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ON THE CAUCHY PROBLEM FOR SYSTEMS OF LINEAR

EQUATIONS OF ELLIPTIC TYPE OF THE FIRST ORDER IN THE
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Abstract. In the present paper, on the basis of the Carleman matrix, approximate
solutions of the Cauchy problem for matrix factorizations of the Helmholtz equation are
found in explicit form.
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1. Introduction

One of the fundamental problems in the theory of (ordinary and partial) differential
equations: To find a solution (an integral) of a differential equation satisfying what are
known as initial conditions (initial data). The Cauchy problem usually appears in the
analysis of processes defined by a differential law and an initial state, formulated mathe-
matically in terms of a differential equation and an initial condition (hence the terminology
and the choice of notation: The initial data are specified for and the solution is required
for). Cauchy problems differ from boundary value problems in that the domain in which
the desired solution must be defined is not specified in advance. Nevertheless, Cauchy
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problems, like boundary value problems, are defined by the imposition of limiting condi-
tions for the solution on (part of) the boundary of the domain of definition.

The main questions connected with Cauchy problems are as follows:
1) Does there exist (albeit only locally) a solution?
2) If the solution exists, to what space does it belong? In particular, what is its domain

of existence?
3) Is the solution unique?
4) If the solution is unique, is the problem well-posed, i.e. is the solution in some sense

a continuous function of the initial data?
The theory of ill-posed problems is a direction of mathematics which has developed in-

tensively in the last two decades and is connected with the most varied applied problems:
interpretation of readings of many physical instruments and of geophysical, geological, and
astronomical observations, optimization of control, management and planning, synthesis
of automatic systems, etc. Development of the theory of ill-posed problems was occasioned
by the advent of modern computing technology. Various areas of the theory of ill-posed
problems can be included in traditional areas of mathematics such as function theory,
functional analysis, differential equations, and linear algebra. The concept of a well-posed
problem is connected with investigations by the famous French mathematician Hadamard
of various boundary value problems for the equations of mathematical physics. Hadamard
expressed the opinion that boundary value problems whose solutions do not satisfy cer-
tain continuity conditions are not physically meaningful, and he presented examples of
such problems. It was subsequently found that Hadamard’s opinion was erroneous. It
turned out that many problems of mathematical physics which are ill-posed in the sense
of Hadamard and, in particular, problems noted by Hadamard himself have real physical
content. It also turned out that ill-posed problems arise in many other areas of mathe-
matics which are connected with applications. Such a classical problem of mathematical
analysis as the problem of differentiation is ill-posed if it is connected with processing ex-
perimental data (see, for instance [23], [28]. For ill-posed problems of the question arises:
What is meant by an approximate solution? Clearly, it should be so defined that it is
stable under small changes of the original information. A second question is: What algo-
rithms are there for the construction of such solutions? Answers to these basic questions
were given by A.N. Tikhonov (see [2]).

It is known that the Cauchy problem for elliptic equations and for systems of elliptic
equations belongs to the class of ill-posed problems (see, for example, [2], [25], [26]-[27],
[36]-[37]). Boundary value problems, as well as numerical solutions of some problems, are
considered in [3]-[7], [21]-[22], [24], [29], [38]-[39].

