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Abstract

In the present work, we examined the head-on-collision of solitary
waves in shallow water theory, through the use of extended Poincare-
Lighthill-Kuo(PLK) method based on the combination of reductive
perturbation method with strained coordinates. Motivated with the
result obtained by Ozden and Demiray (Int.J. Nonlinear Mech., 69:66-
70, 2015), we introduced a set of stretched coordinates that include
some unknown functions which are to be determined so as to remove
secularities that might occur in the solution. By expanding these
unknown functions and the field variables into power series in the
smallness parameter ε, introducing them into the field equations and
imposing the conditions to remove the secularities we obtained some
evolution equations. By seeking a progressive wave solution to these
evolution equations we determined the speed correction terms and the
phase shift functions. The result obtained here is exactly the same
with found by Ozden and Demiray (Int.J. Nonlinear Mech.69:66-70,
2015), wherein the analysis employed by Su and Mirie (J. Fluid Mech.,
98:09-525, 1980) is utilized.
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1 Introduction

It is well-known that long-time asymptotic behaviour of two dimensional
unidirectional shallow water waves in the case of weak nonlinearity is de-
scribed by the Korteweg-de Vries (KdV) equation [1]. Since, the inverse
scattering transform (IST) for exactly solving the KdV equation was found
by Gardner, Kruskal and Miura [2], the interesting features of the collision
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between solitary waves had been revealed: When two solitary waves approach
closely, they interact, exchange their energies and position with one another,
and, then separate off, regaining their original forms. Throughout the whole
process of the collision, the solitary waves are remarkably stable entities pre-
serving their identities through the interaction. The unique effect due to
the collision is their phase shifts. It is believed that this striking colliding
property of solitary waves can only be preserved in a conservative system.

According to IST, all the KdV solitary waves travel in the same direction,
under the boundary conditions vanishing at infinity [2, 3]; so for overtaking
collision between solitary waves, one can use the IST to obtain the overtaking
colliding effect of solitary waves. However, for the head-on collision between
solitary waves, one must employ some kind of asymptotic expansion to solve
the original field equations. In this regard, for the study of head-on-collision
problems, a comprehensive approach had been presented by Su and Mirie [4],
in which the Poincare-Lighthill-Kuo(PLK) method had been employed. To
determine the unknown phase shift functions, in their analysis they made the
statement that ”although certain terms do not cause any secularity at this
order but they will cause secularity at the higher order expansion, therefore,
those terms must vanish”. Several researchers, utilizing the implication of
this statement studied the head-on-collision of solitary wave problems in
various media [5-19]. Unfortunately, our calculations for the higher order
expansion show that the terms mentioned in their work do not cause any
secularity in the solution. Our results had been justified by one of the authors
(Su, private communication). Therefore, the result they found for the phase
shift functions is incorrect. The details of our arguments are given in [20], in
which the same kind of solution method have been utilized.

In the present work, we study the same problem through the use of ex-
tended PLK method, in which the classical reductive perturbation method is
combined with the strained coordinates. Motivated with the result obtained
in [20] we introduce the strained coordinates as

ε1/2(x− t) = ξ + εp(τ) + ε2P (ξ, η, τ),

ε1/2(x+ t) = η + εq(τ) + ε2Q(ξ, η, τ), τ = ε3/2t,

where ε is the smallness parameter measuring the weakness of dispersion
and nonlinearity, p(τ) and q(τ) are two unknown functions characterizing
the higher order dispersive effects, P (ξ, η, τ) and Q(ξ, η, τ) are two unknown
functions characterizing the phase shifts after collision. These unknown func-
tions are to be determined from the higher order perturbation expansions so
as to remove possible secularities that occur in the solution.

Expanding the field variables and these unknown functions into power
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Figure 1:

series of ε, introducing these expansion into the field equations and setting
the coefficients of various powers of ε equal to zero we obtained a set of partial
differential equations. By solving these differential equations and removing
possible secularities that occur in the solution we obtained various evolution
equations and restrictions that make it possible to determine the unknown
functions. Seeking a progressive wave solution to these evolution equations
we obtained the velocity correction terms and the phase shifts. It is observed
that the result found here is exactly the same with one obtained in [20].

2 Basic Equations

We consider a plane irrotational flow of an incompressible fluid. Let φ?(x?, y?, t?)
be the velocity potential related to the velocity components u? and v? in the
x? and y? directions, respectively, by

u? =
∂φ?

∂x?
, v? =

∂φ?

∂y?
. (1)

The incompressibility of the fluid requires that φ? must satisfy the Laplace
equation

∂2φ?

∂x?2
+
∂2φ?

∂y?2
= 0. (2)

The boundary conditions to be satisfied are:

∂φ?

∂y?
= 0 at y? = 0,

∂φ?

∂y?
=
∂h?

∂t?
+
∂φ?

∂x?
∂h?

∂x?
at y? = h?,
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∂φ?

∂t?
+

1

2

[(
∂φ?

∂x?

)2

+

(
∂φ?

∂y?

)2
]

+ g(h? − h0) = 0

at y? = h?, (3)

where g is gravity acceleration of the earth and h0 is the water still level(equilibrium
depth).

At this stage it is convenient to introduce the following nondimensional
quantities

x? = h0x, y? = h0y, t? =

(
h0
g

)1/2

t,

h? = h0(1 + ζ̂), φ? =
(
gh30
)1/2

φ̂ (4)

Introducing (4) into the equations (2)-(3), the following nondimensional
equations are obtained

∂2φ̂

∂x2
+
∂2φ̂

∂y2
= 0, (5)

∂φ̂

∂y
= 0 at y = 0,

∂φ̂

∂y
=
∂ζ̂

∂t
+
∂φ̂

∂x

∂ζ̂

∂x
at y = 1 + ζ̂ ,

∂φ̂

∂t
+

1

2

(∂φ̂
∂x

)2

+

(
∂φ̂

∂y

)2
+ ζ̂ = 0

at y = 1 + ζ̂ . (6)

These equations will be used as we study the head-on collision problem in
shallow water theory.

Assuming a polynomial solution for φ̂ in terms of y, the solution satisfying

the boundary condition
∂φ̂

∂y
= 0 at y = 0 may be given by

φ̂ =
∞∑
n=0

(−1)n

(2n)!

