left|a_{3}\right| \leq \frac{(1-\beta)}{3^{k}(1-\lambda)}+\frac{4(1-\beta)^{2}}{2^{2 k}(1-\lambda)^{2}}
$$

The purpose of this paper is to investigate the bi-univalent function class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$ introduced in Definition 2.1 and derive coefficient estimates on the first two Taylor-Maclaurin coefficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Our results for the bi-univalent function class $f \in \mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$ would generalize and improve some recent works of Jothibasu [7] and Brannan and Taha[3].
2. CoEfficient bounds for the function class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$

In this section, we introduce and investigate the general subclass $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$.
Definition 2.1. Let the analytic functions $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\mathfrak{R}(h(z)), \mathfrak{R}(p(z))\}>0(z \in \mathbb{U}) \text { and } h(0)=p(0)=1
$$

Let $0 \leq \lambda<1$ and $k \in \mathbb{N}_{0}$. A function $f \in \mathcal{A}$ given by (1) is said to be in the class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and } \frac{D^{k+1} f(z)}{(1-\lambda) D^{k} f(z)+\lambda D^{k+1} f(z)} \in h(\mathbb{U})(z \in \mathbb{U}) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D^{k+1} g(w)}{(1-\lambda) D^{k} g(w)+\lambda D^{k+1} g(w)} \in p(\mathbb{U})(w \in \mathbb{U}) \tag{4}
\end{equation*}
$$

where the function g is defined by (2).
Remark 2.1. There are many choices of h and p which would provide interesting subclasses of class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$. For example, If we take

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0 \leq \alpha<1,0 \leq \lambda<1, z \in \mathbb{U})
$$

it is easy to verify that the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 2.1. If $f \in \mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$, then

$$
f \in \Sigma \text { and }\left|\arg \left(\frac{D^{k+1} f(z)}{(1-\lambda) D^{k} f(z)+\lambda D^{k+1} f(z)}\right)\right|<\frac{\alpha \pi}{2}(z \in \mathbb{U})
$$

and

$$
\left|\arg \left(\frac{D^{k+1} g(w)}{(1-\lambda) D^{k} g(w)+\lambda D^{k+1} g(w)}\right)\right|<\frac{\alpha \pi}{2}(w \in \mathbb{U})
$$

where the function g is given by (2).
If we take

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1,0 \leq \lambda<1, z \in \mathbb{U})
$$

then the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 2.1. If $f \in \mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$, then

$$
f \in \Sigma \text { and } \mathfrak{R}\left(\frac{D^{k+1} f(z)}{(1-\lambda) D^{k} f(z)+\lambda D^{k+1} f(z)}\right)>\beta(z \in \mathbb{U})
$$

and

$$
\mathfrak{R}\left(\frac{D^{k+1} g(w)}{(1-\lambda) D^{k} g(w)+\lambda D^{k+1} g(w)}\right)>\beta(w \in \mathbb{U})
$$

where the function g is given by (2).

3. Coefficient Estimates

Now, we obtain by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$.
Theorem 3.1. Let $f(z)$ given by (1) be in the class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2^{2 k+1}(1-\lambda)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2\left|4.3^{k}(1-\lambda)+2^{2 k+1}\left(\lambda^{2}-1\right)\right|}}\right\} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8.3^{k}(1-\lambda)}+\right. & \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2^{k+1}(1-\lambda)^{2}} \\
& \left.\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8.3^{k}(1-\lambda)}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2\left|4.3^{k}(1-\lambda)+2^{k+1}\left(\lambda^{2}-1\right)\right|}\right\} \tag{6}
\end{align*}
$$

Proof. First of all, we write the argument inequalities in (3) and (4) in their equivalent forms as follows:

$$
\begin{equation*}
\frac{D^{k+1} f(z)}{(1-\lambda) D^{k} f(z)+\lambda D^{k+1} f(z)}=h(z)(z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{D^{k+1} g(w)}{(1-\lambda) D^{k} g(w)+\lambda D^{k+1} g(w)}=p(w)(w \in \mathbb{U}) \tag{8}
\end{equation*}
$$

respectively, where functions h and p satisfy the conditions of Definition 2.1. Also, the functions h and p have the following Taylor-Maclaurin series expensions:

$$
\begin{equation*}
h(z)=1+h_{1} z+h_{2} z^{2}+h_{3} z^{3}+\cdot \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
p(w)=1+p_{1} w+p_{2} w^{2}+p_{3} w^{3}+\cdot \tag{10}
\end{equation*}
$$