The concept of conditional correctness first appeared in the work of Tikhonov [2], and
then in the studies of Lavrent’ev [26]-[27]. In a theoretical study of the conditional cor-
rectness (correctness according to Tikhonov) of an ill-posed problem of the existence of a
solution and its belonging to the correctness set, it is postulated in the very formulation
of the problem. The study of uniqueness issues in a conditionally well-posed formulation
does not essentially differ from the study in a classically well-posed formulation, and the
stability of the solution from the data of the problem is required only from those variations
of the data that do not deduce solutions from the well-posedness set. After establishing the
uniqueness and stability theorems in the study of the conditional correctness of ill-posed
problems, the question arises of constructing effective solution methods, i.e. construction
of regularizing operators.
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Based on the results of previous works [8]-[18] we have constructed the Carleman matrix
and based on it the approximate solution of the Cauchy problem for the matrix factor-
ization of the Helmholtz equation. In this article, we find an explicit formula for an
approximate solution of the Cauchy problem for matrix factorizations of the Helmholtz
equation in a multidimensional bounded domain of an odd-dimensional space Rm. The
case of an even-dimensional space will be considered in other scientific studies of the au-
thors. Our approximate solution formula also includes the construction of a family of
fundamental solutions of the Helmholtz operator in space. This family is parametrized by
some entire function K(z), the choice of which depends on the dimension of the space.
In this work, relying on the results of previous works [8]-[18], we similarly obtain better
results with approximate estimates due to a special selection of the function K(z). In
many well-posed problems for systems of equations of elliptic type of the first order with
constant coefficients that factorize the Helmholtz operator, it is not possible to calculate
the values of the vector function on the entire boundary. Therefore, the problem of re-
constructing the solution of systems of equations of first order elliptic type with constant
coefficients, factorizing the Helmholtz operator (see, for instance [8]-[18]), is one of the
topical problems in the theory of differential equations.

For the last decades, interest in classical ill-posed problems of mathematical physics has
remained. This direction in the study of the properties of solutions of the Cauchy problem
for the Laplace equation was started in [26]-[28], [36]-[37] and subsequently developed in
[19]-[20], [30]-[33], [8]-[18].

Let Rm, (m = 2k, k ≥ 1) be a m−dimensional real Euclidean space,

ζ = (ζ1, . . . , ζm) ∈ Rm, η = (η1, . . . , ηm) ∈ Rm,

ζ ′ = (ζ1, . . . , ζm−1) ∈ Rm−1 η′ = (η1, . . . , ηm−1) ∈ Rm−1.

We introduce the following notation:

r = |η − ζ| , α =
∣∣η′ − ζ ′∣∣ , z = i

√
a2 + α2 + ηm, a ≥ 0,

∂ζ = (∂ζ1 , . . . , ∂ζm)T , ∂ζ = χT , χT =

 χ1

...
χm

 - transposed vector χ,

W (ζ) = (W1(ζ), . . . ,Wn(ζ))T , v0 = (1, . . . , 1) ∈ Rn, n = 2m, m ≥ 2,

E(w) =

∥∥∥∥∥∥∥∥∥
w1 0 · · · 0
0 w2 · · · 0

· · · · · · . . . · · ·
0 0 0 wn

∥∥∥∥∥∥∥∥∥− diagonal matrix, w = (w1, . . . , wn) ∈ Rn.

We also consider a bounded simply-connected domain Ω ⊂ Rm, having a piecewise
smooth boundary ∂Ω = Σ

⋃
D, where Σ is a smooth surface lying in the half-space ηm > 0

and D is the plane ηm = 0.
P (χT ) is an (n× n)−dimensional matrix satisfying:

P ∗(χT )P (χT ) = E((|χ|2 + λ2)v0),

where P ∗(χT ) is the Hermitian conjugate matrix of P (χT ), λ ∈ R, the elements of the
matrix P (χT ) consist of a set of linear functions with constant coefficients from the complex
plane C.
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Let us consider the following first order systems of linear partial differential equations
with constant coefficients

P (∂ζ)W (ζ) = 0, (1)

in the domain Ω, where P (∂ζ) is the matrix differential operator of the first-order.
Also consider the set

S (Ω) =
{
W : Ω −→ Rn |W is continuous on Ω = Ω ∪ ∂Ω and W satisfies the system (1)

}
.

2. Statement of the Cauchy problem

Formulation of the problem. Suppose W (η) ∈ S(Ω) and

W (η)|Σ = f(η), η ∈ Σ. (2)

Here, f(η) a given continuous vector-function on Σ. It is required to restore the vector
function W (η) in the domain Ω, based on it’s values f(η) on Σ.

