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Abstract. In the present work, vibration problems of rectangular plates are considered for
the determination of upper bounds to the unknown microstretch material properties. The
frequencies are obtained by extending the Ritz method to this case. The analysis shows that
some additional frequencies characterizing the microstretch effects appear among the classical
frequencies. Furthermore, by the increasing values of the microstretch constants, the additional
frequencies disappear and only the classical frequencies remain in the spectrum. Considering this
phenomenon, an optimization problem is established for the identification of the upper bounds
of microstretch elastic constants. In the second part of the work, thermal effects are considered
and several theories are discussed. Finally, propagation of the plane waves is investigated.

1. Introduction
It is well known that the linear theory of elasticity is unable to explain the behaviour of the
materials having complex microstructure such as polymers, porous media and micro damaged
materials, etc. Modelling such materials with Eringen’s [1] microstretch theory which assumes
that every particles of the material may do both microrotation and volumetric microelongation
in addition to the bulk deformation is more convenient. Success of this theory depends on
the correctness of the choice of system parameters. Dependence of the dynamic response of the
medium to material properties allows us to establish a vibration analysis [2] for the determination
of such material constants similar to the classical cases [3–11]. This analysis is based on 3-
D microstretch theory and extended Ritz method. Following Zhou et al. [12], the triplicate
Chebyshev polynomial series are used to describe plate deflections. The wave propagation
problems in micropolar and microstretch media are discussed in [13, 14], and it is shown that
two and three new non-classical waves appear in micropolar and microstretch cases, respectively.
Parallel to these results, we found some additional frequencies due to the microstretch character,
among the classical frequencies [2]. As it is expected, these additional frequencies disappear
when the microstretch material constants are taken zero. Besides, we observed that these
additional frequencies are more sensitive to the variation of micro elastic constants than the
classical frequencies. Therefore, the values of additional frequencies rapidly increase by the
increase of micro constants and then considerable amount of them move out among classical
frequencies. During the variation of microstretch constants, the values of classical frequencies
remain same up to some critical values, but they also begin to deviate after these critical values.
This phenomenon tells us that the microstructure becomes more dominant and starts to affect
the macro properties. For instance, considering this model as representing a damaged body,
we may conclude that the development and the growth of micro cracking start to affect the
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macro properties of the body. So, we may define these threshold values as the upper bounds
for the microstretch material parameters. That means, the material is not a microstretch body
anymore. Beyond these threshold values of the micro elastic constants, the material loses its
microstretch character. So, this is the key point of this study that will be used to construct
an optimization problem to determine the upper bounds of the microstretch properties. To
find more specific values for the micro constants, we need to know some experimental data for
the frequencies of the material. But, it needs more sophisticated equipments and experimental
techniques that are not available at the moment. Thus, we may use experimental results due to
classical cases which give us only the upper bounds for micro constants.

Another important problem of damage mechanics is to include thermal effects, and thermo-
microstretch theory can be used. In this case, some additional microthermal constants will occur.
To determine upper bounds for the new constants, same method may not work properly due to
the special form of the thermal analysis and some modifications should be done in the method.
Then, it is left to a further study. Thus, we give here an analysis of the comparison of several
thermal theories and then investigate the plane wave propagation in a thermo-microstretch
material.

2. Fundamental equations and wave propagation in microstretch medium
The constitutive equations for a linear homogeneous, isotropic, microstretch elastic solid may
be given as follows [15]

tkl = λ εmm δkl + (µ + κ) εkl + µ εlk + λ0 θ δkl,
mkl = α γmm δkl + β γkl + γ γlk,
mk = a0 θ,k,
s− t = λ1 θ + λ0 εkk.

(1)

Here, tkl, mkl are the stress and couple stress tensors, mk is the microstretch vector and s = skk,
t = tkk. Strain tensors of a microstretch medium are

εkl = ul,k + elkmφm, γkl = φk,l, γk = θ,k. (2)

Here, λ, µ are Lamé constant and shear modulus, κ, α, β, γ are micropolar constants, λ0, λ1

and a0 are microstretch constants, ρ is the mass density, j is micro-inertia, and u, φ and θ are
displacement and microrotation vectors and microstretch scalar, respectively.

