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Abstract 

This study examines the generalized Fisher hypothesis as applied to common stocks by 

using the recently proposed second generation panel cointegration tests. Unlike their 

predecessors, these new tests assume the existence of cross-section dependence in 

the data. For the sample analyzed, we report that these new tests, but not their 

predecessors, provide strong support for the existence of cointegration between stock 

and goods prices. Moreover, further analysis cannot reject the hypothesis that the 

cointegration relation is linear. Finally, our Fisher coefficient estimates are in the range 

between 0.68 and 1.27 and give support to the generalized Fisher hypothesis. 
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1. Introduction 

The generalized Fisher hypothesis as applied to common stocks states that common 

stocks should provide a hedge against inflation. Early research during 1970s and 1980s 

report either a negative or an insignificant relation between stock returns and inflation, 

inconsistent with the hypothesis. These studies have, as noted by Boudoukh and 

Richardson (1993), all employ short-term asset returns with time horizons of one year or 

less. However, Kaul (1987) and Boudoukh and Richardson (1993) report that, when 

stock returns and inflation are evaluated over a longer time period, the Fisher 

hypothesis cannot be rejected. The estimated elasticity coefficient in these studies, 

however, is less than unity. These mixed results have been attributed to the limitations 

of empirical approaches used. One major problem is that these studies throw away the 

long-run information contained in the data by using stock return and inflation rather than 

stock price and consumer price index data. 

The next wave of studies take into account the potential nonstationarity and 

cointegration properties of stock price and consumer price indices. For example, Ely 

and Robinson (1997) using data from 16 industrialized countries finds that, for most of 

the countries analyzed, stocks do maintain their value relative to movements in overall 

price indexes and this conclusion generally does not depend on whether the source of 

the inflation shock is from the real or monetary sector. Another study, Anari and Kolari 

(2001) using data from six industrialized countries reports that the long-run generalized 

Fisher elasticities of stock prices with respect to consumer prices exceed unity and are 

in the range of 1.04 to 1.65, which tend to support the Fisher effect. Similar evidence is 
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provided by Luintel and Paudyal (2006) for UK industry indices.  They report statistically 

significant elasticities in the range from 1.22 to 1.64. 

In a recent paper, Gregoriou and  Kontonikas (2010) examine  the long-run 

relationship between stock prices and goods prices using panel cointegration to utilize 

the dataset in the most efficient manner. One issue that has often been overlooked in 

empirical research is to check whether disturbances in panel data models are cross-

sectionally independent. In cointegration analysis, ignoring the existence of such 

dependence may lead to wrong inferences from unit root and cointegration tests and 

getting biased coefficients estimates for the long-run equation. Gregoriou and  

Kontonikas (2010) consider the potential cross-sectional dependence problem in their 

panel cointegration tests. If there is cross-sectional dependence, then the panel 

cointegration tests depend on nuisance parameters associated with the cross-sectional 

correlation properties of the data, which means that the tests no longer have a limiting 

normal distribution.  Gregoriou and  Kontonikas derive critical values in the presence of 

non-normality by applying a wild bootstrap simulation and find that the bootstrap test 

performs well and the panel cointegration tests based on the normal distribution are 

robust to cross sectional correlation. Their evidence supports a positive long-run 

relationship between goods prices and stock prices with the estimated goods price 

coefficient being in line with the generalized Fisher hypothesis.  

This paper extends Gregoriou and Kontonikas (2010) by considering more 

comprehensive econometric methods. In particular, it attempts to make two 

contributions to the literature. First, it examines the generalized Fisher equation within a 

panel cointegration framework by paying special attention to the cross-section 

dependence issue.  This is achieved by using Pedroni’s fully modified OLS (FMOLS) 
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estimator after augmenting its empirical specification in different ways to deal with 

cross-section dependence. We employ three methods for that purpose. First, we follow 

Westerlund (2005) and assume that the dependence can be approximated by means of 

common time effects.  Second, as suggested by Pesaran (2006), we assume that the 

cross-section dependence is due to unobserved common correlated effects (CCE). 

Finally, we use oil prices as a proxy for the single common factor. We give evidence on 

the relative performance of these approaches based on a misspecification test. 

The second contribution of the paper is to examine the consequences of not 

accounting for cross section dependence in the analysis. For that purpose, in every 

stage of the analysis (i.e. testing for unit root, testing for cointegration and estimation of 

Fisher coefficient) two sets of estimates are presented.  The former ignores the cross-

section dependence problem, while the latter takes it into consideration.  

We report that, based on Peseran (2004) test, cross-section dependence exists in 

the data set. Moreover, inference about stationarity and cointegration is sensitive 

whether the test employed takes into account the cross-section dependence or not. 

Finally, the Fisher coefficients estimated by ignoring the cross-dependence problem 

exceed unity and are larger in magnitude than the estimates reported in Anari and 

Kolari (2001) and Luintel and Paudyal (2006). In contrast, estimations using Westerlund 

(2005) and  Pesaran (2006) approaches that pass the final misspecification test, give 

coefficient estimates in the range between 0.68 and 1.27 in support of the generalized 

Fisher hypothesis. 

The remainder of the paper is organized as follows.  The next section discusses the 

econometric framework.  The third section presents the data.  The fourth section reports 

and discusses the empirical results.  The last section provides the concluding remarks. 
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2. Methodology 

2.1 Pesaran’s Cross-section Dependence Test   

As discussed before, the first empirical question examined in this paper is to what 

extent cross-section dependence exists in the data. To explore this issue, we use cross-

section dependence test of Pesaran (2004), which is based on average of pairwise 

correlation coefficients of the OLS residuals from the individual regressions in the panel. 