If W (η) ∈ S(Ω), then the following integral formula of Cauchy type is valid

W (ζ) =

∫
∂Ω

L(η, ζ;λ)W (η)dsη, ζ ∈ Ω, (3)

where

L(η, ζ;λ) =
(
E
(
Γm(λr)v0

)
P ∗ (∂ζ)

)
P (tT ).

Here t = (t1, . . . , tm)−is the unit exterior normal, drawn at a point η, the surface ∂Ω,
Γm(λr)− is the fundamental solution of the Helmholtz equation in Rm, (m = 2k, k ≥ 1),
where Γm(λr) defined by the following formula:

Γm(λr) = Bmλ
(m−2)/2

H
(1)
(m−2)/2(λr)

r(m−2)/2
,

Bm =
1

2i(2π)(m−2)/2
, m = 2k, k ≥ 1.

(4)

Here H
(1)
(m−2)/2(λr)− is the Hankel function of the first kind of (m−2)/2− th order (see

for instance [34]).
Let K(z) be an entire function taking real values for real z, (z = a+ ib, a, b ∈ R) such

that
K(a) 6= 0, sup

b≥1

∣∣bpK(p)(z)
∣∣ = N(a, p) <∞,

−∞ < a <∞, p = 0, . . . ,m.
(5)

We define the function Ψ(η, ζ;λ) at η 6= ζ by the following equality

Ψ(η, ζ;λ) =
1

cmK(ζm)

∂k−1

∂sk−1

∞∫
0

Im

[
K(z)

z − ζm

]
aI0(λa)√
a2 + α2

da,

m = 2k, k ≥ 1,

(6)

where c2 = 2π, cm = (−1)k−1(k− 1)!(m− 2)ωm; I0(λa) = J0(iλa)−is the Bessel function
of the first kind of zero order [19], ωm− area of a unit sphere in space Rm.

In the formula (6), choosing

K(z) = exp(σz), K(ζm) = exp(σζm), σ > 0, (7)
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we get

Ψσ(η, ζ;λ) =
e−σζm

cm

∂k−1

∂sk−1

∞∫
0

Im

[
exp(σz)

z − ζm

]
aI0(λa)√
a2 + α2

da. (8)

The formula (3) is true if instead Γm(λr) of substituting the function

Ψσ(η, ζ;λ) = Γm(λr) +Gσ(η, ζ;λ), (9)

where Gσ(η, ζ;λ)− is the regular solution of the Helmholtz equation with respect to the
variable η, including the point η = ζ.

Then the integral formula has the form:

W (ζ) =

∫
∂Ω

Lσ(η, ζ;λ)W (η)dsη, ζ ∈ Ω, (10)

where
Lσ(η, ζ;λ) =

(
E
(
Ψσ(η, ζ;λ)v0

)
P ∗ (∂ζ)

)
P (tT ).

3. Solution of the Cauchy problem (1)-(2)

Theorem 3.1. Let W (η) ∈ S(Ω) it satisfy the inequality

|W (η)| ≤M, η ∈ D. (11)

If

Wσ(ζ) =

∫
Σ

Lσ(η, ζ;λ)W (η)dsy, ζ ∈ Ω, (12)

then the following estimates are true

|W (ζ)−Wσ(ζ)| ≤MK(λ, ζ)σke−σζm , σ > 1, ζ ∈ Ω. (13)∣∣∣∣∂W (ζ)

∂ζj
− ∂Wσ(ζ)

∂ζj

∣∣∣∣ ≤MK(λ, ζ)σke−σζm , σ > 1, ζ ∈ Ω, j = 1, . . . ,m. (14)

Here and below functions bounded on compact subsets of the domain Ω, we denote by
K(λ, ζ).

Proof. Let us first estimate inequality (13). Using the integral formula (10) and the
equality (12), we obtain

W (ζ) =

∫
Σ

Lσ(η, ζ;λ)W (η)dsη +

∫
D

Lσ(η, ζ;λ)W (η)dsη =

= Wσ(ζ) +

∫
D

Lσ(η, ζ;λ)W (η)dsη, ζ ∈ Ω.