Accordingly, the equations of motion in a linear homogeneous and isotropic microstretch
elastic solid are given as

(c2
1 + c2

3)∇∇ · u− (c2
2 + c2

3)∇×∇× u + c2
3∇× φ + λ̄0∇θ = ü

(c2
4 + c2

5)∇∇ · φ− c2
4∇×∇× φ + ω2

0∇× u− 2ω2
0φ = φ̈

c2
6∆θ − c2

7θ − c2
8∇ · u = θ̈

(3)

where
c2
1 = (λ+2µ)

ρ c2
2 = µ

ρ , c2
3 = κ

ρ , c2
4 = γ

ρj , c2
5 = (α+β)

ρj ,

c2
6 = 2a0

ρj , c2
7 = 2λ1

3ρj , c2
8 = 2λ0

3ρj , ω2
0 = c23

j , λ̄0 = λ0
ρ .

(4)

The displacement and microrotation vectors can be decomposed to their solenoidal and rotational
parts by using Helmholtz decomposition as

u = ∇ū +∇×U , ∇ ·U = 0,
φ = ∇φ̄ +∇×Φ, ∇ ·Φ = 0.

(5)
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Now substituting these potentials into equations of motion, we arrive at the following equations:

(c2
1 + c2

3)∆ū + λ̄0θ = ¨̄u,

c2
6∆θ − c2

7θ − c2
8∆ū = θ̈,

(c2
2 + c2

3)∆U + c2
3∇×Φ = Ü ,

c2
4∆Φ− 2ω2

0Φ + ω2
0∇×U = Φ̈,

(c2
4 + c2

5)∆φ̄− 2ω2
0φ̄ = ¨̄φ.

(6)

3. 3D vibration analysis of the microstretch plate
We consider a homogeneous isotropic rectangular plate with length a, width b and thickness h
[2]. A Cartesian coordinate system (x1, x2, x3) is located at the mid-point of the plate. The
maximum energy functional of a plate is

Π = Vmax − Tmax (7)

where Vmax and Tmax are linear elastic strain energy and kinetic energy, respectively. Assuming
harmonic-time dependence, displacement, microrotation and microstretch components of the
microstretch plate undergoing free vibration may be written in terms of amplitude functions as
follows

{u(x1, x2, x3, t),φ(x1, x2, x3, t), θ(x1, x2, x3, t)} = {U(x1, x2, x3),Φ(x1, x2, x3),Θ(x1, x2, x3)} eiωt

(8)
Here, ω denotes the natural frequency. Now introducing the following non dimensional
parameters;

ξ =
2x1

a
, η =

2x2

b
, ζ =

2x3

h
, (9)

the elastic strain energy Vmax and the kinetic energy Tmax take the following forms:

V = h
4α1

1∫
−1

1∫
−1

1∫
−1

[
λ Λ̄2

1 + (2µ + κ)Λ̄2 + 2µΛ̄3 + (µ + κ)Λ̄4 + αΛ̄2
5 + (β + γ)Λ̄6

+2βΛ̄7 + γΛ̄8 + a0Λ̄9
]
dξ dη dζ

+ b h
8

1∫
−1

1∫
−1

1∫
−1

[
κ ¯̄Λ3 + 2λ0 ΘΛ̄1

]
dξ dη dζ + a b h

16

1∫
−1

1∫
−1

1∫
−1

[
κ

¯̄̄Λ3 + λ1Θ2
]
dξ dη dζ

(10)

and

T =
ρ

16
a b hω2

1∫

−1

1∫

−1

1∫

−1

{[
U2

1 + U2
2 + U2

3

]
+ j

[
Φ2

1 + Φ2
2 + Φ2

3

]
+ 3 j Θ2

}
dξ dη dζ (11)

where

Λ̄1 = ε̄ξξ + ε̄ηη + ε̄ζζ, Λ̄2 = ε̄2
ξξ + ε̄2

ηη + ε̄2
ζζ ,

Λ̄3 = 1ε̄ξη 1ε̄ηξ + 1ε̄ξζ 1ε̄ζξ + 1ε̄ηζ 1ε̄ζη,
¯̄Λ3 = ( 1ε̄ξη − 1ε̄ηξ) 2ε̄ξη + ( 1ε̄ξζ − 1ε̄ζξ) 2ε̄ξζ + ( 1ε̄ηζ − 1ε̄ζη) 2ε̄ηζ ,
¯̄̄Λ3 = 2ε̄