∂2nΦ̂

∂x2n
y2n. (7)

where Φ̂(x, t) is the value of φ̂(x, y, t) at y = 0. This solution must satisfy
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the last two boundary conditions in (6).

∂ζ̂

∂t
+

∂

∂x

{
(1 + ζ̂)ŵ

+
∞∑
n=1

(−1)n
(1 + ζ̂)2n+1

(2n+ 1)!

∂2nŵ

∂x2n

}
= 0, (8)

∂ŵ

∂t
+

∂

∂x

{
ζ̂ +

ŵ2

2
+
∞∑
n=1

(−1)n
(1 + ζ̂)2n

(2n)![
∂2nŵ

∂t∂x2n−1
+

1

2

2n∑
m=0

(−1)m
(

2n

m

)
∂mŵ

∂xm
∂2n−mŵ

∂x2n−m

]}
= 0, (9)

where w =
∂φ̂

∂x
and

(
2n

m

)
is the binomial coefficient.

3 Extended PLK Method

For our future purposes, we introduce the following stretched coordinates

ε
1
2 (x− t) = ξ + εp(τ) + ε2P (ξ, η, τ),

ε
1
2 (x+ t) = η + εq(τ) + ε2Q(ξ, η, τ),

ε3
/2t = τ, (10)

where ε is the smallness parameter measuring the weakness of dispersion
and nonlinearity, p(τ) and q(τ) are two unknown functions characterizing
the higher order dispersive effects, P (ξ, η, τ) and Q(ξ, η, τ) are two unknown
functions characterizing the phase shifts after collision. Then, the following
differential relations hold true

∂

∂x
=
ε
1
2

D

{[
1 + ε2

(
∂Q

∂η
− ∂P

∂η

)]
∂

∂ξ

+

[
1 + ε2

(
∂P

∂ξ
− ∂Q

∂ξ

)]
∂

∂η

}
,

∂

∂t
= ε

1
2

{
ε
∂

∂τ
− 1

D

[
1 + ε2

(
dp

dτ
+
∂P

∂η
+
∂Q

∂η

)
+ε3

∂P

∂τ
+ ε4

(
dp

dτ

∂Q

∂η
− dq

dτ

∂P

∂η

)
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+ε5
(
∂P

∂τ

∂Q

∂η
− ∂Q

∂τ

∂P

∂η

)]
∂

∂ξ

+
1

D

[
1 + ε2

(
−dq
dτ

+
∂P

∂ξ
+
∂Q

∂ξ

)
−ε3∂Q

∂τ
+ ε4

(
dp

dτ

∂Q

∂ξ
− dq

dτ

∂P

∂ξ

)
+ε5

(
∂P

∂τ

∂Q

∂ξ
− ∂Q

∂τ

∂P

∂ξ

)]
∂

∂η

}
(11)

where D is defined by

D =

(
1 + ε2

∂P

∂ξ

)(
1 + ε2

∂Q

∂η

)
− ε4∂P

∂η

∂Q

∂ξ
. (12)

We assume that the field quantities ŵ, ζ̂, p(τ), q(τ), P (ξ, η, τ) andQ(ξ, η, τ)
can be expanded into asymptotic series in ε as

ŵ = ε
[
w0 + εw1 + ε2w2 + ε3w3 + ε4w4 + ...

]
,

ζ̂ = ε
[
ζ0 + εζ1 + ε2ζ2 + ε3ζ3 + ε4ζ4 + ...

]
,

p(τ) = p0(τ) + εp1(τ) + ε2p2(τ) + ε3p3(τ) + ... ,

q(τ) = q0(τ) + εq1(τ) + ε2q2(τ) + ε3q3(τ) + ... ,

P (ξ, η, τ) = P0(ξ, η, τ) + εP1(ξ, η, τ) + ... ,

Q(ξ, η, τ) = Q0(ξ, η, τ) + εQ1(ξ, η, τ) + ... . (13)

Inserting (11) and (13) into equations (8) and (9) and setting the coefficients
of like powers of ε equal to zero the following equations are obtained

O (ε) equations:

∂ζ0
∂η
− ∂ζ0

∂ξ
+
∂w0

∂η
+
∂w0

∂ξ
= 0,

∂ζ0
∂η

+
∂ζ0
∂ξ

+
∂w0

∂η
− ∂w0

∂ξ
= 0, (14)

O
(
ε2
)

equations:

∂ζ1
∂η
− ∂ζ1

∂ξ
+
∂w1

∂η
+
∂w1

∂ξ
+
∂ζ0
∂τ

+
∂

∂η
(ζ0w0)
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+
∂

∂ξ
(ζ0w0)−

1

6

(
∂3w0

∂ξ3
+ 3

∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2

+
∂3w0

∂η3

)
= 0,

∂ζ1
∂η

+
∂ζ1
∂ξ

+
∂w1

∂η
− ∂w1

∂ξ
+
∂w0

∂τ
+

1

2

∂

∂η
(w2

0)

+
1

2

∂

∂ξ
(w2

0) +
1

2

(
∂3w0

∂ξ3
+

∂3w0

∂ξ2∂η
− ∂3w0

∂ξ∂η2

−∂
3w0

∂η3

)
= 0, (15)

O
(
ε3
)

equations:

∂ζ2
∂η
− ∂ζ2

∂ξ
+
∂w2

∂η
+
∂w2

∂ξ
+
∂ζ1
∂τ

+
∂

∂η
(ζ1w0)

+
∂

∂ξ
(ζ1w0) +

∂

∂η
(ζ0w1) +

∂

∂ξ
(ζ0w1)

− 1

6

(
∂3w1

∂ξ3
+ 3

∂3w1

∂ξ2∂η
+ 3

∂3w1

∂ξ∂η2
+
∂3w1

∂η3

)
− dq0
dτ

∂ζ0
∂η
− dp0

dτ

∂ζ0
∂ξ

+
1

120

(
∂5w0

∂ξ5
+ 5

∂5w0

∂ξ4∂η

+10
∂5w0

∂ξ3∂η2
+ 10

∂5w0

∂ξ2∂η3
+ 5

∂5w0

∂ξ∂η4
+
∂5w0

∂η5

)
− ζ0

2

(
∂3w0

∂ξ3
+ 3

∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2
+
∂3w0

∂η3

)
−
(

6
∂P0

∂ξ
+ 7

∂Q0

∂η
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂ξ
(ζ0 − w0)