The test is basically an extension of Breusch and Pagan (1980) Lagrange Multiplier test. 

Pesaran (2004) considers the following model: 

titiiiti uxy ,,,    (1) 

where, on the time domain t = 1,2,…,T, for the cross-section units  i = 1,2,…,N. tix ,  is a 

1kx vector of observed time-varying regressors. The individual intercepts, i and slope 

coefficients i  are defined on a compact set permitted to vary across i. For each i, , 

 ,tiu  ),0( 2

iiid  for all t although they could be cross-sectionally correlated. Pesaran 

(2004) proposes the following statistic for testing the null of zero cross equation error 

correlations: 
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where tie , are the OLS estimates of   ,tiu  and ji,̂  is the sample estimate of the pair-wise 

correlation of the residuals: 
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(3) 

The test is especially attractive when the number of individual units in the panel is 

large since it is known that Breusch and Pagan’s LM test is likely to exhibit substantial 

size distortions in this case. In the analysis, Breusch and Pagan LM test and its scaled 

versions are also reported for comparison purposes. These are: 
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(4) 

After giving evidence on the extent of cross-section dependence in the data, the 

analysis follows the usual steps for panel cointegration analysis. Since our aim is to 

assess the importance of ignoring cross-section dependence on the results, panel unit 

root tests, panel cointegration tests and the estimation of long-run coefficient in the 

generalized Fisher equation are performed separately with and without assuming cross-

section dependence. 

2.2 Panel Unit Root Tests 

As the benchmark that assumes no cross-section dependence, we first compute the 

IPS test statistics (Im et al., 2003), which is based on the well-known Dickey-Fuller 

procedure. This test combines information from the time series dimension with that from 

the cross section dimension, such that fewer time observations are required for the test 
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to have power. IPS considers a stochastic process, ity , which is generated by the first-

order autoregressive process with individual effects and no time trend: 

ittiiiiti uyy  1,, )1(                 where  i = 1, . . .,N and t = 1, . . .,T (5) 

In this case the relevant Dickey–Fuller (1979) regression for each cross-section is: 

ittiiiti uyy  1,,  where , , , 1i t i t i ty y y     ,  1i i i    and   1i i       (6) 

The unit root hypothesis of interest, 1i  , can now be expressed as 

i allfor       0:0 iH 
 

 

against the possibly heterogeneous alternatives, 

i somefor       0:1 iH    

After estimating the separate Dickey–Fuller regressions, t statistics are calculated for 

each cross-section: 
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where iT̂ is the OLS estimator of i  and 

(7) 
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The average of these t-statistics forms the IPS statistics, NTt : 
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To deal with the potential cross-section dependence problem, testing for unit root is 

repeated, this time using Pesaran’s (2007) cross-sectionally augmented IPS (CIPS) 

test. A brief description of the CIPS test is as follows. 

Let ,i ty  be the observation on the thi cross-section unit at time t and suppose that it 

is generated according to the simple dynamic linear heterogeneous panel data model 

as given in (5). In the simple case where  ,tiu  is serially uncorrelated, Pesaran assumes 

that the error term,  ,tiu , has the single-factor structure: 

tititi fu ,,    (9)  

where tf  is the unobserved common effect, and ti ,  is the individual-specific 

(idiosyncratic) error.  

Then following the line of reasoning in Pesaran (2006, 2007), the common factor 

tf can be proxied by the cross section mean of   tiy , , namely   



N

j

tjt y
N

y
1

,

1
, and its 

lagged value(s), 1ty , 2ty , ... for N sufficiently large. Pesaran (2006, 2007) confirms that 

cross sectional dependence can be accounted for by augmenting the standard Dickey–

Fuller regression given by equation (6) with the cross section averages of lagged levels 

and first differences of the individual series.  

titititiiiti eydycybay ,11,,    (10) 
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We shall therefore base our test of the unit root hypothesis, on the t-ratio of the OLS 

estimate of ib ( ib̂ ) in equation (10). Denoting this t-ratio by ),( TNti we have 
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The simple average of the individual cross-sectionally augmented Dickey–Fuller 

statistics (CADFi) forms the cross-sectionally augmented IPS (CIPS) test statistic. 

Pesaran (2007) illustrates that the individual CADFs and the corresponding panel 

statistic (CIPS) have non-normal distributions, so their critical values for different N and 

T are obtained by Monte Carlo simulations. Pesaran (2007) gives critical values of CIPS 

in Tables II (a)–II(c). 

 

2.3 Linear Panel Cointegration Tests 

As the benchmark that assumes no cross-section dependence, we first compute the 

residual-based tests of Pedroni (1999) for the null of no cointegration. Pedroni allows 

the slope coefficients in the cointegration vector to vary across individual members of 

the panel. He considers the use of seven residual-based panel cointegration statistics, 

four based on pooling the data along the within-dimension (denoted ‘panel cointegration 
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statistics’) and three based on pooling along the between-dimension (denoted ‘group 

mean cointegration statistics’). Panel statistics differ from group statistics regarding the 

specification of the alternative hypothesis. The panel cointegration statistics impose a 

common coefficient under the alternative hypothesis and the group mean cointegration 

statistics allow for heterogeneous coefficients under the alternative hypothesis. In order 

to test the null of no cointegration, the mean and variance adjustment terms reported in 

Pedroni (1999) are used to compute the values of these test statistics. These are then 

compared to the appropriate tails of the normal distribution.  