2
ξη + 2ε̄

2
ξζ + 2ε̄

2
ηζ , Λ̄4 = 1ε̄

2
ξη + 1ε̄

2
ηξ + 1ε̄

2
ξζ + 1ε̄

2
ζξ + 1ε̄

2
ηζ + 1ε̄

2
ζη,

Λ̄5 = γ̄ξξ + γ̄ηη + γ̄ζζ, Λ̄6 = γ̄2
ξξ + γ̄2

ηη + γ̄2
ζζ ,

Λ̄7 = γ̄ξη γ̄ηξ + γ̄ξζ γ̄ζξ + γ̄ηζ γ̄ζη, Λ̄8 = γ̄2
ξη + γ̄2

ηξ + γ̄2
ξζ + γ̄2

ζξ + γ̄2
ηζ + γ̄2

ζη,

Λ̄9 = Θ̄2
,ξ + Θ̄2

,η + Θ̄2
,ζ

(12)
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and

ε̄ξξ = ∂U1
∂ξ , ε̄ηη = α1

∂U2
∂η , ε̄ζζ = α1

α2

∂U3
∂ζ , 1ε̄ξη = ∂U2

∂ξ , 1ε̄ηξ = α1
∂U1
∂η , 1ε̄ξζ = ∂U3

∂ξ ,

1ε̄ζξ = α1
α2

∂U1
∂ζ , 1ε̄ηζ = α1

∂U3
∂η , 1ε̄ζη = α1

α2

∂U2
∂ζ , 2ε̄ij = ejikΦk, (i, j, k = ξ, η, ζ),

γ̄ξξ = ∂Φ1
∂ξ , γ̄ηη = α1

∂Φ2
∂η , γ̄ζζ = α1

α2

∂Φ3
∂ζ , γ̄ξη = α1

∂Φ1
∂η , γ̄ηξ = ∂Φ2

∂ξ , γ̄ξζ = α1
α2

∂Φ1
∂ζ ,

γ̄ζξ = ∂Φ3
∂ξ , γ̄ηζ = α1

α2

∂Φ2
∂ζ , γ̄ζη = α1

∂Φ3
∂η , Θ̄,ξ = ∂Θ

∂ξ , Θ̄,η = α1
∂Θ
∂η , Θ̄,ζ = α1

α2

∂Θ
∂ζ ,

α1 = a
b , α2 = h

b .

(13)

Here, following [2, 12], each amplitude functions in (8) are expressed in terms of triplicate series
of Chebyshev polynomials multiplied by proper admissible boundary functions, i.e.,

U1(ξ, η, ζ) = Fu1(ξ, η)
∞∑

i,j,k=1
AijkPi(ξ)Pj(η)Pk(ζ), Φ1(ξ, η, ζ) = FΦ1(ξ, η)

∞∑
î,ĵ,k̂=1

Âîĵk̂Pî(ξ)Pĵ(η)Pk̂(ζ),

U2(ξ, η, ζ) = Fu2(ξ, η)
∞∑

l,m,n=1
BlmnPl(ξ)Pm(η)Pn(ζ), Φ2(ξ, η, ζ) = FΦ2(ξ, η)

∞∑
l̂,m̂,n̂=1

B̂l̂m̂n̂Pl̂(ξ)Pm̂(η)Pn̂(ζ),

U3(ξ, η, ζ) = Fu3(ξ, η)
∞∑

p,q,r=1
CpqrPp(ξ)Pq(η)Pr(ζ), Φ3(ξ, η, ζ) = FΦ3(ξ, η)

∞∑
p̂,q̂,r̂=1

Ĉp̂q̂r̂Pp̂(ξ)Pq̂(η)Pr̂(ζ),

Θ(ξ, η, ζ) = FΘ(ξ, η)
∞∑

ˆ̂i,ˆ̂j,
ˆ̂
k=1

ˆ̂
Aˆ̂iˆ̂j

ˆ̂
k
Pˆ̂i

(ξ)Pˆ̂j
(η)Pˆ̂

k
(ζ).