+
∂Q0

∂ξ

∂

∂η
(ζ0 − w0)−

∂P0

∂η

∂

∂ξ
(ζ0 + w0)

+

(
7
∂P0

∂ξ
+ 6

∂Q0

∂η
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂η
(ζ0 + w0)

− 1

2

(
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

)(
∂ζ0
∂η

+
∂ζ0
∂ξ

)
= 0,
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∂ζ2
∂η

+
∂ζ2
∂ξ

+
∂w2

∂η
− ∂w2

∂ξ
+
∂w1

∂τ
+

∂

∂η
(w0w1)

+
∂

∂ξ
(w0w1)−

dq0
dτ

∂w0

∂η
− dp0

dτ

∂w0

∂ξ
+

1

2

(
∂3w1

∂ξ3

+
∂3w1

∂ξ2∂η
− ∂3w1

∂ξ∂η2
− ∂3w1

∂η3

)
− 1

24

(
∂5w0

∂ξ5

+3
∂5w0

∂ξ4∂η
+ 2

∂5w0

∂ξ3∂η2
− 2

∂5w0

∂ξ2∂η3
− 3

∂5w0

∂ξ∂η4

−∂
5w0

∂η5

)
+

1

2

(
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

)(
∂w0

∂η

+
∂w0

∂ξ

)
− w0

2

(
∂3w0

∂ξ3
+ 3

∂3w0

∂ξ2∂η
+ 3

∂3w0

∂ξ∂η2

+
∂3w0

∂η3

)
+ ζ0

(
∂3w0

∂ξ3
+

∂3w0

∂ξ2∂η
− ∂3w0

∂ξ∂η2

−∂
3w0

∂η3

)
− 1

2

∂

∂τ

[
∂2w0

∂ξ2
+ 2

∂2w0

∂ξ∂η
+
∂2w0

∂η2

]
− ∂Q0

∂ξ

∂

∂η
(ζ0 − w0)−

∂P0

∂η

∂

∂ξ
(ζ0 + w0) +

(
7
∂P0

∂ξ

+6
∂Q0

∂η
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂η
(ζ0 + w0) +

(
6
∂P0

∂ξ

+7
∂Q0

∂η
− 6

∂P0

∂η

∂Q0

∂ξ

)
∂

∂ξ
(ζ0 − w0) +

(
∂2w0

∂ξ2

−∂
2w0

∂η2

)(
∂ζ0
∂η

+
∂ζ0
∂ξ

)
= 0. (16)

3.1 Solution of the field equations

From the solution of the set (14) we have

ζ0 = f(ξ, τ) + g(η, τ),

w0 = f(ξ, τ)− g(η, τ), (17)

where f(ξ, τ) and g(η, τ) are two unknown functions whose governing equa-
tions will be obtained later.

The solution of (15) yields

2
∂

∂η
(ζ1 + w1) + 2

∂f

∂τ
+ 3f

∂f

∂ξ
+

1

3

∂3f

∂ξ3
− g∂g

∂η
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+
2

3

∂3g

∂η3
− f ∂g

∂η
− ∂f

∂ξ
g = 0, (18)

2
∂

∂ξ
(ζ1 − w1)− 2

∂g

∂τ
+ 3g

∂g

∂η
+

1

3

∂3g

∂η3
− f ∂f

∂ξ

+
2

3

∂3f

∂ξ3
− g∂f

∂ξ
− ∂g

∂η
f = 0. (19)

Integrating (18) with respect to η and (19) with respect to ξ we obtain

2(ζ1 + w1) + η

[
2
∂f

∂τ
+ 3f

∂f

∂ξ
+

1

3

∂3f

∂ξ3

]
− g2

2

+
2

3

∂2g

∂η2
− fg −M(η, τ)

∂f

∂ξ
= 4F1(ξ, τ), (20)

2(ζ1 − w1)− ξ
[
2
∂g

∂τ
− 3g

∂g

∂η
− 1

3

∂3g

∂η3

]
− f 2

2

+
2

3

∂2f

∂ξ2
− fg −N(ξ, τ)

∂g

∂η
= 4G1(η, τ), (21)

where F1(ξ, τ) and G1(η, τ) are new unknown functions, M(η, τ) and N(ξ, τ)
are defined by

M(η, τ) =

η∫
g(η

′
, τ)dη

′
, N(ξ, τ) =

ξ∫
f(ξ

′
, τ)dξ

′
. (22)

At first glance, it is seen that the terms proportional to ξ and η cause secu-
larity. In order to remove the secularities we must have

∂f

∂τ
+

3

2
f
∂f

∂ξ
+

1

6

∂3f

∂ξ3
= 0, (23)

∂g

∂τ
− 3

2
g
∂g

∂η
− 1

6

∂3g

∂η3
= 0. (24)

These are Korteweg-de Vries equations. The solution of equations (20) and
(21) for ζ1 and w1 gives

ζ1 = F1(ξ, τ) +G1(η, τ) +
1

4
M(η, τ)

∂f

∂ξ

+
1

4
N(ξ, τ)

∂g

∂η
+

1

8

(
f 2 + g2

)
+

1

2
fg

− 1

6

(
∂2f

∂ξ2
+
∂2g

∂η2

)
, (25)
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w1 = F1(ξ, τ)−G1(η, τ) +
1

4
M(η, τ)

∂f

∂ξ

− 1

4
N(ξ, τ)

∂g

∂η
− 1

8

(
f 2 − g2

)
+

1

6

(
∂2f

∂ξ2
− ∂2g

∂η2

)
. (26)

Su and Mirie [4] stated that, although the termsM(η, τ)
∂f

∂ξ
andN(ξ, τ)

∂g

∂η
in (25) and (26) do not cause any secularity but they will cause secularity in
the next order perturbation expansion. However, in what follows it will be
shown that it is not the case.