Taking into account the inequality (11), we estimate the following

|W (ζ)−Wσ(ζ)| ≤

∣∣∣∣∣∣
∫
D

Nσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ ≤
≤
∫
D

|Lσ(η, ζ;λ)| |W (η)| dsη ≤M
∫
D

|Lσ(η, ζ;λ)| dsη, ζ ∈ Ω.

(15)
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To do this, we estimate the integrals

∫
D

|Ψσ(η, ζ;λ)| dsη,
∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηj

∣∣∣∣ dsη, (j =

1, 2, . . . ,m− 1) and

∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηm

∣∣∣∣ dsη on the part D of the plane ηm = 0.

Separating the imaginary part of (8), we obtain

Ψσ(η, ζ;λ) =
eσ(ηm−ζm)

cm

 ∂k−1

∂sk−1

∞∫
0

cosσ
√
a2 + α2

a2 + r2
aI0(λa)da−

− ∂k−1

∂sk−1

∞∫
0

(ηm − ζm) sinσ
√
a2 + α2

a2 + r2

aI0(λa)√
a2 + α2

da

 , ζm > 0.

(16)

From (16) and the inequality

I0(λa) ≤
√

2

λπa
, (17)

we have ∫
D

|Ψσ(η, ζ;λ)| dsη ≤ K(λ, ζ)σkMe−σζm , σ > 1, x ∈ G, (18)

To estimate the second integral, we use the equality

∂Ψσ(η, ζ;λ)

∂ηj
=
∂Ψσ(η, ζ;λ)

∂s

∂s

∂ηj
= 2(ηj − ζj)

∂Ψσ(η, ζ;λ)

∂s
,

s = α2, j = 1, 2, . . . ,m− 1.

(19)

Considering equality (16), inequality (17) and equality (19), we obtain∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηj

∣∣∣∣ dsy ≤ K(λ, ζ)σkMe−σζm , σ > 1, ζ ∈ Ω,

j = 1, 2, . . . ,m− 1.

(20)

Now, we estimate the integral

∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηm

∣∣∣∣ dsη.
Taking into account equality (16) and inequality (17), we obtain∫

D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηm

∣∣∣∣ dsη ≤ K(λ, η)σkMe−σζm , σ > 1, ζ ∈ Ω, (21)

From inequalities (18), (20) and (21), bearing in mind (15), we get an estimate (13).
Now let us prove inequality (14). To do this, we take the derivatives from equalities

(10) and (12) with respect to ζj , j = 1, . . . ,m, then we obtain the following:

∂W (ζ)

∂ζj
=

∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη +

∫
D

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη,

∂Wσ(ζ)

∂ζj
=

∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη, ζ ∈ Ω, j = 1, . . . ,m.

(22)
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Taking into account the (22) and inequality (11), we estimate the following∣∣∣∣∂W (ζ)

∂ζj
− ∂σW (ζ)

∂ζj

∣∣∣∣ ≤
∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη

∣∣∣∣∣∣ ≤
≤
∫
D

∣∣∣∣∂Lσ(η, ζ;λ)

∂ζj

∣∣∣∣ |W (η)| dsη ≤M
∫
D

∣∣∣∣∂Lσ(η, ζ;λ)

∂ζj

∣∣∣∣ dsη,
ζ ∈ Ω, j = 1, . . . ,m.

(23)

To do this, we estimate the integrals

∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζj

∣∣∣∣ dsη, (j = 1, 2, . . . ,m − 1) and∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζm

∣∣∣∣ dsη on the part D of the plane ηm = 0.

To estimate the first integrals, we use the equality

∂Ψσ(η, ζ;λ)

∂ζj
=
∂Ψσ(η, ζ;λ)

∂s

∂s

∂ζj
= −2(ηj − ζj)

∂Ψσ(η, ζ;λ)

∂s
,

s = α2, j = 1, 2, . . . ,m− 1.