To deal with the potential cross-section dependence problem in panel cointegration 

tests, we use two alternative ways. First, following Ucar and Omay (2009), we apply 

sieve bootstrap method to the residuals uit in the following panel regression model: 

titiiiti uxy ,,,                  where  i = 1, . . .,N and t = 1, . . .,T (12) 

We obtain estimates of residuals by using OLS estimates of i and i. 

tiiititi xyu ,,,
ˆˆˆ    (13) 

Using the bootstrap algorithm, explained in Ucar and Omay (2009)  in detail, we 

generate bootstrap samples of tiu ,
ˆ . The bootstrap statistics of *

iTt , are computed for 

each replication as discussed  in panel unit root testing section by using equations (5) to 

(7) . For each replication, we form the IPS statistics by taking the average of these 

*

iTt statistics. The bootstrap empirical distribution of IPS statistics, generated by 

employing  2,000  replications, are used to obtain the p-value. 

Second, we use Banerjee and Carrion-Silvestre (2011) common correlated effects 

estimator. Banerjee and Carrion-Silvestre show that consistent estimation of the long-
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run average parameter is possible once they control for cross-section dependence 

using cross-section averages in the spirit of the common correlated effects approach in 

Pesaran (2006), Holly, Pesaran and Yamagata (2010) and Kapetanios, Pesaran and 

Yamagata (2011). They specify the following cross-section augmented regression: 

tiititititi uzxDy ,

'

,,,    (14) 

where )( ttt xyz   is 1x2 vector of cross-section averages of dependent and independent 

variables and Di,t equals 0, μi or i+it depending on whether the model has no intercept, 

intercept only and both intercept and time trend.  

In the first stage, the pooled CCE estimator (PCCE) in Pesaran (2006) is used to 

estimate the parameters: 
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In the second stage the estimated PCCE parameters are used to define the variable: 

PCCEtititi xyy ̂~ '

,,,   (16) 

 

 

for which the following model is estimated using the OLS estimation procedure: 

tititi eDy ,,,
~ 

 
(17) 

 and the OLS residuals are then computed as tititi Dye ,,,
ˆ~ˆ  . In the last stage, the null 

hypothesis of no cointegration is tested analyzing the order of integration of tie ,
ˆ  through 

the application of the cross-section augmented Dickey–Fuller cointegration statistic. 
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Banerjee and Carrion-Silvestre give the critical values of their test statistic in Tables 3 

and 4. 

 

2.4 Non-Linear Panel Cointegration Test 

To further examine whether the cointegration relationship is non-linear, we employ 

Omay et al. (2012) nonlinear panel cointegration test. Below we give a brief description 

of this test.  

Consider following panel regression model:  

titiiiti uxy ,,,    (18) 

where ,i ty  and ,i tx  denote observable (1)I   variables,  m ,...,1  are parameters to 

be estimated, and  ,i tu  is the error term. ,i ty  is scalar, and , 1, 2, ,( , ,..., )i t t t m tx x x=x  is an 

( x1)m vector and finally  i is fixed effect (heterogeneous intercept). We assume that an 

( x1)n  vector  ),( ,,

'

, tititi xyz  is generated as tititi zz ,1,,   , where ,i te  are i.i.d. with 

mean zero, positive definite variance-covariance matrix  , and 
s

tiE ,   for some 

4s > .   

If the error term ,i tu  in regression (18) is stationary, then vector ,i tz  is said to be 

cointegrated, and ,i tu  is called equilibrium error (Engle and Granger, 1987). We assume 

that ,i tu  can be modeled using following nonlinear model: 

  tiititiititi uFuuu ,1,1,1,, ;     (19) 
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where 1, ti  is a zero mean error and   itiuF ;1,   is a smooth transition function of  1, tiu . 

Note that by imposing   0;1,  itiuF   or   iiitiuF   ;1,   where i   is vector of level 

parameters, one obtains conventional linear cointegration equation (e.g., Kapetanois et 

al., 2006). Following earlier literature on nonlinear cointegration (e.g., Kapetanois et al., 

2003, 2006; Ucar and Omay, 2009, Maki, 2010) we assume that the transition function 

 itiuF ;1,   is of the exponential form1: 

   2

1,1, exp1;   tiiiti uuF   (20) 

Here it is further assumed that ,i tu  is a mean zero stochastic process and that 0i . 

The transition function  itiuF ;1,   is bounded between zero and one, and is 

symmetrically U-shaped around zero. The parameter i  determines the speed of the 

transition between the two extreme values of the transition function2  itiuF ;1,  . The 

exponential transition function has a nice property in that it allows for adjustment to the 

long-run equilibrium depending on the size of the disequilibrium. 

Substituting (20) in (19) and reparameterizing the resultant equation, we obtain 

following regression model: 

   tititiitiiti uuuu ,

2

1,1,1,, exp1     (21) 

                                                           
1
 Kapetanois et al. (2003, 2006) show that both second-order logistic and exponential functions give rise to the same 

auxiliary regression for testing the cointegration. 

2
 For a detailed discussion of smooth transition regression models and properties of transition functions, see, for 

example, Granger and Teräsvirta (1993) and Teräsvirta (1994). 
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If 0i , then it determines the speed of mean reversion.  If 0i , this process may 

exhibit unit root or explosive behaviour for small values of 2

1, tiu . However, if the 

deviations from the equilibrium are sufficiently large (i.e., for large values of 2

1, tiu ), it has 

stable dynamics, and as a result, is geometrically ergodic provided that 0 ii  3.  

Imposing 0i  (implying that ,i tu  follows a unit root process in the middle regime) and 

further allowing for possible serial correlation of the error term in (4) we obtain the 

following regression model: 

   ti

p

j

jtiijtiitiitiiti uuuuu ,

1

,

2

1,1,1,, exp1  


   (22) 

Test of cointegration can be based on the specific parameter i , which is zero under the 

null hypothesis of no cointegration, and positive under the alternative hypothesis. 

