NEW VERTEX-EDGE SOMBOR, NIRMALA AND MISBALANCE INDICES

K. J. GOWTHAM¹, §

ABSTRACT. The molecular structure of a compound contains all the information which would help to determine its chemical, biological, and physical properties. With the help of a theoretical descriptor tool known as topological indices, one can assess these properties. In this paper, we define new vertex-edge degree topological indices namely, the *ve*-degree Sombor index (SO_{ve}) , the *ve*-degree Nirmala index (N_{ve}) , and the *ve*degree Misbalance prodeg index (MPI_{ve}) . The chemical applicability of those indices have been studied and found good correlation coefficient with different physical/chemical properties of octane isomers. Further, we found the values for the standard graphs and the bounds for SO_{ve} and N_{ve} in terms of $MPI_{ve}, M'_{\beta ve}(G)$, and $F_{ve}(G)$.

Keywords: vertex-edge degree; topological indices.

AMS Subject Classification: 05C07.

1. INTRODUCTION

Graph theory played a significant role in molecular chemistry, robotics, physics, networks computer science, statistics, biological activities, and data science. A topological index is a unique number that is mathematically derived from the graph structure. In theoretical chemistry, many such topological indices have been considered, and have more applications in a quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR).

The (QSPR)/(QSAR) studies have an important role in material sciences [1, 2, 3]. The vertex-edge topological indices is a new idea and recently gaining more interest in applied sciences [4, 5, 6, 7, 8, 9, 10, 11, 12]. Let G = (V, E) be a simple connected graph. The number of edges that are incident with the vertex u is known as the degree of the vertex u and is denoted by, d(u). In [5], the set $N(u) = \{u \in V(G) : uw \in E(G)\}$ and $N[u] = N(u) \cup \{u\}$ are called as open and closed neighbourhood of the vertex u. The number of different edges that are incident to any vertex from N[u], denoted by $d_{ve}(u)$ and called as ve-degree.

¹ Department of Mathematics, University College of Science, Tumkur University, Tumakuru, Karnataka State, Pin 572 103, India.

e-mail: gowtham_k_j@yahoo.com; ORCID: https://0000-0001-5812-9227.

[§] Manuscript received: June 05, 2022; accepted: August 26, 2022.

TWMS Journal of Applied and Engineering Mathematics, Vol.14, No.2 © Işık University, Department of Mathematics, 2024; all rights reserved.

The first ve-degree Zagreb $\alpha(M^1_{\alpha ve})$ index, the first ve-degree Zagreb $(M^1_{\beta ve})$ index, the second ve-degree Zagreb (M_{ve}^2) index, ve-degree Randic (R_{ve}) index, the ve-degree atombond connectivity (ABC_{ve}) index, the ve-degree geometric-arithmetic (GA_{ve}) index, the ve-degree harmonic (H_{ve}) index, the ve-degree sum-connectivity (χ_{ve}) index, and veforgotten index are defined as,

$$\sum_{u \in V} d_{ve}(u)^2, \quad \sum_{uw \in E} (d_{ve}(u) + d_{ve}(w)), \quad \sum_{uw \in E} (d_{ve}(u) \times d_{ve}(w)), \quad \sum_{uw \in E} (d_{ve}(u) \times d_{ve}(w))^{-\frac{1}{2}}, \\ \sum_{uw \in E} \left(\frac{d_{ve}(u) + d_{ve}(w) - 2}{d_{ve}(u) \times d_{ve}(w)}\right)^{\frac{1}{2}}, \quad \sum_{uw \in E} \frac{2(d_{ve}(u) \times d_{ve}(w))^{\frac{1}{2}}}{d_{ve}(u) + d_{ve}(w)}, \quad \sum_{uw \in E} (d_{ve}(u) + d_{ve}(w))^{-\frac{1}{2}}, \quad \text{and} \quad \sum_{uw \in E} (d_{ve}(u)^2 + d_{ve}(w)^2)$$

respectively. Recently new topological indices have been defined, Sombor index (SO(G)) [13], Nirmala index N(G) [14], and Misbalance prodeg index MPI(G) [15].