Now, upon substituting from (9) and (10) into (7) and (8), respectively, and equating the coefficients, we get

$$
\begin{align*}
& 2^{k}(1-\lambda) a_{2}=h_{1} \tag{11}\\
& 2^{2 k}\left(\lambda^{2}-1\right) a_{2}^{2}+3^{k}(2-2 \lambda) a_{3}=h_{2} \tag{12}\\
& -2^{k}(1-\lambda) a_{2}=p_{1} \tag{13}
\end{align*}
$$

and

$$
\begin{equation*}
2(1-\lambda)\left(2 a_{2}^{2}-a_{3}\right) 3^{k}+2^{2 k}\left(\lambda^{2}-1\right) a_{2}^{2}=p_{2} \tag{14}
\end{equation*}
$$

From (11) and (13), we get

$$
\begin{equation*}
h_{1}=-p_{1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{2 k+1}(1-\lambda)^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} \tag{16}
\end{equation*}
$$

Adding (12) and (14), we get

$$
\begin{equation*}
\left[4.3^{k}(1-\lambda)+2^{k+1}\left(\lambda^{2}-1\right)\right] a_{2}^{2}=p_{2}+h_{2} \tag{17}
\end{equation*}
$$

Therefore, from (16) and (17), we have

$$
\begin{equation*}
a_{2}^{2}=\frac{h_{1}^{2}+p_{1}^{2}}{2^{k+1}(1-\lambda)^{2}} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{p_{2}+h_{2}}{4.3^{k}(1-\lambda)+2^{k+1}\left(\lambda^{2}-1\right)} \tag{19}
\end{equation*}
$$

respectively. Therefore, we find from the equations (18) and (19), that

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2^{2 k+1}(1-\lambda)^{2}}
$$

and

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2\left|4.3^{k}(1-\lambda)+2^{k+1}\left(\lambda^{2}-1\right)\right|}
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (5).
Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, by subtracting (14) from (12), we get

$$
\begin{equation*}
4.3^{k}(1-\lambda) a_{3}-4.3^{k}(1-\lambda) a_{2}^{2}=h_{2}-p_{2} \tag{20}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (18) into (20), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2^{2 k+1}(1-\lambda)^{2}}+\frac{h_{2}-p_{2}}{4.3^{k}(1-\lambda)},
$$

Therefore, we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2^{2 k+1}(1-\lambda)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8.3^{k}(1-\lambda)} \tag{21}
\end{equation*}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (19) into (20), it follows that

$$
a_{3}=\frac{\left(p_{2}+h_{2}\right)}{4.3^{k}(1-\lambda)+2^{2 k+1}\left(\lambda^{2}-1\right)}+\frac{\left(h_{2}-p_{2}\right)}{4.3^{k}(1-\lambda)},
$$

Therefore, we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8.3^{k}(1-\lambda)}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{2\left|4.3^{k}(1-\lambda)+2^{2 k+1}\left(\lambda^{2}-1\right)\right|} \tag{22}
\end{equation*}
$$

So we obtain from (21) and (22) the desired estimate on the coefficient $\left|a_{3}\right|$ as asserted in (6). This completes the proof.