The localized progressive wave solution for the KdV equations (23) and
(24) yield

f = A sech2 ζ+ , ζ+ =

(
3A

4

)1/2(
ξ − A

2
τ

)
, (27)

g = B sech2 ζ− , ζ− =

(
3B

4

)1/2(
η +

B

2
τ

)
, (28)

where A and B are the amplitudes of the solitary waves. Substituting (17),
(25) and (26) into the set of equations (16), we obtain

2
∂

∂η
(ζ2 + w2) + 2

∂F1

∂τ
+ 3

∂

∂ξ
(fF1) +

1

3

∂3F1

∂ξ3

− 3

8
f 2∂f

∂ξ
+

1

12
f
∂3f

∂ξ3
+

11

12

∂f

∂ξ

∂2f

∂ξ2
− 2

dp0
dτ

∂f

∂ξ

+
1

45

∂5f

∂ξ5
− 1

2

∂3f

∂τ∂ξ2
− f ∂G1

∂η
− ∂f

∂ξ
G1 −

∂

∂η
(gG1)

+
2

3

∂3G1

∂η3
− F1

∂g

∂η
− g∂F1

∂ξ
− 1

4

∂2f

∂ξ2
gM − 1

4

∂f

∂ξ

∂g

∂η
M

+

(
1

6

∂4g

∂η4
− 1

4

∂

∂η

(
g
∂g

∂η

)
− 1

4
f
∂2g

∂η2
− 1

4

∂f

∂ξ

∂g

∂η

)
N

+
1

4
fg
∂g

∂η
+

(
1

8
f 2 − 1

6

∂2f

∂ξ2

)
∂g

∂η
+

11

6
f
∂3g

∂η3

+

(
3

4
f
∂f

∂ξ
+

13

12

∂3f

∂ξ3

)
g +

5

12

∂f

∂ξ

∂2g

∂η2
+

3

8
g2
∂g

∂η

− 4
∂P0

∂η

∂f

∂ξ
+

29

12

∂g

∂η

∂2g

∂η2
+

4

3
g
∂3g

∂η3
+

4

45

∂5g

∂η5
= 0, (29)
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2
∂

∂ξ
(ζ2 − w2)− 2

∂G1

∂τ
+ 3

∂

∂η
(gG1) +

1

3

∂3G1

∂η3

− 3

8
g2
∂g

∂η
+

1

12
g
∂3g

∂η3
+

11

12

∂g

∂η

∂2g

∂η2
+ 2

dq0
dτ

∂g

∂η

+
1

45

∂5g

∂η5
+

1

2

∂3g

∂τ∂η2
− g∂F1

∂ξ
− F1

∂g

∂η
− ∂

∂ξ
(fF1)

+
2

3

∂3F1

∂ξ3
− ∂f

∂ξ
G1 − f

∂G1

∂η
− 1

4

∂g

∂η
fN − 1

4

∂g

∂η

∂f

∂ξ
N

+

(
1

6

∂4f

∂ξ4
− 1

4

∂

∂ξ

(
f
∂f

∂ξ

)
− 1

4
g
∂2f

∂ξ2
− 1

4

∂f

∂ξ

∂g

∂η

)
M

+
1

4
gf
∂f

∂ξ
+

(
1

8
g2 − 1

6

∂2g

∂η2

)
∂f

∂ξ
+

11

6
g
∂3f

∂ξ3

+

(
3

4
g
∂g

∂η
+

13

12

∂3g

∂η3

)
f +

5

12

∂g

∂η

∂2f

∂ξ2
+

3

8
f 2∂f

∂ξ

− 4
∂Q0

∂ξ

∂g

∂η
+

29

12

∂f

∂ξ

∂2f

∂ξ2
+

4

3
f
∂3f

∂ξ3

+
4

45

∂5f

∂ξ5
= 0. (30)

Integrating (29) with respect to η and (30) with respect to ξ we obtain

2(ζ2 + w2) + η

(
2
∂F1

∂τ
+ 3

∂

∂ξ
(fF1) +

1

3

∂3F1

∂ξ3

−3

8
f 2∂f

∂ξ
+

1

12
f
∂3f

∂ξ3
+

11

12

∂f

∂ξ

∂2f

∂ξ2
− 2

dp0
dτ

∂f

∂ξ

+
1

45

∂5f

∂ξ5
− 1

2

∂3f

∂τ∂ξ2

)
− (f + g)G1 − gF1

− ∂f

∂ξ

η∫
G1dη

′
+

2

3

∂2G1

∂η2
+

(
3

4
f
∂f

∂ξ
+

13

12

∂3f

∂ξ3

−∂F1

∂ξ

)
M(η, τ) +

(
1

6

∂3g

∂η3
− 1

4
f
∂g

∂η
− 1

4
g
∂f

∂ξ

−1

4
g
∂g

∂η

)
N(ξ, τ)− 1

4

∂2f

∂ξ2

η∫
gMdη

′

− 1

4

∂f

∂ξ

η∫ (
∂g

∂η
M

)
dη

′
+

1

8
fg2 +

1

8
f 2g − 1

6

∂2f

∂ξ2
g

+
5

12

∂f

∂ξ

∂g

∂η
+

1

8
g3 +

11

6
f
∂2g

∂η2
+

4

3
g
∂2g

∂η2

11



+
13

24

(
∂g

∂η

)2

+
4

45

∂4g

∂η4
− 4P0

∂f

∂ξ
= 4F2(ξ, τ), (31)