Some properties of Sombor and Nirmala indices have studied in [15, 16]. In [17, 18] different version of Sombor index is studied and application found in [19]. In [20] the ve-degree Sombor index (SO_{ve}) is defined as, $SO_{ve} = \sum_{uw \in E} \sqrt{d_{ve}(u)^2 + d_{ve}(w)^2}$. Further, in this paper we define, the ve-degree Nirmala index (N_{ve}) , and the ve-degree Misbalance prodeg index (MPI_{ve}) as follows:

$$N_{ve} = \sum_{uw \in E} \sqrt{d_{ve}(u) + d_{ve}(w)}, \ MPI_{ve} = \sum_{uw \in E} \left(\sqrt{d_{ve}(u)} + \sqrt{d_{ve}(w)} \right)$$

respectively. In the next section, we will discuss the chemical applicability of the SO_{ve} , N_{ve} , and MPI_{ve} .

2. Chemical Significance of the SO_{ve} , N_{ve} , and MPI_{ve}

Here, we compute the SO_{ve} , N_{ve} , and MPI_{ve} of octane isomers and molecular graph of octane isomers are shown in Figure 1. We investigate the predictive power of the SO_{ve} , N_{ve} , and MPI_{ve} for certain Physico-chemical properties mainly, acentric factor (AcenFac), entropy (S), enthalpy of vaporization (HVAP), and standard enthalpy of vaporization (DHVAP) of octane isomers. In Table 1, the values of Acentric factor, Entropy, Enthalpy of vaporization (HVAP), Standard enthalpy of vaporization (DHVAP), SO_{ve} , N_{ve} , and MPI_{ve} for octane isomers are tabulated. The correlation between ve-degree topological indices and many physicochemical properties of octane isomers is found in Table 2. And it is noted that all indices show a negative strong correlation, therefore these graph invariants are compared with each other by using squares of the correlation coefficients. The graphical representation of the highest values of correlation between ve-degree topological indices are shown in Figure 2.

3. Results of SO_{ve} , N_{ve} , and MPI_{ve} on some stranded Graphs.

Here, we found the values of SO_{ve} , N_{ve} , and MPI_{ve} for the particular graph.

Proposition 3.1. Let $K_{m,n}$ be a complete bipartite graph. Then

i. $SO_{ve}(K_{m,n}) = \sqrt{2}(mn)^2$

ii.
$$N_{ma}(K_{m,n}) = mn\sqrt{2mn}$$

ii. $N_{ve}(K_{m,n}) = mn\sqrt{2mn}$ iii. $MPI_{ev}(K_{m,n}) = 2mn(\sqrt{mn}).$

Proof. Let $K_{m,n}$ be a complete bipartite graph with m + n vertics and $|V_1| = m$, $|V_2| = n$, $V(K_{m,n}) = V_1 \cup V_2$. Clearly, every vertex of $v \in V_1$ has mn different edges that incident to any vertex form N[v] and every vertex of $u \in V_2$ has mn different edges that incident to any vertex form N[u].

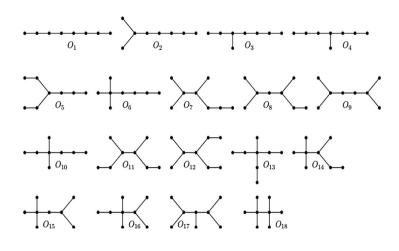
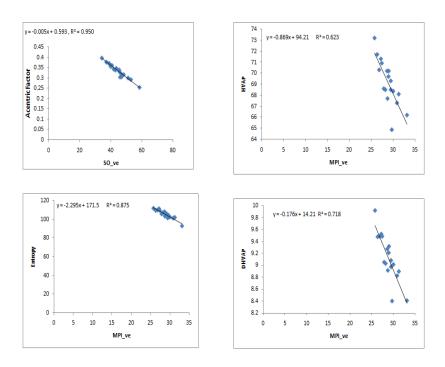
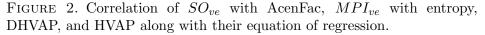


