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Abstract:

In this work, by utilizing the modified Poincaré-Lighthill-Kuo (PLK)
method, we studied the propagation of weakly nonlinear waves in a collision-
less cold plasma and obtained the governing evolution equations of various
order terms in the perturbation expansion. Seeking a progressive wave solu-
tion to these evolution equations we obtained the speed correction terms so as
to remove some possible secularities. The result obtained here is exactly the
same with those of the modified reductive perturbation and re-normalization
methods. The method presented here is quite simple and based on introduc-
ing a new set of stretched coordinates.
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1. Introduction

The studies of nonlinear waves of various fields in physics and engineering,
by use of the reductive perturbation method, in the long-wave approxima-
tion, lead to the Korteweg-deVries equation as the evolution equation (Antar
and Demiray [1] and Davidson [3]). The study the higher order terms in the
perturbation expansion by use of the reductive perturbation method gives
some secularities( Ichikawa, Mitsuhashi and Konno[7]). To remove such sec-
ularities Sugimoto and Kakutani [12] introduced additional slow variables
both in space and time in reductive perturbation theory, but their result was
not supported by other methods. Kodama and Taniuti[9] presented the re-
normalization procedure of the velocity of the KdV soliton. In [9], employing
the conventional reductive perturbation method, they showed that the low-
est order term in the perturbation expansion is governed by the conventional
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KdV equation

K(u1) =
∂u1

∂τ
− 6u1

∂u1

∂ξ
+

∂3u1

∂ξ3
= 0, (1)

whereas the higher order terms are governed by the linearized KdV equation
with non-homogeneous term

L(u1)un = Sn(u1, u2, ...., un−1), L(u1) =
∂

∂τ
− 6

∂

∂ξ
u1 +

∂3

∂ξ3
, (2)

where ξ and τ are the slow variables in reductive perturbation method, i. e.,
ξ = ϵ1/2(x− t), τ = ϵ3/2t, where ϵ is the smallness parameter, u1, u2, ....., un

are the unknown coefficient functions of the formal perturbation expansion
and Sn(u1, u2, ..., un−1) is the non-homogeneous term. Here it is to be noted
that for each n ≥ 2, the non-homogeneous term Sn(u1, u2, ..., un−1) contains
a term proportional to u1,ξ with known coefficient, say cn−1 ̸= 0. On the
other hand, it is well-known that if u1 is the solution of the conventional
KdV equation, u1,ξ will be the solution of the homogeneous linearized KdV
equation

L(u1)un = 0. (3)

The term in Sn proportional to u1,ξ causes the secularity in the particular
solution of Eq.(2), namely, the particular solution will contain a term like
cn−1τu1, which causes to secularity in the solution. In order to remove such
a secularity one must set cn−1 = 0, which contradicts the previous result.

Roughly speaking, in order to remove such a secularity, Kodama and
Taniuti [9] wrote the equations (1) and (2) in the following form

ϵK(u1) +
∑
n≥2

ϵnL(u1)un =
∑
n≥2

ϵnSn. (4)

Then, they added on both sides of equation (4) the term
∑

n≥1 ϵ
nλun,ξ, where

λ is given as a power series λ = ϵλ1 + ϵ2λ2 + ϵ3λ3 + ..... . Here the crucial
point in this procedure is that λ on the left hand side is not expanded into
a power series whereas in the right hand side it is expanded. Then, setting
the coefficients of various powers of ϵ equal to zero, their KdV equation is
modified to

∂u1

∂τ
− 6u1

∂u1

∂ξ
+

∂3u1

∂ξ3
+ λ

∂u1

∂ξ
= 0, (5)

while the linearized equations become

L(u1)un + λ
∂un

∂ξ
= Sn(u1, u2, ...., un−1) +

n−1∑
k=1

λkun−k,ξ. (6)
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Here we note that the left hand sides of equations (5) and (6) are not con-
ventional KdV equations in terms of ξ and τ . Nevertheless, if we introduce
the new coordinates system by

ξ′ = ξ − λτ, τ ′ = τ, (7)

the equations (5) and (6) reduce to the conventional KdV equations in the
new coordinate system ξ′ and τ ′. Moreover, in order to remove the secularity
in the solution, the coefficient of u1,ξ in the right hand side of Eq.(6) must
vanish, e.g. λn−1 + cn−1 = 0. This makes it possible to determine all λn,
consecutively. Kodama and Taniuti [9] called this heuristic approach as the
”re-normalization method”. Since this approach has no rational bases, it has
been criticized by several scientists (see, for instance, Malfliet and Wieers
[10] and Demiray [4, 5]) and found this approach somewhat artificial.