However, direct testing of the null hypothesis is not feasible, since iy  is not identified 

under the null. To overcome this problem, following Luukkonen et al. (1988), one may 

replace the transition function    2

1,1, exp1;   tiiiti uuF   with its first-order Taylor 

approximation under the null, which results in the following auxiliary regression model: 

ti

p

j

jtiijtiiti euuu ,

1

,

3

1,, 


    (23) 

where tie ,  comprises the original shocks ti ,  in equation (22) as well as the error term 

resulting from Taylor approximation. Note that we allow for different lag order ip  for 

                                                           
3
 For ergodicity of such nonlinear processes, see Kapetanois et al. (2003) and Ucar and Omay (2009). 
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each entity in regression equation (23). Now, the null hypothesis of no cointegration and 

the alternative can be formulated as: 

0 : 0iH   , for all i, (no cointegration) 

0 : 0iH   , for some i,(Non-linear ) 

In empirical application, one may select the number of augmentation terms in the 

auxiliary regression (23) using any convenient lag selection method. Following Ucar and 

Omay (2009), the cointegration test can be constructed by standardizing the average of 

individual cointegration test statistics across the whole panel. The cointegration test for 

the ith individual is the t-statistics for testing 0i   (as in Kapetanois et al., 2003 and 

Ucar and Omay, 2009) in equation (23) defined by: 

 

' 3

, 1

, 3/ 2
'

, , 1 , 1
ˆ

i t i

i NL

î NL i t i

u M u
t

u M u
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 


  (24) 

where  2

,
ˆ

i NL  is the consistent estimator such that 2 '

,
ˆ /( 1)i NL i t iu M u T    , 

 
1

' '

t T T T T TM I    


   with   
'

1 2, ,...i i i i Tu u u u        and (1,1,...,1)T  .  

Furthermore, when the invariance property and the existence of moments are satisfied, 

the usual normalization of NLt  statistic is obtained as follows: 

 ,

,

( )

var( )

NL i NL

NL

i NL

N t E t

t


   (25) 
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where 1

1

N

NL NL

i

t N t



  , and ,( )i NLE t  and ,var( )i NLt  are expected value and variance of the 

,i NLt  statistic given in (24).  

We apply Ucar and Omay (2009) bootstrap procedure with 2,000  replications to obtain 

empirical distribution of the test statistic.  

 

2.5 Estimation of Fisher Coefficient 

Following the cointegration tests, the long-run elasticity of stock prices to goods prices 

is estimated using the Pedroni (2000) fully modified OLS (FMOLS) estimator. Pedroni 

estimator deals with complications introduced by the presence of parameter 

heterogeneity in the dynamics and fixed effects across individual members. The former 

is modeled by allowing the associated serial correlation properties of the error 

processes to vary across individual members of the panel. The latter is modeled by 

including individual specific intercepts. Pedroni’s approach is similar in spirit to Phillips 

and Hansen (1990)’s semi-parametric correction to the OLS estimator, which eliminates 

the second order bias induced by the endogeneity of the regressors. Pedroni applies 

the same principle to the panel OLS estimator. The key difference in constructing the 

estimator for the panel data case is to account for the heterogeneity that is present in 

the fixed effects as well as in the short run dynamics.  

Pedroni employs the following system of equations: 
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(26) 

where i,t =[ui,t i,t] is stationary with covariance matrix i. 



18 
 

Pedroni panel FMOLS estimator, ̂  is: 

  
 





 





















N

i

T

t

itiitiii

N

i

T

t

itii TuxxLLxxL
1 1

*

,,

1

22

1

11

1

1 1

2

,

2

22
ˆ)(ˆˆ)(ˆˆ 

 

(27) 
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iL̂ is a lower triangular decomposition of i̂  and i  is a weighted sum of 

autocovariances. 

Pedroni’s FMOLS estimator does not take into account the potential cross-section 

dependence in panels. However, it can still be used  after augmenting its empirical 

specification in different ways to deal with cross-section dependence. We will use three 

methods for that purpose. First, we follow Westerlund (2005) and assume that the 

dependence can be approximated by means of common time effects. We, therefore, 

use cross-section demeaned data with the original empirical specification, which is 

tantamount to the inclusion of a common time effect in the cointegrating long-run 

relation. An advantage of this approach is that subtracting the cross-sectional average 

may be quite effective even against very general forms of cross-sectional correlation 

structures. 

Second, we follow Pesaran (2006) and assume that cross-section dependence is 

due to unobserved common factors. This method, known as Common Correlated 

Effects (CCE), approximates the linear combinations of the unobserved factors by cross 
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section averages of the dependent and explanatory variables and augments the model 

with these cross section averages. An advantage of this approach is that it yields 

consistent estimates also when the regressors are correlated with the factors. Third, we 

use oil prices as a proxy for the single common factor. In other words, we augment the 

empirical specification by adding oil prices.  

Finally, once the  long-run elasticity of stock prices to goods prices is estimated 

using different approaches, we apply once again the Pesaran (2004) cross section 

dependence test to the residuals to check whether cross-section dependence problem 

has been dealt to a satisfactory level or not. 

 

3. Data 

Monthly data for goods prices, measured by the national consumer price index ,  

nominal stock prices, measured by the national stock price index  and oil prices, 

measured by the price of a barrel of Brent crude oil are collected from Datastream. 