FIGURE 1. Graphs of Octane isomers.





i.

$$SO_{ve}(K_{m,n}) = \sum_{uw \in E} \sqrt{d_{ve}^2(u) + d_{ve}^2(w)} = \sum_{uw \in E} \sqrt{(mn)^2 + (mn)^2} = \sqrt{2}(mn)^2$$

$$N_{ve}(K_{m,n}) = \sum_{uw \in E} \sqrt{d_{ve}(u) + d_{ve}(w)} = \sum_{uw \in E} \sqrt{mn + mn} = mn\sqrt{2mn}$$

iii.

ii.

$$MPI_{ve}(K_{m,n}) = \sum_{uw \in E} \left(\sqrt{d_{ve}(u)} + \sqrt{d_{ve}(w)} \right) = \sum_{uw \in E} \left(\sqrt{mn} + \sqrt{mn} \right) = 2mn \left(\sqrt{mn} \right).$$

Molecule	AcenFac	Entrony	HVAP	DHVAP	SO_{ve}	N_{ve}	MPIve
	0.255294	93.06	66.2	8.41		23.641	33.166
2,2,3,3-Tretramethyl-butane	0.200294	95.00		0.41			55.100
2,4-Dimethyl-hexane	0.344223	106.98	68.5	9.029	41.728	20.048	28.218
2-Methyl-heptane	0.377916	109.84	70.3	9.484	37.069	19.594	26.815
2-Methyl-3-ethyl-pentane	0.332433	106.06	69.7	9.209	45.333	20.653	28.938
3-Ethyl-hexane	0.362472	109.43	71.7	9.476	40.613	19.605	26.356
2,2-Dimethyl-hexane	0.339426	103.42	67.7	8.915	42.836	20.361	28.722
3-Methyl-heptane	0.371002	111.26	71.3	9.521	38.786	19.322	27.205
2,3-Dimethyl-hexane	0.348247	108.02	70.2	9.272	43.427	20.355	28.603
2,5-Dimethyl-hexane	0.35683	105.72	68.6	9.051	39.877	19.745	27.872
2,2,4-Trimethyl-pentane	0.30537	104.09	64.87	8.402	45.874	21.072	29.7
4-Methyl-heptane	0.371504	109.32	70.91	9.483	38.846	19.282	27.414
3,3-Dimethyl-hexane	0.322596	104.74	68.5	8.973	46.417	20.987	29.462
3-Methyl-3-ethyl-pentane	0.306899	101.48	69.3	9.081	46.797	21.049	29.457
2,2,3-Trimethyl-pentane	0.300816	101.31	67.3	8.826	51.003	22.021	30.881
3,4-Dimethyl-hexane	0.340345	106.59	70.2	9.316	45.268	21.446	28.989
2,3,3-Trimethyl-pentane	0.293177	102.06	68.1	8.897	52.748	22.349	31.282
Octane	0.397898	111.67	73.19	9.915	34.182	18.249	25.757
2,3,4-Trimethyl-pentane	0.317422	102.39	68.37	9.014	48.144	21.404	30.014

TABLE 1. The values of Acentric factor, Entropy, Enthalpy of vaporization (HVAP), Standard enthalpy of vaporization (DHVAP), SOve, Nve, and MPI_{ve} for octane isomers.

Index	Acentric Factor	Entropy	HVAP	DHVAP
SO_{ve}	-0.975070878	-0.9213159	-0.715882049	-0.799150905
N_{ve}	-0.959409353	-0.91200543	-0.735557078	-0.803513767
MPI_{ve}	-0.971177506	-0.935705946	-0.789606029	-0.847466686

TABLE 2. The correlation between ve-degree topological indices and many physicochemical properties of octane isomers.

Corollary 3.1. Let $K_{n,n}$ be a complete bipartite graph $(n \ge 4)$. Then

- i. $SO_{ve}(K_{n,n}) = \sqrt{2}n^4$
- ii. $N_{ve}(K_{n,n}) = \sqrt{2}n^3$ iii. $MPI_{ev}(K_{n,n}) = n^3$.