2(ζ2 − w2) + ξ

(
−2

∂G1

∂τ
+ 3

∂

∂η
(gG1) +

1

3

∂3G1

∂η3

−3

8
g2
∂g

∂η
+

1

12
g
∂3g

∂η3
+

11

12

∂g

∂η

∂2g

∂η2
+ 2

dq0
dτ

∂g

∂η

+
1

45

∂5g

∂η5
+

1

2

∂3g

∂τ∂η2

)
− (f + g)F1 − fG1

− ∂g

∂η

ξ∫
F1dξ

′
+

2

3

∂2F1

∂ξ2
+

(
3

4
g
∂g

∂η
+

13

12

∂3g

∂η3

−∂G1

∂η

)
N(ξ, τ) +

(
1

6

∂3f

∂ξ3
− 1

4
g
∂f

∂ξ
− 1

4
f
∂g

∂η

−1

4
f
∂f

∂ξ

)
M(η, τ)− 1

4

∂2g

∂η2

ξ∫
fNdξ

′

− 1

4

∂g

∂η

ξ∫ (
∂f

∂ξ
N

)
dξ

′
+

1

8
fg2 +

1

8
f 2g +

11

6

∂2f

∂ξ2
g

+
5

12

∂f

∂ξ

∂g

∂η
+

1

8
f 3 − 1

6
f
∂2g

∂η2
+

4

3
f
∂2f

∂ξ2

+
13

24

(
∂f

∂ξ

)2

+
4

45

∂4f

∂ξ4
− 4Q0

∂g

∂η
= 4G2(η, τ) (32)

where F2(ξ, τ) and G2(η, τ) are two unknown functions whose evolution equa-
tions will be obtained from next order equations. Again the terms propor-
tional to ξ and η in these equations cause to secularity in the solution. In
order to remove secularity, the coefficient of η in (31) and the coefficient of
ξ in (32) must vanish, that is

∂F1

∂τ
+

3

2

∂

∂ξ
(fF1) +

1

6

∂3F1

∂ξ3
=

3

16
f 2∂f

∂ξ
+

1

4

∂3f

∂τ∂ξ2

− 11

24

∂f

∂ξ

∂2f

∂ξ2
+
dp0
dτ

∂f

∂ξ

− 1

90

∂5f

∂ξ5
− 1

24
f
∂3f

∂ξ3
, (33)
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∂G1

∂τ
− 3

2

∂

∂η
(gG1)−

1

6

∂3G1

∂η3
= − 3

16
g2
∂g

∂η
+

1

4

∂3g

∂τ∂η2

+
11

24

∂g

∂η

∂2g

∂η2
+
dq0
dτ

∂g

∂η

+
1

90

∂5g

∂η5
+

1

24
g
∂3g

∂η3
(34)

As is seen from the equations (31) and (32) the other terms in the expression
of ζ2 and w2 do not cause any secularity for this order, but it might be possible
to have secularities in the next order. Seeking a progressive wave solution
for the equations (33) and (34) of the form F1 = F1(ζ+), G1 = G1(ζ−) the
following equations are obtained

A

8
F

′′

1 +
1

2
(3f − A)F1 =

(
dp0
dτ
− 19A2

40

)
f

+
9

16
Af 2 +

1

8
f 3, (35)

−B
8
G

′′

1 +
1

2
(B − 3g)G1 =

(
dq0
dτ

+
19B2

40

)
g

− 9

16
Bg2 − 1

8
g3. (36)

The first terms in the right-hand side cause to secularity; therefore the coef-
ficients of f and g must vanish, which yields

p0 =
19

40
A2τ, q0 = −19

40
B2τ. (37)

Then the particular solution of the differential equations (35) and (36) may
be given by

F1 = Af − 1

8
f 2, G1 = Bg − 1

8
g2. (38)

By using the above results one can obtain the following identities for the
terms involving the functions g, G1 and M∫

g2dη
′
=
M

3
(g + 2B) ,

∫
G1dη

′
=
M

24
(22B − g),

∫
gMdη

′
= −2

3
g,

∫ (
∂g

∂η
M

)
dη

′
=

2M

3
(g −B). (39)

13



Similar expressions are valid for the terms involving f , F1 and N . Then the
equations (31) and (32) may be written in the following form

ζ2 + w2 =
1

16
g3 +

43

16
Bg2 − 7

5
B2g +

(
A

2
− 9B

4

)
fg

+ 4fg2 − 1

8
f 2g − 5

24

∂f

∂ξ

∂g

∂η
+

[
−B

4

∂g

∂η

+
7

8
g
∂g

∂η
+

1

8
f
∂g

∂η
+

1

8

∂f

∂ξ
g

]
N

+

[(
−9A

8
+

3B

8

)
∂f

∂ξ
+

35

8
f
∂f

∂ξ

+
1

16

∂f

∂ξ
g

]
M + 2P0

∂f

∂ξ
+ 2F2(ξ, τ), (40)

ζ2 − w2 =
1

16
f 3 +

43

16
Af 2 − 7

5
A2f +

(
B

2
− 9A

4

)
fg

+ 4f 2g − 1

8
fg2 − 5

24

∂f

∂ξ

∂g

∂η
+

[
−A

4

∂f

∂ξ

+
7

8
f
∂f

∂ξ
+

1

8
g
∂f

∂ξ
+

1

8
f
∂g

∂η

]
M

+

[(
−9B

8
+

3A

8

)
∂g

∂η
+

35

8
g
∂g

∂η

+
1

16
f
∂g

∂η

]
N + 2Q0

∂g

∂η
+ 2G2(η, τ). (41)

In obtaining the equations (40) and (41) we have utilized the following iden-
tities

∂2f

∂ξ2
= 3Af − 9

2
f 2,

(
∂f

∂ξ

)2

= 3Af 2 − 3f 3,

∂4f

∂ξ4
=

135

2
f 3 − 135

2
Af 2 + 9A2f,

∂6f

∂ξ6
=
−8505

4
f 4 + 2835Af 3 − 1701

2
A2f 2

+ 27A3f. (42)

Similar identities can also be obtained for the derivatives of the function g.
As might be seen from equations (40) and (41) these terms appearing in

the expressions of ζ1 and w1 do not cause any secularity in the solution of ζ2

14



and w2. Therefore the statement by Su and Mirie [4] is incorrect. However
as we stated before, some of the terms appearing in the expressions of ζ2
and w2 (The equations (40) and (41) ) may cause additional secularity in the
expressions of ζ3 and w3. There appears to be two types of secularity in the
solution of O(ε4) equation. As was seen before, the first type of secularity
results from the terms proportional to ξ and η which will be studied later.

The second type secularity occurs from the terms proportional

ξ∫
N(ξ

′
, τ)dξ

′

and

η∫
M(η

′
, τ)dη

′
as ξ(η) → ±∞. Here we shall first only consider the

parts of O(ε4) equations leading to

η∫
M(η

′
, τ)dη

′
type of secularity. Similar

expressions may be valid for

ξ∫
N(ξ

′
, τ)dξ

′
type of secularity.