4. Conclusions

By choosing

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0 \leq \alpha<1, z \in \mathbb{U}),
$$

in Theorem 3.1, we conclude the following corollary.
Corollary 4.1. Let the function f given by (1) be in the class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{\alpha}{2^{k-1}(1-\lambda)}, \frac{\alpha}{\sqrt{\left|3^{k}(1-\lambda)+2^{2 k-1}\left(\lambda^{2}-1\right)\right|}}\right\},
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\alpha^{2}}{3^{k}(1-\lambda)}+\frac{4 \alpha^{2}}{2^{2 k}(1-\lambda)^{2}}, \frac{\alpha^{2}}{3^{k}(1-\lambda)}+\frac{\alpha^{2}}{\left|3^{k}(1-\lambda)+2^{2 k-1}\left(\lambda^{2}-1\right)\right|}\right\} .
$$

Remark 4.1. It is easy to see, for the coefficient $\left|a_{3}\right|$, that

$$
\frac{\alpha^{2}}{3^{k}(1-\lambda)}+\frac{4 \alpha^{2}}{2^{2 k}(1-\lambda)^{2}} \leq \frac{\alpha}{3^{k}(1-\lambda)}+\frac{4 \alpha^{2}}{2^{2 k}(1-\lambda)^{2}} .
$$

Thus, clearly, Corollary 4.1 is an improvement of Theorem 1.1.
Taking $\lambda=0$ and $k=0$ in Corollary 4.1, we obtain the following corollary.
Corollary 4.2. Let the function f given by (1) be in the class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$. Then

$$
\left|a_{2}\right| \leq \sqrt{2} \alpha(0 \leq \alpha<1),
$$

and

$$
\left|a_{3}\right| \leq 3 \alpha^{2}(0 \leq \alpha<1) .
$$

Remark 4.2. Corollary 4.2 provides an improvement of estimates which obtained by Brannan [3].

Taking $\lambda=0$ and $k=1$ in Corollary 4.1, we have
Corollary 4.3. Let the function f given by (1) be in the class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$. Then

$$
\left|a_{2}\right| \leq \alpha(0 \leq \alpha<1)
$$

and

$$
\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{3}(0 \leq \alpha<1)
$$

Remark 4.3. Corollary 4.3 provides an refinement of estimates which obtained by Brannan [3].

By letting

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z}(0 \leq \beta<1, z \in \mathbb{U})
$$

in Theorem 3.1, we deduce the following corollary.
Corollary 4.4. Let the function f given by (1) be in the class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{(1-\beta)}{2^{k-1}(1-\lambda)}, \sqrt{\frac{2(1-\beta)}{\left|2.3^{k}(1-\lambda)+2^{2 k}\left(\lambda^{2}-1\right)\right|}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{(1-\beta)}{3^{k}(1-\lambda)}+\frac{4(1-\beta)^{2}}{2^{2 k}(1-\lambda)^{2}}, \frac{(1-\beta)}{3^{k}(1-\lambda)}+\frac{(1-\beta)}{\left|3^{k}(1-\lambda)+2^{2 k-1}\left(\lambda^{2}-1\right)\right|}\right\}
$$

Taking $\lambda=0$ and $k=0$ in Corollary 4.4, we get
Corollary 4.5. Let the function f given by (1) be in the class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$. Then

$$
\left|a_{2}-\rho a_{m+1}^{2}\right| \leq\left\{\begin{array}{l}
\sqrt{2(1-\beta)}, 0 \leq \beta \leq \frac{1}{2} \\
2(1-\beta) ; \quad \frac{1}{2} \leq \beta<1
\end{array}\right.
$$

and

$$
\left|a_{3}-\rho a_{m+1}^{2}\right| \leq\left\{\begin{array}{l}
3(1-\beta) ; 0 \leq \beta \leq \frac{1}{2} \\
(1-\beta)+4(1-\beta)^{2} ; \quad \frac{1}{2} \leq \beta<1
\end{array}\right.
$$

Remark 4.4. Corollary 4.5 provides an improvement of estimates which obtained by Brannan [3].

Taking $\lambda=0$ and $k=1$ in Corollary 4.4, we have
Corollary 4.6. Let the function f given by (1) be in the class $\mathcal{S}_{\Sigma}^{h, p}(k, \lambda)$. Then

$$
\left|a_{2}\right| \leq(1-\beta)(0 \leq \beta<1)
$$

and

$$
\left|a_{3}\right| \leq \frac{(1-\beta)}{3}+(1-\beta)^{2}(0 \leq \beta<1) .
$$

Remark 4.5. Corollary 4.6 provides an refinement of estimates which obtained by Brannan [3].