Corollary 3.2. Let $K_{1,n-1}$ be a star graph $(n \ge 4)$. Then

i. $SO_{ve}(K_{1,n-1}) = \sqrt{2}(n-1)^2$

ii. $N_{ve}(K_{1,n-1}) = (n-1)\sqrt{2(n-1)}$ iii. $MPI_{ev}(K_{1,n-1}) = (n-1)(\sqrt{n-1}).$

Proposition 3.2. Let C_n be a cycle graph with $n \ge 4$. Then

- i. $SO_{ve}(C_n) = 4n\sqrt{2}$ ii. $N_{ve}(C_n) = 2n\sqrt{2}$
- iii. $MPI_{ev}(C_n) = 4n.$

Proof. Let C_n be a cycle graph with $n \geq 4$ vertices. Clearly, every vertex of $v \in V(C_n)$ has 4 different edges that incident to any vertex form N[v].

i.

$$SO_{ve}(C_n) = \sum_{uw \in E} \sqrt{d_{ve}^2(u) + d_{ve}^2(w)} = \sum_{uw \in E} \sqrt{4^2 + 4^2} = 4n\sqrt{2}$$

ii.

$$N_{ve}(C_n) = \sum_{uw \in E} \sqrt{d_{ve}(u) + d_{ve}(w)} = \sum_{uw \in E} \sqrt{4+4} = 2n\sqrt{2}$$

iii.

$$MPI_{ve}(C_n) = \sum_{uw \in E} \left(\sqrt{d_{ve}(u)} + \sqrt{d_{ve}(w)} \right) = \sum_{uw \in E} \left(\sqrt{4} + \sqrt{4} \right) = 4n$$

Proposition 3.3. Let K_n be a complete graph with $n(\geq 4)$ vertics. Then

i.
$$SO_{ve}(K_n) = \frac{n^2(n-1)^2}{2\sqrt{2}}$$

ii. $N_{ve}(K_n) = \frac{(n(n-1))^{3/2}}{2}$
iii. $MPI_{ev}(K_n) = \frac{(n(n-1))^{3/2}}{\sqrt{2}}$.

Proof. Let K_n be a complete graph with n vertices. Clearly, every vertex of $v \in V(k_n)$ has n(n-1)/2different edges that incident to any vertex form N[v].

$$SO_{ve}(K_n) = \sum_{uw \in E} \sqrt{d_{ve}^2(u) + d_{ve}^2(w)} = \sum_{uw \in E} \sqrt{[n(n-1)/2]^2 + [n(n-1)/2]^2} = \frac{n^2(n-1)^2}{2\sqrt{2}}$$
ii.

 $N_{ve}(K_n) = \sum_{uw \in E} \sqrt{d_{ve}(u) + d_{ve}(w)} = \sum_{uw \in E} \sqrt{[n(n-1)/2] + [n(n-1)/2]} = \frac{(n(n-1))^{3/2}}{2}$

iii.

i.

ii.

$$MPI_{ve}(K_n) = \sum_{uw \in E} \left(\sqrt{d_{ve}(u)} + \sqrt{d_{ve}(w)} \right) = \sum_{uw \in E} \left(\sqrt{[n(n-1)/2]} + \sqrt{[n(n-1)/2]} \right)$$
$$= \frac{(n(n-1))^{3/2}}{\sqrt{2}}$$

Proposition 3.4. For the path graph $P_n(n \ge 5)$, $d_{ve}(v_1) = d_{ve}(v_n) = 2$, $d_{ve}(v_2) = d_{ve}(v_{n-1}) = 3$, and remaining vertices has the ve-degree 4. Then,

$$SO_{ve}(P_n) = 2\sqrt{13}(n-1) + 10(n-1) + 4\sqrt{2}(n-1)(n-5)$$
$$N_{ve}(P_n) = 2\sqrt{5}(n-1) + 2(n-1)\sqrt{7} + 2\sqrt{2}(n-1)(n-5)$$

iii.

$$MPI_{ve}(P_n) = (n-1)[2\sqrt{2} + 4\sqrt{3} + 4(n-5) + 4]$$

Proof. With the definitions and ve-degree of each vertex one can easily arrive the results.