Considering the tradeoff between the number of countries with available data and the 

time period used, we choose January 1997 as the starting date of our sample period to  

have data for a reasonably large number of countries . To eliminate the impact of global 

financial crisis of 2008 on our analysis, we choose December 2007 as the ending date 

of the sample period. This results in a sample of 52 countries with 132 monthly 

observations. As discussed in Gregoriou and  Kontonikas (2010), during this time period  

inflationary pressures were largely brought under control. 

Our analysis will be conducted not only for the full sample, but also for different 

subgroups of countries. We classify the sample countries as developed, emerging and 
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other based on Morgan Stanley Capital International (MSCI)  classification of markets.4  

Based on this classification, we have 21 developed (Austria, Belgium, Canada, 

Denmark, Finland, France, Germany, Hong Kong, Ireland, Italy, Japan, Luxembourg, 

Netherlands, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, United 

Kingdom, and United States), 19 emerging (Argentina, Brazil, Chile, China, Czech 

Republic, Egypt, Hungary, India, Israel, Jordan, Malaysia, Morocco, Philippines, Poland, 

Russian Federation, South Africa, Taiwan, Thailand, and Turkey) and 12 other (Croatia, 

Estonia, Iran, Jamaica, Latvia, Mauritius, Slovakia, Sri Lanka, Saudi Arabia, Trinidad 

and Tobago, Venezuela, and Zambia) markets in our data set.  

We also classify countries based on the average level of realized inflation during the 

sample period. We use two classifications for that purpose. The first classification 

(hereafter INF1) divides countries into two groups. Depending on whether a country’s 

average inflation level is above or below the sample median, a country is classified as 

either high inflation (INF1 H) or low inflation (INF1 L) country. Each of these two groups 

contain  26 countries. The second classification (hereafter INF2) divides countries into 

three groups. These are high inflation (INF2 H), moderate inflation (INF2 M) and low 

inflation (INF2 L) groups.5 These three groups contain, 12, 26 and 14 countries, 

respectively. The use of subgroups will allow us to provide additional evidence on the 

robustness of the long-run relation between stock prices and goods prices. 

During the sample period, the growth rate of nominal stock prices exceeded that of 

goods prices in all countries, with the exception of Latvia, Malaysia, Philippines, 

                                                           
4
 Other countries group contains the sample countries that are neither developed nor emerging based on MSCI 

classification. 

5
 INF2 H group contains countries in which average monthly inflation exceed 0.5%, while INF2 L group contains 

countries in which average monthly inflation is below 0.16%. INF2 M group contains the remaining countries. 
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Thailand, and Venezuela. Average monthly inflation ranges from  -0.015% in Hong 

Kong to 2.539% in Turkey. Average monthly stock returns range from 0.069% in 

Philippines to 2.912% in Russian Federation. The average monthly growth rate of goods 

prices across our sample countries is 0.412% while the corresponding nominal stock 

price growth rate is 0.94%, indicating a positive real stock price growth of 0.530%. 

 

4. Empirical Analysis 

We start the analysis by examining the extent of cross-section dependence in the data 

by using Pesaran (2004) test. For comparison purposes, we also employ Breusch and 

Pagan (1980) Lagrange Multiplier test and its scaled version. Table 1 reports the results 

for the whole sample and for every subgroup. All the three versions of the test statistic 

are statistically significant at better than the 0.001 level for the whole sample and for all 

the subgroups.  This gives support for the motivation of the paper, namely the cross-

section dependence should not be ignored in the examination of the Fisher hypothesis. 

Insert Table 1 here 

Before testing for the cointegration relationship, stochastic properties of consumer 

price index and stock prices are examined by computing panel unit root tests. We first 

ignore the cross-dependence problem. Table 2 displays, for all groups, the IPS test 

statistic, 
NTt . In each case, the table reports 

NTt  statistic for two specifications. The first 

specification contains intercept as the only deterministic element, while the second 

includes both intercept and a linear time trend.  The test statistics reveal that for all 

groups consumer price index and stock prices are nonstationary in level and stationary 
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in their first difference. Thus, there may exist a cointegration relationship between these 

variables. 

Insert Table 2 here 

Testing for unit root is repeated, this time using Pesaran’s (2007) cross-sectionally 

augmented IPS (CIPS) test, which takes into account cross-section dependence. The 

test statistics, as shown in Table 3, indicate that for all groups, except developed 

countries, consumer price index and stock prices are nonstationary  in level  and 

stationary in their first difference. Thus, panel unit root testing for developed countries is 

sensitive whether or not one allows for cross-section dependence. Since our aim is to 

document to what extent one can make incorrect inferences from the data if cross-

section dependence is not modeled, we will not drop developed countries from the 

sample in the rest of analysis. 

Insert Table 3 here 

The analysis then continues with the panel cointegration tests. As the benchmark 

that assumes no cross-section dependency, we first compute the seven residual-based 

tests of Pedroni (1999). Table 4 reports the results. Pedroni tests do not give support for 

the existence of cointegration neither for the whole sample nor for any of the subgroups. 

Replacing stock prices with goods prices as the dependent variable results into finding 

no-cointegration between the two variables as well.6 

Insert Table 4 here 

                                                           
6
 Results are not reported, but available upon request. 
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Given the benchmark results in Table 4, we now employ panel cointegration tests 

that take into consideration cross-section dependence in data. Table 5 displays the 

results of three different tests. The second column of the table displays the computed 

values of Banerjee and Carrion-Silvestre (2011) common correlated effects estimator. 

The third column of the table displays the Ucar and Omay (2009) IPS statistic and p 

values obtained from bootstrap empirical distribution of the IPS statistics. To further 

examine whether the cointegration relationship is non-linear, we employ Omay et al. 