For this purpose we consider the following part of the O(ε4) equation

2
∂

∂η
(ζ3 + w3) +

∂

∂τ
(ζ2 + w2) +

1

6

∂3

∂ξ3
(ζ2 + w2)

+
3

4

∂

∂ξ
[(ζ0 + w0) (ζ2 + w2)]−

dp0
dτ

∂

∂ξ
(ζ1 + w1)

+
1

2

∂2w0

∂ξ2
∂

∂ξ
(ζ1 + w1) +

1

2

∂

∂ξ
(ζ0 + w0)

∂2w1

∂ξ2

− 1

30

∂5w1

∂ξ5
− 1

2

∂3w1

∂τ∂ξ2
+ w1

∂

∂ξ
(ζ1 + w1) + ζ1

∂w1

∂ξ

− 1

2

∂

∂ξ
[ζ0 (ζ2 − w2)]−

1

6

∂3

∂ξ3
(ζ2 − w2) = 0. (43)

A similar expression may be given for 2
∂

∂ξ
(ζ3 − w3) equation. We split (43)

into two parts which contain the variables ζ2 + w2 and (ζ1, w1, ζ2 − w2),
respectively. Then, we obtain:

∂

∂τ
(ζ2 + w2) +

3

4

∂

∂ξ
[(ζ0 + w0) (ζ2 + w2)]

+
1

6

∂3

∂ξ3
(ζ2 + w2) =

35

16

[
189

4
f 4 − 63Af 3 + 18A2f 2

]
M, (44)
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1

2

∂2w0

∂ξ2
∂

∂ξ
(ζ1 + w1)−

dp0
dτ

∂

∂ξ
(ζ1 + w1)

+
1

2

∂

∂ξ
(ζ0 + w0)

∂2w1

∂ξ2
− 1

30

∂5w1

∂ξ5
− 1

2

∂3w1

∂τ∂ξ2

+ w1
∂

∂ξ
(ζ1 + w1) + ζ1

∂w1

∂ξ
− 1

2

∂

∂ξ
[ζ0 (ζ2 − w2)]

− 1

6

∂3

∂ξ3
(ζ2 − w2) =

1

16

[
189

4
f 4 − 63Af 3 + 18A2f 2

]
M, (45)

where we have used the identities given by (39) and (42). As is seen from
the equations (44) and (45), the terms proportional to M(η, τ) do not vanish

and they cause the secularity of the type

η∫
M(η

′
, τ)dη

′
in the expression

of ζ3 and w3. Similar expression may be given for

ξ∫
N(ξ

′
, τ)dξ

′
type of

secularities.
By direct substitution in the expressions of ζ2 + w2 and ζ2 − w2

P0 = −9

4
f(ξ, τ)M(η, τ), Q0 = −9

4
g(η, τ)N(ξ, τ) (46)

these secularities may be removed. These expressions make it possible to
determine phase shift functions.

To obtain the secularities of type η (or ξ) we use the following part of the
O(ε4) equation to obtain the governing equation for F2(ξ, τ)

2
∂

∂η
(ζ3 + w3) +

∂

∂τ
(ζ2 + w2) + w0

∂

∂ξ
(ζ2 + w2)

+
∂w0

∂ξ
(ζ2 + w2) +

∂

∂ξ
(ζ0w2) +

1

3

∂3w2

∂ξ3

− dp0
dτ

∂

∂ξ
(ζ1 + w1) +

1

2

∂

∂ξ

[
∂2w0

∂ξ2
ζ1

]
+

∂

∂ξ
(ζ1w1)

+
1

2

∂

∂ξ

[
∂w0

∂ξ

∂w1

∂ξ

]
− 1

30

∂5w1

∂ξ5
+

1

2

∂

∂ξ

[
ζ0
∂2w1

∂ξ2

]
− 1

2

∂3w1

∂ξ2∂τ
− 1

2
w0
∂3w1

∂ξ3
− 1

2

∂3w0

∂ξ3
w1 + w1

∂w1

∂ξ

16



+

(
∂w0

∂ξ

)2
∂ζ0
∂ξ
− 1

8

∂4w0

∂ξ4
∂ζ0
∂ξ
− dp1

dτ

∂

∂ξ
(ζ0 + w0)

− ∂2w0

∂ξ∂τ

∂ζ0
∂ξ
− w0

∂2w0

∂ξ2
∂ζ0
∂ξ

+
∂w0

∂ξ

∂2w0

∂ξ2
ζ0

− 1

8

∂5w0

∂ξ5
ζ0 −

∂3w0

∂ξ2∂τ
ζ0 − w0

∂3w0

∂ξ3
ζ0 +

1

2

dp0
dτ

∂3w0

∂ξ3

+
1

12

∂2w0

∂ξ2
∂3w0

∂ξ3
− 1

8

∂w0

∂ξ

∂4w0

∂ξ4
+

1

840

∂7w0

∂ξ7

+
1

24

∂5w0

∂ξ4∂τ
+

1

24
w0
∂5w0

∂ξ5
= 0. (47)

We substitute the field variables into (47) then the terms proprtional to η in
this equation cause to secularity. In order to remove secularity, the coefficient
of η in (47) must vanish, that is

∂F2

∂τ
+

3

2

∂

∂ξ
(fF2) +

1

6

∂3F2

∂ξ3
=
∂S(f)

∂ξ
(48)

where S(f) is defined as follows

S(f) =

(
dp1
dτ
− 55

112
A3

)
f −

(
393

320
+

3B

16A

)
A2f 2

+

(
201

32
+

3B

16A

)
Af 3 − 591

128
f 4. (49)

Seeking a progressive wave solution for the equation (48) of the form F2 =
F2(ζ+), the following solution is obtained