(14)
One dimensional ith Chebyshev polynomial is given as

Pi(χ) = cos [(i− 1) arccos(χ)] . (15)

Finally, substituting the series (14) into the energy functional (7) and minimizing this functional
with respect to the coefficients of the Chebyshev polynomials, i.e.,

∂Π
∂Aijk

= 0,
∂Π

∂Blmn
= 0,

∂Π
∂Cpqr

= 0,
∂Π

∂Âîĵk̂

= 0,
∂Π

∂B̂l̂m̂n̂

= 0,
∂Π

∂Ĉp̂q̂r̂

= 0,
∂Π

∂
ˆ̂
Aˆ̂iˆ̂j

ˆ̂
k

= 0, (16)

leads to the following eigenvalue problem,
(
K − Ω2 M

)
Z = 0 (17)

with
Ω = ω a

√
ρ. (18)

Here, the column vector Z may be written with its sub-column vectors

Z = {A,B, C, Â, B̂, Ĉ, ˆ̂A}. (19)

and each sub-column vector is in the following form [2]

A = {A111, . . . , A11K , . . . , A1k1, . . . , A1kK , . . . , AI11, . . . , AIJK}. (20)

4. Analysis of the spectrum of frequencies and the construction of the
optimization problem
Here, we consider a plate made of Gauthier material [16] with the properties ν = 0.4,
E = 5.29GPa, j = 1.96 × 10−7m2, α1 = 1, α2 = 0.1. And the plate is considered as simply
supported. The number of terms used in equation (14) is taken as 8 × 8 × 4 [2]. In addition
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to the classical constants; the Poisson ratio, ν, and the modulus of elasticity, E, the number
of the unknown material coefficients of a linear isotropic microstretch material is seven, namely
{κ, α, β, γ, a0, λ0, λ1}.

As it is explained above, the existence of the additional frequencies due to the microstructure
of the material makes the spectrum different than the one observed in the classical theory.
Therefore, an objective function similar to the one used in the classical theory [3–11] could
not be sufficient to obtain microstretch elastic properties. Now, to construct a well posed
optimization problem, we use two objective functions that should be minimized; the first one is
the difference between experimental frequencies and classical frequencies stored in a set (Aclas)
and the second is the number of the additional frequencies stored in another set (Bmicro).

The optimization problem may be constructed by superposing two objective functions

Minimize
subject to X

τ1

(
I∑

i=1

(fe
i − fi(X))2

)
+ τ2

(
length(Bmicro(X))

)
. (21)

Here, the vector X represents the unknown parameters, i.e.

X = {κ, α, β, γ, a0, λ0, λ1}. (22)

And, I is the number of the experimental and classical frequencies under consideration, fe
i is

ith experimental frequency, fi(X) is the ith calculated classical frequency corresponding to fe
i .

Bmicro(X) is the set of the additional frequencies due to the microstructure of the medium, τ1

and τ2 are the weight functions of the first and second objective functions, respectively and

τ1 + τ2 = 1. (23)

The direct search algorithm (DSA) and micro genetic algorithm (mGA) are used to solve inverse
optimization problem. The results for Gauthier material [16] is given in the following table [2].

Table 1. Microstretch constants {κ, α, β, γ, a0, λ0, λ1} for Gauthier material [16] obtained from
DSA.

κ = 1.3234× 10−4 GPa, α = 8.3255× 10−2kN, β = 0.10282kN, γ = 3.3349kN,

a0 = 15.947kN, λ0 = 0.57702kPa, λ1 = 34.650kPa

Obtained Freq. (Hz) with above microstretch parameters:
148.534, 353.269, 353.269, 465.074, 465.074, 540.921, 657.715,
658.414, 658.414, 824.744, 825.204

Error
0.0000734863

5. Thermo-microstretch theories
Different theories may be used for thermal problems, such as; static thermoelasticity, uncoupled
and coupled quasi-static thermoelasticity, uncoupled and coupled dynamic thermoelasicity etc.
Additional approaches may also be given.