(24)

Given equality (16), inequality (17) and equality (24), we obtain∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζj

∣∣∣∣ dsy ≤ K(λ, ζ)σkMe−σζm , σ > 1, ζ ∈ Ω,

j = 1, 2, . . . ,m− 1.

(25)

Now, we estimate the integral

∫
D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζm

∣∣∣∣ dsη.
Taking into account equality (16) and inequality (17), we obtain∫

D

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζm

∣∣∣∣ dsη ≤ K(λ, ζ)σkMe−σζm , ζ ∈ Ω, (26)

From inequalities (23), (25) and (26), we obtain an estimate (14).
Theorem 3.1 is proved. �

Corollary 3.1. For each ζ ∈ Ω, the equalities are true

lim
σ→∞

Wσ(ζ) = W (ζ), lim
σ→∞

∂Wσ(ζ)

∂ζj
=
∂W (ζ)

∂ζj
, j = 1, . . . ,m.

We denote by Ωε the set

Ωε =

{
(ζ1, . . . , ζm) ∈ ζ, q > ζm ≥ ε, q = max

D
ψ(ζ ′), 0 < ε < q

}
.

Here, at m = 2, ψ(ζ1) - is a curve, and at m = 2k, k > 1, ψ(ζ ′) - is a surface. It is
easy to see that the set Ωε ⊂ Ω is compact.
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Corollary 3.2. If ζ ∈ Ωε, then the families of functions {Wσ(ζ)} and

{
∂Wσ(ζ)

∂ζj

}
con-

verge uniformly for σ →∞, i.e.:

Wσ(ζ) ⇒W (ζ),
∂Wσ(ζ)

∂ζj
⇒

∂W (ζ)

∂ζj
, j = 1, . . . ,m.

It should be noted that the set Eε = Ω\Ωε serves as a boundary layer for this problem,
as in the theory of singular perturbations, where there is no uniform convergence.

4. Regularized solution of the problem (1)-(2)

Suppose that the surface Σ (or the curve at m = 2) is given by the equation

ηm = ψ(η′), η′ ∈ Rm−1,

where ψ(η′) is a single-valued function satisfying the Lyapunov conditions.
We put

q = max
D

ψ(η′), l = max
D

√
1 + ψ′2(η′).

Theorem 4.1. Let W (η) ∈ S(Ω) satisfy condition (11), and on a smooth surface Σ the
inequality

|W (η)| ≤ δ, 0 < δ < 1. (27)

Then the following estimates are true

|W (ζ)| ≤ K(λ, ζ)σkM
1− ζm

q δ
ζm
q , σ > 1, ζ ∈ Ω. (28)∣∣∣∣∂W (ζ)

∂ζj

∣∣∣∣ ≤ K(λ, ζ)σkM
1− ζm

q δ
ζm
q , σ > 1, ζ ∈ Ω,

j = 1, . . . ,m.
(29)

Proof. Let us first estimate inequality (28). Using the integral formula (10), we have

W (ζ) =

∫
Σ

Lσ(η, ζ;λ)W (η)dsη +

∫
D

Nσ(η, ζ;λ))W (η)dsη, ζ ∈ Ω. (30)

We estimate the following

|W (ζ)| ≤

∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
D

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ , ζ ∈ Ω. (31)

Given inequality (27), we estimate the first integral of inequality (31).∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(η, ζ;λ)| |W (η)| dsη ≤

≤ δ
∫
Σ

|Lσ(η, ζ;λ)| dsη, ζ ∈ Ω.

(32)

To do this, we estimate the integrals

∫
Σ

|Ψσ(η, ζ;λ)| dsη,
∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηj

∣∣∣∣ dsη, (j =

1, 2, . . . ,m− 1) and

∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηm

∣∣∣∣ dsη on a smooth surface Σ.
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Given equality (16) and the inequality (17), we have∫
Σ

|Ψσ(η, ζ;λ)| dsη ≤ K(λ, ζ)σkeσ(q−ζm), σ > 1, ζ ∈ Ω. (33)

To estimate the second integral, using equalities (16) and (19) as well as inequality (17),
we obtain ∫

Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηj

∣∣∣∣ dsη ≤ K(λ, ζ)σkeσ(q−ζm), σ > 1, ζ ∈ Ω,

j = 1, ,m− 1.