F2 =
197

160
f 3 −

(
217

160
+

3B

16A

)
Af 2

+

(
43

40
+

B

8A

)
A2f,

p1(τ) =
55

112
A3τ. (50)

Similarly, for other unknowns we have

G2 =
197

160
g3 −

(
217

160
+

3A

16B

)
Bg2

+

(
43

40
+

A

8B

)
B2g,

17



q1(τ) = − 55

112
B3τ. (51)

Then, the final solution for ζ2 and w2 take the following form

ζ2 =
101

80
(f 3 + g3) +

31

16
(fg2 + f 2g)

− 1

80
(Af 2 +Bg2)− 3

16
(Bf 2 + Ag2)

− 7

8
(A+B)fg +

3

8
(A2f +B2g) +

1

8
AB(f + g)

− 5

24

∂f

∂ξ

∂g

∂η
+

[(
−11A+ 3B

16

)
∂f

∂ξ
+

3

8
f
∂f

∂ξ

+
1

16
f
∂g

∂η
+

3

32

∂f

∂ξ
g

]
M +

[(
3A− 11B

16

)
∂g

∂η

+
3

8
g
∂g

∂η
+

1

16

∂f

∂ξ
g +

3

32
f
∂g

∂η

]
N, (52)

w2 =
6

5
(f 3 − g3) +

33

16
(fg2 − f 2g)

− 27

10
(Af 2 −Bg2)− 3

16
(Bf 2 − Ag2)

+
11

8
(A−B)fg +

71

40
(A2f −B2g) +

AB

8
(f − g)

+

[(
−7A+ 3B

16

)
∂f

∂ξ
− 1

2
f
∂f

∂ξ
− 1

16
f
∂g

∂η

− 1

32

∂f

∂ξ
g

]
M +

[(
−3A+ 7B

16

)
∂g

∂η

+
1

2
g
∂g

∂η
+

1

16

∂f

∂ξ
g +

1

32
f
∂g

∂η

]
N. (53)

Thus, for this order the trajectories of the solitary waves become

ε
1
2 (x− t) = ξ + εp0 + ε2(p1 + P0) +O(ε3),

ε
1
2 (x+ t) = η + εq0 + ε2(q1 +Q0) +O(ε3). (54)

To obtain the phase shifts after a head-on collision of solitary waves char-
acterized by A and B are asymptotically far from each other at the initial
time (t = −∞), the solitary wave A is at ξ = 0, η = −∞, and the solitary
wave B is at η = 0, ξ = +∞, respectively. After the collision (t = +∞), the
solitary wave B is far to the right of solitary wave A, i.e., the solitary wave

18



A is at ξ = 0, η = +∞, and the solitary wave B is at η = 0, ξ = −∞. Using
(46) and (54) one can obtain the corresponding phase shifts ∆A and ∆B as
follows:

∆A = ε1/2(x− t) |ξ=0,η=∞ −ε1/2(x− t) |ξ=0,η=−∞

= −ε29

4
f(0)

+∞∫
−∞

g(η
′
)dη

′

= −ε29A

4

+∞∫
−∞

g(η
′
)dη

′
(55)

∆B = ε1/2(x+ t) |η=0,ξ=−∞ −ε1/2(x+ t) |η=0,ξ=∞

= ε2
9

4
g(0)

+∞∫
−∞

f(ξ
′
)dξ

′

= ε2
9B

4

+∞∫
−∞

f(ξ
′
)dξ

′
. (56)

Using the explicit expressions of f(ξ) and g(η) the phase shifts are obtained
as

∆A = −ε23
√

3AB1/2, ∆B = ε23
√

3A1/2B. (57)

Here, as opposed to the results of previous works on the same subject the
phase shifts depend on the amplitudes of both waves.

4 Summary of the result of section 3

In section 3, we have obtained the following results

ζ̂(f, g) =ε

{
(f + g) + ε

(
3

4
(f 2 + g2) +

1

2
(Af +Bg)

+
1

2
fg +

1

4
M(η, τ)

∂f

∂ξ
+

1

4
N(ξ, τ)

∂g

∂η

)
+ε2

(
101

80
(f 3 + g3)− 1

80
(Af 2 +Bg2)

− 3

16
(Bf 2 + Ag2) +

3

8
(A2f +B2g)

+
1

8
AB(f + g) +

31

16
(fg2 + f 2g)
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−7

8
(A+B)fg − 5

24

∂f

∂ξ

∂g

∂η

+

[(
−11A+ 3B

16

)
∂f

∂ξ
+

3

8
f
∂f

∂ξ

+
1

16
f
∂g

∂η
+

3

32

∂f

∂ξ
g

]
M

+

[(
3A− 11B

16

)
∂g

∂η
+

3

8
g
∂g

∂η
+

1

16

∂f

∂ξ
g

+
3

32
f
∂g

∂η

]
N

)
+ ...

}
. (58)

Similar expression may be given for ŵ(f, g).

p(τ) = ε

(
19

40
A2 + ε

55

112
A3

)
τ, (59)

q(τ) = ε

(
−19

40
B2 − ε 55

112
B3

)
τ, (60)

P = −9

4
f(ξ, τ)

η∫
−∞

g(η
′
, τ)dη

′
, (61)

Q = −9

4
g(η, τ)

ξ∫
∞

f(ξ
′
, τ)dξ

′
, (62)

and

ζ+ =

(
3Aε

4

) 1
2
[
x− cRt+

9

4
ε
3
2f(ξ, τ)

×
η∫

−∞

g(η
′
, τ)dη

′

 , (63)

ζ− =

(
3Bε

4

) 1
2
[
x+ cLt+

9

4
ε
3
2 g(η, τ)

×
ξ∫
∞

f(ξ
′
, τ)dξ

′

 , (64)

where cR and cL are defined by

cR = 1 +

(
ε
A

2
+ ε2

19

40
A2 + ε3

55

112
A3

)
, (65)
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cL = 1 +

(
ε
B

2
+ ε2

19

40
B2 + ε3

55

112
B3

)
. (66)

The equations (61) and (62) serve to define the phase changes. Before the
collision

η → −∞, P → 0, ξ →∞, Q→ 0 (67)

and after the collision

η →∞, P = −9A

(
B

3

) 1
2

sech2 ζ+, (68)

ξ → −∞, Q = 9B

(
A

3

) 1
2

sech2 ζ−. (69)

In this section we shall illustrate the profiles of right-going waves before and
after the collision. For that purpose we set g(η, τ) = 0 in the expression ζ̂
and obtain

ζ̂ =ε

{
f + ε

(
3

4
f 2 +

A

2
f

)
+ ε2

(
101

80
f 3 − A

80
f 2

−3B

16
f 2 +

3A2

8
f +

AB

8
f

)
+ ...