As it is well known, the classical theory of heat conduction in solids uses the hypothesis
that heat flux is proportional to the gradient of the temperature distribution. As a result of
this hypothesis, the corresponding equation appears as a parabolic partial differential equation
which results that a thermal disturbance in the body instantaneously affects all points of the
body. This infinite speed is contrary with the physical realities. To remove this paradox
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in the classical theory, generalized thermoelasticity was developed [17]. Generalized theory
introduces a short time parameter to the theory to establish a steady state heat conduction
when a temperature gradient is suddenly produced in the solid. This is called thermal relaxation
time. Thermoelasticity concept has led to a wide range of extension of the classical theory of
thermoelasticity. Some theories may be given as [18]:

(i) Coupled thermoelasticity [19].
(ii) Thermoelasticity where the Fourier law of heat conduction is modified by taking into

consideration a single relaxation time (Lord and Shulman model) [17].
(iii) Thermoelasticity where the constitutive relations for the stress tensor and the entropy are

generalized by introducing two different relaxation times (Green and Lindsay model) [20].
(iv) Thermoelasticity without energy dissipation, proposed by Green and Naghdi [21] where,

the Fourier law is replaced by a heat flux rate-temperature gradient relaxation.

These generalizations are the most well-known ones. Their corresponding theories in
microstretch theory may be given as follows

1-Couple thermo-microstretch theory (Eringen [1]). The additional terms may be seen in the
following equations:

tkl = λur,rδkl + µ(uk,l + ul,k) + κ(ul,k − εklmφr) + λ0θδkl − β0Tδkl

a0θ,kk + 1
3β1T − 1

3λ1θ − 1
3λ0uk,k + ρ(l − 3

2jθ̈) = 0
ργ0Ṫ + β0T0u̇k,k + β1T0θ̇ − κ∇2T − ph = 0.

(24)

And the first field equation may be given in the vector form as:

(λ + 2µ + κ)∇∇ · u− (µ + κ)∇×∇× u + κ∇× φ + λ0∇θ − β0∇T + ρ(f − ü) = 0 (25)

2- Corresponding equations to the second theory with one relaxation time are

tkl = λur,rδkl + µ(uk,l + ul,k) + κ(ul,k − εklmφr) + λ0θδkl − β0Tδkl,

a0θ,kk + 1
3ν1T − 1

3λ1θ − 1
3λ0uk,k + ρ(l − 3

2jθ̈) = 0,

ργ0(Ṫ + τ0T̈ ) + νT0(u̇k,k + τ0ük,k) + ν1T0(θ̇ − τ0θ̈) + κ∇2T − ph = 0.

(26)

Here
ν = (3λ + 2µ + κ)αt1 , ν1 = (3λ + 2µ + κ)αt2 , (27)

and αt1 , αt2 are the additional coefficients of linear thermal expansion. Then, the corresponding
field equation may be written as

(λ + 2µ + κ)∇∇ · u− (µ + κ)∇×∇× u + κ∇× φ + λ0∇θ − ν∇T + ρ(f − ü) = 0 (28)

3- Equations of the coupled theory with two relaxation times are

tkl = λur,rδkl + µ(uk,l + ul,k) + κ(ul,k − εklmφr) + λ0θδkl − ν(T + t1Ṫ )δkl

a0θ,kk + 1
3ν1(T + t1Ṫ )− 1

3λ1θ − 1
3λ0uk,k + ρ(l − 3

2jθ̈) = 0
ργ0(Ṫ + τ0T̈ ) + νT0u̇k,k + β1T0(θ̇ − τ0θ̈) + κ∇2T − ph = 0,

(29)

and the same field equation for this case becomes,

(λ+2µ+κ)∇∇·u− (µ+κ)∇×∇×u+κ∇×φ+λ0∇θ−ν(1+ t1
∂

∂t
)∇T +ρ(f − ü) = 0. (30)