(2012) nonlinear panel cointegration test. The fourth column of the table reports these 

nonlinear panel cointegration test statistics and corresponding p values obtained from 

bootstrap empirical distribution. Banerjee and Carrion-Silvestre test indicates that stock 

prices and goods prices are cointegrated for the whole sample as well as for all 

subgroups, except the Others, INF1 H and INF2 H subgroups. In contrast, Ucar and 

Omay (2009) bootstrap procedure does not provide support for the existence of 

cointegration neither for the whole sample nor for any of the subgroups. Thus, based on 

the results in Table 5, the comparison of two t popular methods to deal with cross-

section dependence, namely CCE and bootstrap methods, we conclude that the CCE 

estimator better suits the data. Finally, the statistical insignificance of Omay et al. (2012)  

nonlinear panel cointegration test statistics for all the groups, indicates that the 

hypothesis  that there exists nonlinear cointegration relationship between stock prices 

and goods prices finds no support in the data.   

Insert Table 5 here 

Based on the positive evidence in  Table 5 for the existence of cointegration, we  

proceed to fully evaluate the prediction of long-run hedging inherent in the generalized 
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Fisher hypothesis and estimate the long-run elasticity of stock prices to goods prices 

using the Pedroni (2000) fully modified OLS heterogeneous cointegrated panel 

methodology. Table 6 reports fully modified OLS estimates for the whole sample and for 

all the eight subgroups. The first row of Table 6 reports the Fisher coefficients for the 

case where the cross-section dependence problem is ignored. Rows 2-4 reports the 

Pedroni fully modified OLS estimates obtained after augmenting its empirical 

specification in different ways to deal with cross-section dependence. The second row 

shows the coefficient estimates obtained under the assumption that cross-section 

dependence can be approximated by means of common time effects as suggested by 

Westerlund (2005).  The third row show the coefficient estimates obtained under the 

assumption that cross-section dependence is due to correlated unobserved common 

effects as suggested by Pesaran (2006). The fourth row reports the Fisher coefficient 

estimates where the empirical specification is augmented by oil prices, which proxies 

the single common factor causing the cross-sectional dependence.  

For the case when the cross-sectional dependence problem is ignored, the reported 

Fisher coefficient is significantly different from zero at the 1% level for the whole sample 

as well as for all the subgroups. For the whole sample, the Fisher coefficient equals 

2.44, and for the subgroups it ranges from 1.70 to 2.74. This finding that the elasticities 

of stock prices with respect to consumer prices exceed unity is consistent with the 

findings of prior literature that take the cointegration relation into account. For example, 

Anari and Kolari (2001) using data from six industrial countries find that Fisher 

elasticities exceed unity and range from 1.04 to 1.65. Moreover, Luintel and Paudyal 

(2006) using UK aggregate and industry data find that for the aggregate market index 
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(1.197) as well for six of seven industry groups examined Fisher coefficient exceeds 

unity (ranges from 1.22 to 1.64). 

Given the benchmark case, we now consider estimation results for the three 

methods used to deal with the cross-dependence problem. As shown in the second row 

of the table, using the Westerlund method, gives significant coefficient estimate for the 

whole sample as well as for six of the eight subgroups. The third row of the table shows 

the coefficient estimates, when the empirical specification is augmented by the cross 

section mean of the dependent variable and its lagged values. The coefficient estimates 

are significant for the whole sample as well as for four subgroups. Finally, the fourth row 

shows the coefficient estimates, when the empirical specification is augmented by oil 

prices. The coefficient estimates are significant only for two subgroups. It is noteworthy 

that for the three methods used to deal with the cross-section dependence problem, the 

coefficient estimates are smaller than those for the benchmark case that ignores the 

problem. 

Insert Table 6 here 

The wide range of significant Fisher coefficient estimates in Table 6 point to the 

need for a misspecification test to check to what extent different methods used in 

estimation solve the cross section dependence problem. It is well known that neglecting 

cross-section dependence when it exists in the data can lead to biased estimates. For 

this purpose, we apply once again the Pesaran (2004) cross section dependence test to 

the FMOLS residuals. Table 7 reports CDLM1 test statistics and the corresponding p-

values. The null hypothesis of no cross section dependence cannot be rejected in only 

three cases. These are Westerlund (2005) common time effects estimations using the 
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whole sample and the subgroup containing countries with moderate level of inflation 

(INF2 M) and Pesaran (2006) CCE estimation using the subgroup containing countries 

with low level of inflation (INF2 L). Therefore, the coefficient estimates corresponding to 

these estimations are reliable estimates to evaluate the empirical validity of the 

generalized Fisher hypothesis. These three coefficients are in the range between 0.68 

and 1.27. 

Insert Table 7 here 

5. Conclusions 

We examine the generalized Fisher hypothesis within a panel cointegration framework 

by paying special attention to the cross-sectional dependence issue. Not only do we aim 

to make sure that we get unbiased estimates for the elasticity of stock prices with 

respect to consumer prices, but we also want to measure to what extent the problem of 

not accounting for cross section dependence in the analysis affects the findings. We 

employ three different methods to alleviate the cross-section dependence problem.  