4. Bounds

In this section, we found the bounds for SO_{ve} and N_{ve} in terms of MPI_{ve} , $M'_{\beta ve}(G)$, and $F_{ve}(G)$.

Lemma 4.1. For any positive numbers α and β ,

$$\frac{1}{\sqrt{2}}(\alpha+\beta) \le \sqrt{\alpha^2+\beta^2} \le \alpha+\beta.$$

Equality on the left-hand side holds if and only if $\alpha = \beta$.

Theorem 4.1. For any non-trivial connected graph G,

$$\frac{1}{\sqrt{2}}M'_{\beta ve}(G) \le SO_{ve}(G) \le M'_{\beta ve}(G).$$

Proof. With help of definitions and lemma 4.1, we arrive the result. **Lemma 4.2.** Let α and β be any non-negetive real numbers. Then

$$\sqrt{\alpha + \beta} \ge \frac{1}{\sqrt{2}} \left(\sqrt{\alpha} + \sqrt{\beta} \right)$$

Theorem 4.2. Let G be a connected graph of order n and size m. Then

$$\frac{1}{\sqrt{2}}MPI_{ve}(G) \le N_{ve}(G) \le MPI_{ve}(G).$$

Proof. If $\alpha = d_{ve}(u)$ and $\beta = d_{ve}(w)$ in Lemma 4.2, then we get

$$\sqrt{d_{ve}(u) + d_{ve}(w)} \ge \frac{1}{\sqrt{2}} \left(\sqrt{d_{ve}(u)} + \sqrt{d_{ve}(w)} \right)$$

By the definition of *ve*-Nirmala index, we have

$$N_{ve}(G) = \sum_{uw \in E} \sqrt{d_{ve}(u) + d_{ve}(w)} \ge \frac{1}{\sqrt{2}} \sum_{uw \in E} \left(\sqrt{d_{ve}(u)} + \sqrt{d_{ve}(w)} \right) = \frac{1}{\sqrt{2}} MPI_{ve}(G)$$

By the definition of *ve*-Nirmala index, we have

$$N_{ve}(G) = \sum_{uw \in E} \sqrt{d_{ve}(u) + d_{ve}(w)}$$
$$= \sum_{uw \in E} \left[\left(\sqrt{d_{ve}(u)} + \sqrt{d_{ve}(w)} \right)^2 - 2\sqrt{d_{ve}(u)d_{ve}(w)} \right]^{1/2}$$
$$\leq \sum_{uw \in E} \left(\sqrt{d_{ve}(u)} + \sqrt{d_{ve}(w)} \right) = MPI_{ve}(G)$$

Theorem 4.3. Let G be a connected graph with m edges. Then

$$SO_{ve}(G) \le \sqrt{mF_{ve}(G)}.$$

Proof. Using the Cauchy-Schwarz inequity, we get

$$\left(\sum_{uw\in E} d_{ve}(u)^2 + d_{ve}(w)^2\right)^2 \le \sum_{uw\in E} 1 \sum_{uw\in E} \left(d_{ve}(u)^2 + d_{ve}(w)^2\right) = mF_{ve}(G)$$

602

CONCLUSION

In this study, we have computed SO_{ve} , N_{ve} , and MPI_{ve} for Standard graphs, and found the bounds for SO_{ve} and N_{ve} in terms of MPI_{ve} , $M'_{\beta ve}(G)$, and $F_{ve}(G)$. The predictive ability of the *ve*-degree index is greater and also has a better correlation than classic degree-based indices. Also, the predictive ability of newly defined *ve*-degree indices has been tested on some physicochemical properties of octanes.