(34)

To estimate the integral

∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηm

∣∣∣∣ dsη, using equality (16) and inequality (17),

we obtain ∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ηm

∣∣∣∣ dsη ≤ K(λ, ζ)σkeσ(q−ζm), σ > 1, ζ ∈ Ω. (35)

From (33)-(35), we obtain∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ ≤ K(λ, ζ)σkδ eσ(q−ζm), σ > 1, ζ ∈ Ω. (36)

The following is known∣∣∣∣∣∣
∫
D

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ ≤ K(λ, ζ)σkMe−σζm , σ > 1, ζ ∈ Ω. (37)

Now taking into account (36)-(37), we have

|W (ζ)| ≤ K(λ, ζ)σk

2
(δeσq +M)e−σζm , σ > 1, ζ ∈ Ω. (38)

Choosing σ from the equality

σ =
1

q
ln
M

δ
, (39)

we obtain an estimate (28).
Now let us prove inequality (29). To do this, we find the partial derivative from the

integral formula (10) with respect to the variable ζj , j = 1, . . . ,m− 1:

∂W (ζ)

∂ζj
=

∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη +

∫
D

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη+

+
∂Wσ(ζ)

∂ζj
+

∫
D

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη, ζ ∈ Ω, j = 1, . . . ,m.

(40)

Here
∂Wσ(ζ)

∂ζj
=

∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη. (41)
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We estimate the following∣∣∣∣∂W (ζ)

∂ζj

∣∣∣∣ ≤
∣∣∣∣∣∣
∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη

∣∣∣∣∣∣ ≤

≤
∣∣∣∣∂Wσ(ζ)

∂ζj

∣∣∣∣+

∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ;λ))

∂ζj
W (η)dsη

∣∣∣∣∣∣ , ζ ∈ Ω, j = 1, . . . ,m.

(42)

Given inequality (27), we estimate the first integral of inequality (42).∣∣∣∣∣∣
∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

∣∣∣∣∂Lσ(η, ζ;λ)

∂ζj

∣∣∣∣ |W (η)| dsη ≤

≤ δ
∫
Σ

∣∣∣∣∂Lσ(η, ζ;λ)

∂ζj

∣∣∣∣ dsη, ζ ∈ Ω, j = 1, . . . ,m.

(43)

To do this, we estimate the integrals

∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζj

∣∣∣∣ dsη, (j = 1, 2, . . . ,m − 1) and∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζm

∣∣∣∣ dsη on a smooth surface Σ.

Given equality (16), inequality (17) and equality (24), we obtain∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζj

∣∣∣∣ dsη ≤ K(λ, ζ)σkeσ(q−ζm), σ > 1, ζ ∈ Ω,

j = 1, 2, . . . ,m− 1.

(44)

Now, we estimate the integral

∫
Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζm

∣∣∣∣ dsη.
Taking into account equality (16) and inequality (17), we obtain∫

Σ

∣∣∣∣∂Ψσ(η, ζ;λ)

∂ζm

∣∣∣∣ dsη ≤ K(λ, ζ)σkeσ(q−ζm), σ > 1, ζ ∈ Ω, (45)

From (44)-(45), we obtain∣∣∣∣∣∣
∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
W (η)

∣∣∣∣∣∣ ≤ K(λ, ζ)σkδeσ(q−ζm), σ > 1, ζ ∈ Ω,

j = 1, . . . ,m.

(46)

The following is known∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη

∣∣∣∣∣∣ ≤ K(λ, ζ)σkMe−σζm , σ > 1, ζ ∈ Ω,

j = 1, . . . ,m.