As it can be followed from the above expressions, the structure of the equations does not allow
us to apply the method used in [2]. With some modifications, second and third theories may be
considered, which contain two new unknowns as ν(αt1), ν1(αt2). This part of the work is left to
further studies.
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6. Propagation of plane waves
To investigate the waves propagating along x1 direction, we consider the solution of equations
(3) with the inclusion of thermal terms as seen in Eq.(24). Here, we take fi = lij = 0 and
ui = ui(x1, t), φi = φi(x1, t), θ = θ(x1, t), T = T (x1, t). Then, we find

1− (c2
1 + c2

3)u1,11 + λ̄θ,1 − β∗20 T = ü1

2− (c2
2 + c2

3)u2,11 − c2
3φ3,1 = ü2

3− (c2
2 + c2

3)u3,11 − c2
3φ2,1 = ü3

4− (c2
4 + c2

5)φ1,11 − 2ω2
0φ1 = φ̈1

5− c2
4φ2,11 − 2ω2

0φ2 − ω2
0u3,1 = φ̈2

6− c2
4φ3,11 − 2ω2

0φ3 − ω2
0u2,1 = φ̈3

7− c2
4θ,11 − c2

7θ − c2
8u1,1 + β∗21 T = θ̈

8− γ̄Ṫ + β∗20 u̇k,k + β̄2
1 θ̇ − c2

3∇2T − h = 0.

(31)

The additional coefficients are

β∗20 =
β0T0

ρ
, β̄2

1 =
β1T0

ρ
, c2

3 =
κ

ρ
. (32)

Here, we have eight equations for eight unknowns, u1, u2, u3, φ1, φ2, φ3, θ and T . As it can be
followed from above equations, the first, seventh and the last equations are coupled for the
unknowns, u1, θ and T.

Since the direction of propagation is x1, In the first equation, u1 represents the longitudinal
wave. So, we may call it longitudinal displacement wave. The other terms, θ and T may be
considered as representing micro-dilatational and thermal waves respectively.

Second and sixth equations of (31) are also coupled equations for transverse displacement for
u2 and transverse micro-shear φ3. Then, they may be regarded as the equations for representing
the propagation of transverse displacement and transverse micro-shear waves. Third and
fifth equations of (31) represent another such pair of coupled equations, specifically showing
a coupling between transverse displacement u3 and transverse micro-shear φ2. And they may be
naturally called as the equations for representing the propagation of another couple of transverse
displacement and transverse micro-shear waves in the medium.

To find the dispersion relations for plane harmonic waves, we consider the following forms

ui = Ui exp [i(ξx− ωt)] , φi = Φi exp [i(ξx− ω t)]
θ = Θ exp [i(ξx− ωt)] , T = Γ exp [i(ξx− ω t)] (33)

where Ui, Φi,Θ and Γ are unknown constants, ξ is the wave number, ω is the angular frequency.

a- First, we will consider the uncoupled fourth equation of (31) for φ1. It represents the
longitudinal transverse micro shear. To find the dispersion relation for φ1, we use definitions
(33) and set the coefficient φ1 to zero, which gives

c2 =
(

ω

ξ

)2

= (c2
4 + c2

5)
ω2

ω2 − ω∗2
. (34)

Here c is the phase velocity and

ω∗2 = ω2
0 =

2κ

ρj
. (35)

Now we may write
ω > ω∗ c is real,
ω = ω∗ c is infinite,
ω < ω∗ c is imaginary.

(36)
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Here ω∗ is a cut off frequency which depends on the material characteristic κ and it is positive.
Without any micro crack or void in the medium, we arrive the limit case of ω∗ = 0 and find
c1 ⇒ µ∗/ρ0 which seems reasonable. As a result, we may conclude that we have here a dispersive
wave which propagate only at a frequency higher than ω∗.

b- As an example for coupled equations, we may consider second and fifth equations of (31).
These are given for transverse displacement u2 and transverse micro-shear φ3. They represent
the propagation of transverse displacement and transverse micro-shear waves. Following the
same procedure, we find the dispersion equation as,

c4 − c2
[
c2
2 + 2c2

3 + c2
4 + 2c∗2

]
+ (c2

2 + c2
3)(c

2
2 + 2c∗2) = 0. (37)