Acknowledgment

I would like to express my special thanks gratitude to Prof. Ivan Gutman, University of Kragujevac, Serbia and Prof. Veerabhadrappa Kulli, Gulbarga University for their constant support and encouragement during the preparation of this paper.

References

- [1] Ahmad, A., (2018), On the degree based topological indices of benzene ring embedded in P-typesurface in 2D network, Hacettepe Journal of Mathematics and Statistics, 47(1), pp. 9-18.
- [2] Karelson, M., (2000), Molecular Descriptors in QSAR/QSPR. New York: Wiley.
- [3] Todeschini, R., Consonni, V., (2000), Handbook of Molecular Descriptors. Weinheim: Wiley.
- [4] Došlic, T., Furtula, B., Graovac, A., Gutman, I., Moradid, S., (2011), On vertex-degree-based molecular structure descriptors, MATCH Communications in Mathematical and in Computer Chemistry, 66, pp.613-626.
- [5] Chellali, M., Haynes, T. W., Hedetniemi, S. T., Lewis, T. M., (2017), On ve-degrees and ev-degrees in graphs, Discrete Mathematics, 340(2), pp. 31-38.
- [6] Cancan, M., (2019), On ev-degree and ve-degree topological properties of tickysim spiking neural network, Computational Intelligence and Neuroscience, 2019, pp. 1-7.
- [7] Ahmad, A., (2020), Comparative study of ve-degree and ev-degree topological descriptors for benzene ring embedded in P-type-surface in 2D network, Polycyclic Aromatic Compounds.
- [8] Ediz, S., (2017), A new tool for QSPR researches: ev-degree Randic index, Celal Bayar Universitesi Fen Bilimleri Dergisi, 13(3), pp. 615-618.
- [9] Ediz, S., (2018), On ve-degree molecular topological properties of silicate and oxygen networks, International Journal of Computer Science Mathematics, 9(1), pp. 1-12, .
- [10] Horoldagva, Das, K. C., Selenge, T. A., (2019), On ve-degree and ev-degree of graphs, Discrete Optimization, 31, pp. 1-7, .
- [11] Sahin, B., Ediz, S., (2018), On ev-degree and ve-degree topological indices, Iranian Journal of Mathematical Chemistry, 9(4), pp. 263-277.
- [12] Zhang, J., Siddiqui, M. K., Rauf, A., Ishtiaq, M., (2020), On ve-degree and ev-degree based topological properties of single walled titanium dioxide nanotube, Journal of Cluster Science.
- [13] Gutman, I., (2021), Geometric approach to degree based topological indices: Sombor indices, MATCH Communications in Mathematical and in Computer Chemistry, 86, pp. 11-16.
- [14] Kulli, V. R., (2021), Nirmala index, International Journal of Mathematics Trends and Technology, 67(3), pp. 8-12.
- [15] Kulli, V. R., Gutman, I., (2021), On Some Mathematical Properties of Nirmala Index, Annals of Pure and Applied Mathematics, 23(2), pp. 93-99.
- [16] Gutman, I., (2021), Some basic properties of Sombor indices, Open Journal of Discrete Applied Mathematics, 4(1), pp. 1-3.
- [17] Kulli, V. R., Harish, N., Chaluvaraju, B., Gutman, I., Mathematical properties of KG Sombor index, Bulletin of International Mathematical Virtual Institute, in press.
- [18] Kulli, V. R., Gutman, I., (2022), Revan Sombor Index , Journal of Mathematics and Informatics, 22, pp. 23-27,
- [19] Gowtham, K. J., Swamy, N. N., (2021), On Sombor energy of graphs, Nanosystems: Physics, Chemistry, Mathematics, 12:4, pp. 411–417.
- [20] Ediz, S., Ademir, Ş., Çiftçi, İ., (2022), A Note on Vertex-Edge Degree Sombor Index of Silicate and Oxygen Networks, MATI, 4(2), pp. 23-33.

K. J. Gowtham graduated from Kuvempu University, Shivamogga, Karnataka and he is currently working as a guest at University College of Science, Tumkur University. His research area of interest is mathematical chemistry and graph theory.