}
(70)

with

f = A sech2

[(
3Aε

4

) 1
2

(x− cRt+ Θ)

]
(71)

where

Θ = ε
3
2 9A

(
B

3

) 1
2

sech2 ζ+. (72)

The variations of the wave profiles for surface elevation parameter ζ̂ before
the collision (Θ = 0) and after the collision (Θ is given as in (72)) are depicted
in Figure 2, for various values of parameters ε, A and B. As is seen from the
figure the wave profile before the collision is symmetric, whereas after the
collision it is unsymmetrical and tilts backward with respect to the direction
of its propagation.

5 Conclusion

Utilizing the non-dimensionalized equations derived by Su and Mirie [4] and
introducing a set of stretched coordinates that include some unknown func-
tions which are to be determined from the removal of possible secularities in
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Figure 2: Right-going wave profile ζ̂ for ε = 0.4, A = B = 0.5. 1: before
collision; 2: after collision; 3: difference between the wave profiles before and
after the collision.

the solution, we have studied the head-on-collision of solitary waves in shal-
low water theory. Expanding these unknown functions and the field variables
into power series of the smallness parameter ε and introducing the resulting
expansions into the field equations we obtained the sets of partial differ-
ential equations. By solving these differential equations and imposing the
requirements for the removal of possible secularities we obtained the speed
of correction terms and the phase shift functions. Our calculations show that
the present results are exactly the same with those found in [20], whereas
it is totally different from the results of Su and Mirie [4]. The variations of
the wave profiles for right-going wave (ζ̂) before and after the collision are
illustrated in Fig. 2. As is seen from the figure the wave profile is symmetric
before the collision whereas it is unsymmetrical after the collision with tilts
backward with respect to the direction of its propagation.

6 Compliance with Ethical Standards

We certify that any part of this work was not published or submitted for pub-
lication elsewhere, and we do not have any conflict of interest with anybody
else.

22



References

[1] D. J. Korteweg and G. de Vries, On the change of form of long waves
advancing in a rectangular channel, and on a new type of long stationary
waves, Phil. Mag., 39, 422-443, 1895.

[2] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method
for solving KdV equation, Phys. Rev. Lett., 19, 1095-1097, 1967.

[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaievski, The-
ory of Soliton: The Inverse Problem Method (Nauka, Moscow, 1980)[En-
glish translation(Plenium, New York, 1984)].

[4] C. H. Su and R. M. Mirie, On head-on collisions between two solitary
waves, J. Fluid Mech., 98, 509-525, 1980.

[5] K. Narahara, Head-on collision of solitary waves in coupled Korteweg–de
Vries systems modeling nonlinear transmission lines, Wave Motion, 51,
935-946, 2014.

[6] G. Huang and M.G. Velarde, Head-on collision of two concentric cylin-
drical ion-acoustic solitary waves, Physical Review E, 53, 2988-2991,
1996.

[7] K. Narahara, Characterization of collision-induced generation of pulses
in coupled electrical nonlinear transmission lines, Japanese Journal of
Applied Physics, 53, 067301, 2014.

[8] J. K. Xue, Head-on collision of blood solitary waves, Phys. Lett. A,
331, 409-413, 2004.

[9] H. Demiray, Interactions of nonlinear ion-acoustic waves in a collisionless
plasma, J. Computational and Appl. Math., 206, 826-831, 2007.

[10] H. Demiray, Head-on collision of solitary waves in fluid-filled elastic
tubes, Appl. Math. Letters, 18, 941-950, 2005.

[11] L. Wang, Y. T. Gao, D. X. Meng, X. C. Gai and P. B. Xu, Soliton-shape-
preserving and soliton-complex interactions for a (1+1)-dimensional
nonlinear dispersive-wave system in shallow water, Nonlinear Dynamics,
66, 161-168, 2011.

[12] D. X. Meng, Y. T. Gao, L. Wang and P. B. Xu, Elastic and inelas-
tic interactions of solitons for a varible-coefficient generalized dispersive
water-wave system, Nonlinear Dynamics, 69, 391-398, 2012.

23



[13] Y. Y. Wang and C. Q. Dai, Elastic interaction between multi-valued
foldons and anti-foldons for the (2+1)-dimensional variable coefficient
Broer-Kaup system in water waves, Nonlinear Dynamics, 74, 429-438,
2013.

[14] S. A. El-Tantawy, W. M. Moslem, R. Sabry, S. K. El-Labany, M. El-
Metwally and R. Schlickeiser, Nonplanar solitons collision in ultracold
plasmas, Physics of Plasmas, 20, 092126, 2013.

[15] H. Demiray, Head-on collision of nonlinear waves in a fluid of variable
viscosity contained in an elastic tube, Chaos, Solitons and Fractals, 41,
1578-1586, 2009.

[16] H. P. Zhu, Spatiotemporal solitons on cnoidal wave backgrounds in three
media with different distributed transverse diffraction and dispersion,
Nonlinear Dynamics, 76, 1651-1659, 2014.

[17] J. J. Xiang, H. J. Jiang, Y. Y. Wang and C. Q. Dai, Nonautonomous
bright soliton solutions on continuous wave and cnoidal wave back-
grounds in blood vessels, Nonlinear Dynamics, 75, 201-207, 2014.

[18] C. Q. Dai, X. G. Wang and G. Q. Zhou, Stable light-bullet solutions in
the harmonic and parity-time-symmetric potentials, Physical Review A,
89, 013834, 2014.

[19] C. Q. Dai and H. P. Zhu, Superposed Akhmediev breather of the (3+
1)-dimensional generalized nonlinear Schrödinger equation with external
potentials, Annals of Physics, 341, 142, 2014.

[20] A. E. Ozden and H. Demiray, Re-visiting the head-on collision problem
between two solitary waves in shallow water, Int.J.Nonlinear Mechanics,
69, 66-70, 2015.

24