(47)
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Now taking into account (46)-(47), bearing in mind (42), we have∣∣∣∣∂W (ζ)

∂ζj

∣∣∣∣ ≤ K(λ, ζ)σk

2
(δeσq +M)e−σζm , σ > 1, ζ ∈ Ω,

j = 1, . . . ,m.
(48)

Choosing σ from the equality (39), we obtain an estimate (29).
Theorem 4.1 is proved. �

Let W (η) ∈ S(Ω) and instead W (η) on Σ with its approximation fδ(η) are given,
respectively, with an error 0 < δ < 1,

max
Σ
|W (η)− fδ(η)| ≤ δ. (49)

We put

Wσ(δ)(ζ) =

∫
Σ

Lσ(η, ζ;λ)fδ(η)dsy, ζ ∈ Ω. (50)

Theorem 4.2. Let W (η) ∈ S(Ω) on the part of the plane ηm = 0 satisfy condition (11).
Then the following estimates is true∣∣W (ζ)−Wσ(δ)(ζ)

∣∣ ≤ K(λ, ζ)σkM
1− ζm

q δ
ζm
q , σ > 1, ζ ∈ Ω. (51)∣∣∣∣∂W (ζ)

∂ζj
−
∂Wσ(δ)(ζ)

∂ζj

∣∣∣∣ ≤ K(λ, ζ)σkM
1− ζm

q δ
ζm
q , σ > 1, ζ ∈ Ω,

j = 1, . . . ,m.
(52)

Proof. From the integral formulas (10) and (50), we have

W (ζ)−Wσ(δ)(ζ) =

∫
∂Ω

Lσ(η, ζ;λ)W (η)dsη −
∫
Σ

Lσ(η, ζ;λ)fδ(η)dsη =

=

∫
Σ

Lσ(η, ζ;λ)W (η)dsη +

∫
D

Lσ(η, ζ;λ)W (η)dsη −
∫
Σ

Lσ(η, ζ;λ)fδ(η)dsη =

=

∫
Σ

Lσ(η, ζ;λ) {W (η)− fδ(η)} dsη +

∫
D

Lσ(η, ζ;λ)W (η)dsη.

and

∂W (ζ)

∂ζj
−
∂Wσ(δ)(ζ)

∂ζj
=

∫
∂Ω

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη −

∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
fδ(η)dsη =

=

∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη +

∫
D

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη −

∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
fδ(η)dsη =

=

∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
{W (η)− fδ(η)} dsη +

∫
D

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη, j = 1, . . . ,m.
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Using conditions (11) and (49), we estimate the following:

∣∣W (ζ)−Wσ(δ)(ζ)
∣∣ =

∣∣∣∣∣∣
∫
Σ

Lσ(η, ζ;λ) {W (η)− fδ(η)} dsη

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
∫
D

Lσ(η, ζ;λ)W (η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

|Lσ(η, ζ;λ)| |{W (η)− fδ(η)}| dsη+

+

∫
D

|Lσ(η, ζ;λ)| |W (η)| dsη ≤ δ
∫
Σ

|Lσ(η, ζ;λ)| dsη +M

∫
D

|Lσ(η, ζ;λ)| dsη.

and ∣∣∣∣∂W (ζ)

∂ζj
−
∂Wσ(δ)(ζ)

∂ζj

∣∣∣∣ =

∣∣∣∣∣∣
∫
Σ

∂Lσ(η, ζ;λ)

∂ζj
{W (η)− fδ(η)} dsy

∣∣∣∣∣∣+

+

∣∣∣∣∣∣
∫
D

∂Lσ(η, ζ;λ)

∂ζj
W (η)dsη

∣∣∣∣∣∣ ≤
∫
Σ

∣∣∣∣∂Lσ(η, ζ;λ)

∂ζj

∣∣∣∣ |{W (η)− fδ(η)}| dsη+

+

∫
D

∣∣∣∣∂Lσ(η, ζ;λ)

∂ζj

∣∣∣∣ |W (η)| dsη ≤ δ
∫
Σ

∣∣∣∣∂Lσ(η, ζ;λ)

∂ζj

∣∣∣∣ dsη+
+M

∫
D

∣∣∣∣∂Lσ(η, ζ;λ)

∂ζj

∣∣∣∣ dsη, j = 1, . . . ,m.