The investigation of this equation is similar to the one given in [13]. Thus, we shall not give the
details here.

c- Last group of coupled equations are given for u1, θ and T representing longitudinal
displacement wave, longitudinal micro-dilatational and thermal waves respectively. Substituting
above definitions for u1, θ and T into the corresponding equations, we obtain

[
ω2 − (

c2
1 + c2

3

)
ξ2

]
U + iξλ̄Θ + β̄0 (iξ) Γ = 0

−c2
8iξU +

[
3ω2 − (

ξ2c2
6 + c2

7

)]
Θ + ω2

1Γ = 0
β∗20 ωξU − β∗21 iωΘ− (

c2
3ξ

2 − γωi
)
Γ = 0.

(38)

To obtain nonzero solutions for the unknowns U , Θ, Γ in the above system of equations,
the determinant of the coefficient matrix must be zero. This gives the dispersion relation for
the propagation of longitudinal displacement wave, longitudinal micro-dilatational and thermal
waves.

Since it is rather complicated, we would like to consider a more simple problem just to see
the effects of the thermal field. Considering

β1 << λ0 < β0, (39)

we may neglect the small terms in the first step in the corresponding equations and take

T =
(

ε

ξ

)
U. (40)

Here
ε =

β0T0

κ
. (41)

Now, substituting this approximate form of T in first and eight equations of (31), we obtain the
following dispersion relation,

ω4 − [α + ε]ω2 − β + γε = 0. (42)

Here
α =

(
1
3

)
c2
6ξ

2 +
(

1
3

)
c2
7 +

(
c2
1 + c2

3

)
, β = λ̄0c

2
8ξ

2, γ =
(

1
3

) (
c2
6ξ

2 + c2
7

)
. (43)

It is important to see here whether ω2 is real. For this condition the radical must be nonzero,
which gives,

1
9

(
c2
6ξ

2 + c2
7

)2 +
(
c2
1 + c2

3

)2 + 2
3

(
c2
6ξ

2 + c2
7

) (
c2
1 + c2

3

)
+

2
[

1
3

(
c2
6ξ

2 + c2
7

)
+

(
c2
1 + c2

3

)]
ε + ε2 + 4β − 4

3

(
c2
6ξ

2 + c2
7

)
ε > 0.

(44)
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To satisfy this condition for all values of ξ, we must have

1. c4
6 > 0,

2. 1
3c2

7

(
c2
1 + c2

3

)
+ 6λ0

c28
c26

> ε,

3.
[

1
3c2

7 +
(
c2
1 + c2

3

)]2
+ 2

(
c2
1 + c2

3

)
ε + ε2 > 0.

(45)

Here, the first and third conditions are obviously satisfied. A condition similar to the second
one is also obtained by Eringen for the microstretch bodies by comparing the dispersion relation
with the corresponding one in lattice dynamics [1].

7. Conclusions
The upper bounds of microstretch elastic constants of a microstretch material are found by
constructing an optimization problem with two objective functions. So, these results may be
used in damaged bodies modelled by microstretch theory. An example with the results obtsined
here is given in a recent work of the authors and found the displacement field of a damaged
hollow cylinder [22].

In the second part of this work, a discussion is given for the investigation of thermal problems
of microstructured materials with different approaches. Later, the propagation of plane waves
for thermo-microstretch material is studied. Determination of the microthermal constants is left
to further studies.

References
[1] Eringen A C 1990 Int. J. Eng. Sci. 28 1291-1301
[2] Kiris A and Inan E 2008 Int. J. Eng. Sci. 46 585-597
[3] Deobald L R and Gibson R F 1988 J. Sound and Vibration 124 269-283
[4] Sol H and Oomens C 1997 Material Identification Using Mixed Numerical Experimental

Methods (Boston: Kluwer Academic Publishers)
[5] Ayorinde E O and Yu L 2005 J. Sound and Vibration 283 243-262
[6] Pedersen P and Frederiksen P S 1992 Measurement 10 113-118
[7] Frederiksen P S 1995 Identification of elastic constants including transverse shear moduli

of thick orthotropic plates, Report N: 500 Technical University of Denmark
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