Suggestions for future study: The subordination property is interesting and recently studied by authors. I think the class which defined by subordination will be considered for research.

Acknowledgement. The author wishes to thank the referee for a careful reading of the paper and for helpful suggestions.

References

[1] Adegani, E. A., Hamidi, S. G., Jahangiri, Jay M. and Zireh, A., (2019), Coefficient estimates of m-fold symmetric bi-subordinate functions. Hacet. J. Math. Stat. 48, pp. 365-371.
[2] Brannan, D. A., Clunie, J. and Kirwan, W. E., (1970), Coefficient estimates for a class of starlike functions, Canad. J. Math., 22, pp. 476-485.
[3] Brannan, D. A. and Taha, T. S., (1986), On some classes of bi-univalent functions. Studia Univ. Babeş-Bolyai Math., 31, pp. 70-77.
[4] Bulut, S., (2013), Coefficient estimates for a class of analytic and biunivalent functions, Novi Sad J. Math., 43, pp. 59-65.
[5] Chademan, A. and Zireh, A., (2005), Extension of the Douady-Hubbard's theorem on connectedness of the Mandelbrot set to symmetric polynomials. Bull. Iranian Math. Soc., 31, pp. 71-84.
[6] Duren, P. L., (1983), Univalent Functions, Springer-Verlag, Newyork Inc.
[7] Jothibasu, J., (2015), Certain subclasses of bi-univalent functions defined by Salagean operator, Electron. J. Math. Anal. Appl., 3, pp. 150-157.
[8] Lewin, M., (1967), On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, pp. 63-68.
[9] Murugusundaramoorthy, G., Yalçın, S. and Altınkaya, S, (2019), Fekete-Szego inequalities for subclass of bi-univalent functions associated with Sǎlăgean type q-difference operator, Afr. Mat. 30,pp. 979-987.
[10] Netanyahu, E., (1969), The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32, pp. 100-112.
[11] Sălăgean, G. S., (1983), Subclasses of univalent functions, in Complex Analysis Fifth Romanian Finish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Mathematics, 1013, pp. 362-372, Springer, Berlin, Germany.
[12] Salehian, S. and Zireh, A., (2017), Coefficient estimates for certain subclass of meromorphic and bi-univalent functions. Commun. Korean Math. Soc., 32, pp. 389-397.
[13] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., (2010), Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., 23, pp. 1188-1192.
[14] Xu, Q. H., Gui, Y. -C. and Srivastava, H. M., (2012), Coefficient estimates for a Certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25, pp. 990-994.
[15] Xu, Q. H., Xiao, H. -G. and Srivastava, H. M., (2012), A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218, pp. 11461-11465.
[16] Vijaya, K., Kasthuri M. and Murugusundaramoorthy, G., (2014), Coefficient bounds for subclasses of bi-univalent functions defined by the Salagean derivative operator. Boletin de la Asociacion Matematica Venezolana, 21:2.
[17] Zireh, A. and Hajiparvaneh, S., (2016), Coefficient bounds for certain subclasses of analytic and bi-univalent functions. Ann. Acad. Rom. Sci. Ser. Math. Appl., 8, pp. 133-144.
[18] Zireh, A., Khojastehnejhad, E. and Musawi, S. R., (2013), Some results concerning growth of polynomials. Anal. Theory Appl., 29, pp. 37-46.
[19] Zireh, A. and Salehian, S., (2015), On the certain subclass of analytic and bi-univalent functions defined by convolution. Acta Univ. Apulensis Math. Inform, 44, pp. 9-19.

[^0]: ${ }^{1}$ Faculty of Mathematical Sciences, Shahrood University of Technology, P.O.Box: 316-36155 Shahrood, Iran.
 e-mail: a.motamedne@gmail.com; ORCID: https://orcid.org/0000-0001-6844-129X.
 § Manuscript received: July 21, 2021; accepted: October 17, 2021.
 TWMS Journal of Applied and Engineering Mathematics, Vol.13, No. 4 © Işık University, Department of Mathematics, 2023; all rights reserved.