Now, repeating the proof of Theorems 3.1 and 4.1, we obtain∣∣W (ζ)−Wσ(δ)(ζ)
∣∣ ≤ K(λ, ζ)σk

2
(δeσq +M)e−σζm .

∣∣∣∣∂W (ζ)

∂ζj
−
Wσ(δ)(ζ)

∂ζj

∣∣∣∣ ≤ K(λ, ζ)σk

2
(δeσq +M)e−σζm , j = 1, . . . ,m.

From here, choosing σ from equality (39), we have an estimates (51) and (52).
Theorem 4.2 is proved. �

Corollary 4.1. For each ζ ∈ Ω, the equalities are true

lim
δ→0

Wσ(δ)(ζ) = W (ζ), lim
δ→0

∂Wσ(δ)(ζ)

∂ζj
=
∂W (ζ)

∂ζj
, j = 1, . . . ,m.

Corollary 4.2. If x ∈ Ωε, then the families of functions
{
Wσ(δ)(ζ)

}
and

{
∂Wσ(δ)(ζ)

∂ζj

}
converge uniformly for δ → 0, i.e.:

Wσ(δ)(ζ) ⇒W (ζ),
∂Wσ(δ)(ζ)

∂ζj
⇒

∂W (ζ)

∂ζj
, j = 1, . . . ,m.
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5. Conclusion

In this paper, we have explicitly found a regularized solution to the ill-posed Cauchy
problem for matrix factorizations of the Helmholtz equation in a multidimensional bounded
domain. It is assumed that a solution to the problem exists and is continuously differ-
entiable in a closed domain with exactly given Cauchy data. For this case, an explicit
formula for the continuation of the solution is established, as well as a regularization for-
mula for the case when, under the indicated conditions, instead of the Cauchy data, their
continuous approximations with a given error in the uniform metric are given. We have
obtained a stability estimate for the solution of the Cauchy problem in the classical sense.

An estimate of the stability of the solution of the Cauchy problem in the classical sense
for matrix factorizations of the Helmholtz equation is given. The problem is considered in
which instead of the exact data of the Cauchy problem; their approximations with a given
deviation in the uniform metric are given and under the assumption that the solution of
the Cauchy problem is bounded on part D of the boundary of the domain Ω; an explicit
regularization formula is obtained.

We note that when solving applied problems, one should find the approximate values

of W (ζ) and
∂W (ζ)

∂ζj
, ζ ∈ Ω, j = 1, . . . ,m.

In this paper, we construct a family of vector-functions W (ζ, fδ) = Wσ(δ)(ζ) and

∂W (ζ, fδ)

∂ζj
=
∂Wσ(δ)(ζ)

∂ζj
, j = 1, . . . ,m depending on a parameter σ, and prove that under

certain conditions and a special choice of the parameter σ = σ(δ), at δ → 0, the family

Wσ(δ)(ζ) and
∂Wσ(δ)(ζ)

∂ζj
converges in the usual sense to a solution W (ζ) and its derivative

∂W (ζ)

∂ζj
at a point ζ ∈ Ω. Following A.N. Tikhonov (see [2]), a family of vector-valued func-

tions Wσ(δ)(ζ) and
∂Wσ(δ)(ζ)

∂ζj
is called a regularized solution of the problem. A regularized

solution determines a stable method of approximate solution of the problem.

Thus, functionals Wσ(δ)(ζ) and
∂Wσ(δ)(ζ)

∂ζj
determines the regularization of the solution

of problem (1)-(2).

Acknowledgement. We would like to thank the referees for their comments and sugges-
tions on the manuscript.
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