The results reveal the following: First, the cross-section dependence problem should 

not be ignored in examining the generalized Fisher hypothesis within a panel 

cointegration framework. This problem exists in the data and has nontrivial impact on 

the results. Second, none of the methods employed completely eliminates the cross-

section dependence. More specifically, our diagnostic check shows that using oil prices 

as a proxy for the single common factor causing the cross-sectional dependence shows 

a weak performance. The other two methods, namely Westerlund (2005) common time 

effects estimation and Pesaran (2006) CCE estimation, show good performance only for 
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specific subgroups. For our sample, the Westerlund type treatment shows superior 

performance. However, this is most likely to be data specific. Pesaran (2006) argues 

that Westerlund (2005) type treatment is useful in dealing with weak cross- section 

dependence. Third, the subset of our Fisher coefficient estimates, which our diagnostic 

check indicates to be reliable, range between 0.68 and 1.27. Thus, we conclude that the 

generalized Fisher hypothesis finds support in our data set. Finally, despite our use of 

more detailed tests, our findings confirm the overall conclusions in Gregoriou and 

Kontonikas (2010). 
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Tables 
 

Table 1. Cross-section dependence tests  

 

Country Group CDLM1 CDLM2 CDLM3 

All   145.108 41,467.46 779.482 

 
(0.000) (0.000) (0.000) 

Developed 93.126 10,403.28 497.38 

 
(0.000) (0.000) (0.000) 

Emerging  69.85 6,570.66 346.053 

 
(0.000) (0.000) (0.000) 

Others  30.939 1,586.09 132.307 

 
(0.000) (0.000) (0.000) 

INF1 H  96.087 12,531.95 478.796 

 
(0.000) (0.000) (0.000) 

INF1 L  65.472 9,828.53 372.759 

 
(0.000) (0.000) (0.000) 

INF2 H 22.16 1,625.12 135.703 

 
(0.000) (0.000) (0.000) 

INF2M 80.925 11,091.70 422.304 

 
(0.000) (0.000) (0.000) 

INF2 L  48.799 3,418.84 246.675 

 
(0.000) (0.000) (0.000) 

Notes: 
1LMCD denotes Pesaran (2004) cross-section dependence test statistic. 

2LMCD and 
3LMCD are Breusch and Pagan(1980) LM test statistic and its scaled 

version, respectively. P-values are given in parentheses. 
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Table 2. Unit root tests not taking into account cross-section dependence: IPS test  
 

Country Groups CPIi,t CPIi,t SPi,t SPi,t 

     A   B  A   B   A B   A  B 

All  -0.316 -1.893 -9.329 -10.403 -0.641 -1.670 -10.272 -9.610 
Developed 0.087 -1.753 -10.745 -10.861 -1.206 -1.600 -10.302 -10.355 
Emerging  -1.208 -1.927 -8.220 -8.626 -0.378 -1.871 -10.751 -10.928 
Others  0.390 -0.784 -8.606 -8.980 -0.001 -1.535 -9.560 -9.760 
INF1 H  -0.622 -1.583 -8.101 -8.423 -0.159 -1.726 -10.236 -10.428 
INF1 L  -0.009 -1.707 -10.557 -10.798 -1.124 -1.613 -10.308 -10.378 
INF2 H  -1.114 -1.479 -7.253 -7.657 -0.006 -1.608 -10.293 -10.444 
INF2M -0.369 -2.065 -9.301 -9.456 -0.737 -1.837 -10.367 -10.517 
INF2 L  0.467 -1.928 -11.161 -11.572 -1.007 -1.412 -10.078 -10.157 

Notes: The figures are Im et al.(2003) 
NTt  test statistics. A denotes intercept and B denotes intercept and trend. 

Exact critical values of the 
NTt  statistic are given in Table 2 of  Im et al.(2003). For A IPS test has 5% critical 

values for T=100 and N equals 10, 15, 20,25 and 50 are    -1.97, -1.89, -1.84, -1.81 and -1.73, respectively.  For 

B, the corresponding figures are      -2.58, -2.51, -2.46, -2.43 and  -2.36. 
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Table 3. Unit root tests taking into account cross-section dependence:  CIPS test 
 

Country Groups CPIi,t CPIi,t SPi,t SPi,t 

      A     B    A     B   A    B    A  B 

All  -1.735 -2.193 -9.023 -10.995 -1.361 -1.957 -10.405 -9.887 
Developed  -2.509 -2.697 -10.235 -12.133 -1.266 -2.374 -10.826 -11.534 
Emerging  -1.312 -2.031 -7.725 -8.458 -2.058 -2.268 -11.030 -11.519 
Others  -0.689 -1.047 -8.038 -9.197 -1.723 -1.892 -9.814 -10.268 
INF1 H -1.169 -1.800 -7.528 -8.299 -1.816 -1.932 -10.298 -10.841 
INF1 L -1.714 -2.282 -10.306 -11.653 -1.291 -1.613 -10.589 -11.156 
INF2 H  -1.124 -1.727 -6.602 -7.550 -1.536 -1.791 -9.910 -10.502 
INF2M -2.010 -2.221 -9.049 -10.043 -1.734 -2.141 -10.757 -11.293 
INF2 L  -0.930 -1.287 -11.171 -12.087 -1.041 -1.714 -10.078 -10.660 

Notes:    The figures are Pesaran (2007) cross-sectionally augmented IPS (CIPS) test statistics.  A denotes intercept 

and B denotes intercept and trend. Pesaran (2007) gives critical values of CIPS in Tables II (a)–II(c) For A, CIPS test 

has 5% critical values for T=100 and N equals 10, 15, 20,30 and 50 are   -2.14, -2.07, -2.07, -2.07 and -2.08 , 

respectively. For B, the corresponding figures are -2.79, -2.60, -2.57, -2.56 and -2.56.  
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Table 4. Cointegration tests not taking into account cross-section dependence: Pedroni tests 

Country Groups Panel  Group 

 
v rho PP ADF  rho PP ADF 

All  -5.945 4.72 4.275 4.178  6.705 6.076 6.318 

 
(0.999) (0.999) (0.999) (0.999)  (0.999) (0.999) (0.999) 

Developed  0.462 0.754 0.419 0.405  2.636 1.871 1.833 

 
(0.321) (0.774) (0.662) (0.657)  (0.995) ( 0.969) (0.966) 

Emerging  0.985 0.137 -0.043 0.177  1.632 1.049 1.332 

 
(0.162) (0.554) (0.482) (0.570)  (0.948) (0.853) (0.908) 

Others  1.768 -0.510 -0.525 -0.218  0.550 0.130 0.498 

 
(0.038) (0.304) (0.299) (0.413)  (0.709) (0.551) (0.691) 

INF1 H  0.340 0.779 0.424 0.602  2.812 2.017 2.204 

 
(0.366) (0.782) (0.664) (0.726)  (0.997) (0.978) (0.986) 

INF1 L  0.241 0.958 0.516 0.864  2.678 1.857 2.248 

 
(0.404) (0.831) (0.697) (0.806)  (0.996) (0.968) (0.987) 

INF2 H  0.298 0.749 0.854 0.958  2.042 2.052 2.197 

 
(0.382) (0.773) (0.803) (0.831)  (0.979) (0.979) (0.986) 

INF2M 0.569 0.307 -0.403 -0.267  2.353 1.002 1.119 

 
(0.284) (0.620) (0.343) (0.394)  (0.990) (0.841) (0.868) 

INF2 L  -0.197 1.171 0.960 1.422  2.384 2.015 2.507 

 
(0.578) (0.879) (0.831) (0.922)  (0.991) (0.978) (0.993) 

Notes: The figures Pedroni (1999) test statistics for the null of no cointegration P-values are given in 
parentheses. The critical values for the panel cointegration tests are based on Pedroni (1999). 
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Table 5.  Cointegration tests taking into account cross-section dependence   
 

Country Groups B-CS 
 

UO  OHU 

All  -2.446 * -1.194 -1.566 

   
(0.766) (0.440) 

Developed  -2.722 * -1.284 -1.687 

   
(0.688) (0.404) 

Emerging  -2.46 * -0.988 -1.317 

   
(0.884) (0.710) 

Others  -2.053 
 

-1.257 -1.69 

   
(0.690) (0.250) 

INF1 H -2.069 
 

-1.116 -1.436 

   
(0.872) (0.636) 

INF1 L  -2.978 * -1.334 -1.745 

   
(0.610) (0.244) 

INF2 H -1.908 
 

-1.16 -1.315 

   
(0.812) (0.782) 

INF2M -2.738 * -1.466 -1.833 

   
(0.407) (0.156) 

INF2 L  -2.66 * -1.264 -1.568 

   
(0.676) (0.484) 

Notes: B-CS denotes Banerjee and Carrion-Silvestre (2011) common 
correlated effect estimator to IPS, UO denotes Ucar and Omay (2009) 
estimator to IPS that uses bootstrap procedure and OHU denotes Omay et 
al. (2012) nonlinear cointegration test that uses bootstrap procedure. At  5% 
significance level Banerjee and Carrion-Silvestre test has critical values for 
T=100 and N equals 10, 15, 20,30 and 50 are -2.39, -2.30, -2.24, -2.20 and -
2.15, respectively. At 10% significance level the corresponding figures are -
2.27, -2,20, -2.16, -2.12 and -2.08. For UO and OHU p-values are shown in 
parantheses. * shows statistical significance at 5% level. 
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Table 6.  FMOLS estimation 

 

   
Country Groups 

  Cross-Section Dependence All Developed  Emerging  Others  INF1 H INF1 L INF2 H INF2M INF2 L 

Ignored 2.44 2.64 2.74 2.29 2.51 2.37 1.70 2.66 2.66 

 
(22.80) (10.00) (17.92) (15.08) (7.72) (9.11) (14.52) (17.70) (6.37) 

Taken into consideration by using      

Westerlund 1.27 3.16 1.14 0.61 0.99 0.60 0.67 0.68 0.70 

 
(5.19) (3.47) (0.30) (5.83) ( 0.59) ( 8.28) (2.37) (2.34) (5.14) 

Pesaran 2.50 0.64 0.90 0.21 0.02 0.43 0.46 0.38 0.74 

 
(5.13) (0.53) (0.06) (1.51) ( 1.95) ( 5.78) (2.55) (0.44) (1.61) 

Oil price 0.58 0.65 1.26 0.26 0.36 0.80 0.78 0.55 0.95 

 
(0.75) (2.51) (0.35) (1.13) (2.22) (1.66) (1.11) (3.20) (0.10) 

Notes: The table shows the estimated long-run elasticity of stock prices with respect to goods prices. Figures in parentheses are the 
values of the t-statistic associated with the null hypothesis that the coefficient is equal to zero. The t- statistic follows standard normal 
distribution. 
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Table 7.  Cross-section dependence tests 
 

 
   

Country Groups 
  

 All Developed  Emerging  Others  INF1H INF1 L INF2 H INF2M INF2 L 

Westerlund 0.757 -3.792 -5.905 -8.104 -6.75 -5.338 -7.141 -1.097 -5.202 

 
(0.448) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.272) (0.000) 

Pesaran 46.083 11.803 22.364 3.003 22.701 4.121 4.307 12.217 -0.804 

 
(0.000) (0.000) (0.000) (0.002) (0.000) (0.000) (0.000) (0.000) (0.421) 

Oil price 137.89 89.554 73.466 21.825 65.014 94.046 21.971 78.341 46.311 

 
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Notes: The figures are Pesaran (2004) cross-section dependence test statistic, denoted by 
1LMCD in the paper. P-

values are given in parentheses. 

 
 
 
 
 
 

 