In the present work, motivated with the coordinate transformation pre-
sented by us in Eq.(7), by introducing a new set of stretched coordinates
ϵ1/2(x − t) = ξ + P (τ), τ = ϵ3/2t , and utilizing the conventional reductive
perturbation method(the combination is known as modified PLK method),
we studied the propagation of weakly nonlinear waves in a collisionless cold
plasma and obtained the governing evolution equations of various order terms
in the perturbation expansion. Seeking a progressive wave solution to these
evolution equations we obtained the speed correction terms so as to remove
some possible secularities. The result so obtained is exactly the same with
that of the re-normalization method of Kodama and Taniuti [9]and the mod-
ified reductive perturbation method [4, 5].

2. Modified PLK formalism for ion-acoustic waves

We consider nonlinear ion-acoustic waves in a one dimensional collision-
less plasma whose dynamics is characterized by the following equations
( Davidson [3])

∂ni

∂t
+

∂

∂x
(niu) = 0,

∂u

∂t
+ u

∂u

∂x
+

∂ϕ

∂x
= 0,

∂2ϕ

∂x2
+ ni − exp(ϕ) = 0, (8)

where ni and ne = exp(ϕ) denote, respectively, the number density of ions
and electrons, u is the velocity of ions and ϕ is the electrostatic potential, x
is is the space coordinates and t is the time variable . All the variables are
dimensionless.
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Introducing the ion density fluctuation from the equilibrium value by n,
i.e., ni = 1 + n, the equations (8) can be written as

∂n

∂t
+
∂u

∂x
+

∂

∂x
(nu) = 0,

∂u

∂t
+u

∂u

∂x
+
∂ϕ

∂x
= 0,

∂2ϕ

∂x2
+1+n−exp(ϕ) = 0, (9)

Under the long-wave approximation assumption, we would like to analyze
the equations (9) by use of the modified PLK ( Poincaré-Lighthil-Kuo )
method [2, 6,11,12]. For that purpose we introduce the following strained
coordinates

ϵ1/2(x− t) = ξ +
∞∑
n=1

ϵnPn(τ), τ = ϵ3/2t, (10)

where ϵ is the smallness parameter characterizing the order of nonlinearity
and Pn(τ) (n=1, 2, 3, ...) are some unknown functions to be determined
from the solution. As a matter of fact, the sum

∑∞
n=1 ϵ

nPn(τ) corresponds
to the series expansion of λ introduced in Eq. (7). Introducing Eq.(10) into
the field equations (9) one obtains

−∂n

∂ξ
+

∂u

∂ξ
+ ϵ

∂n

∂τ
−

∞∑
n=1

ϵn+1dPn(τ)

dτ

∂n

∂ξ
+

∂

∂ξ
(nu) = 0, (11)

−∂u

∂ξ
+

∂ϕ

∂ξ
+ ϵ

∂u

∂τ
−

∞∑
n=1

ϵn+1dPn(τ)

∂τ

∂u

∂ξ
+ u

∂u

∂ξ
= 0, (12)

ϵ
∂2ϕ

∂ξ2
+ 1 + n− exp(ϕ) = 0. (13)

Assuming that the field variables n, u, ϕ can be expressed as asymptotic
series in ϵ we have

n =
∞∑
k=1

ϵknk, u =
∞∑
k=1

ϵkuk, ϕ =
∞∑
k=1

ϵkϕk, (14)

where the coefficients nk, uk, ϕk are some unknown functions of the strained
coordinates ξ and τ . Introducing the expansion (14) into the field equations
(11)-(13) and setting the coefficients of like powers of ϵ equal to zero we
obtain the following sets of differential equations:

O(ϵ)equations:

−∂n1

∂ξ
+

∂u1

∂ξ
= 0, −∂u1

∂ξ
+

∂ϕ1

∂ξ
= 0, n1 − ϕ1 = 0. (15)
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O(ϵ2)equations:

−∂n2

∂ξ
+

∂u2

∂ξ
+

∂n1

∂τ
+

∂

∂ξ
(n1u1) = 0, −∂u2

∂ξ
+

∂ϕ2

∂ξ
+

∂u1

∂τ
+ u1

∂u1

∂ξ
= 0,

∂2ϕ1

∂ξ2
+ n2 − ϕ2 −

1

2
ϕ2
1 = 0. (16)

O(ϵ3)equations:

−∂n3

∂ξ
+

∂u3

∂ξ
+

∂n2

∂τ
− dP1

dτ

∂n1

∂ξ
+

∂

∂ξ
(n1u2 + n1u1) = 0,

−∂u3

∂ξ
+

∂ϕ3

∂ξ
+

∂u2

∂τ
− dP1

dτ

∂u1

∂ξ
+

∂

∂ξ
(u1u2) = 0,

∂2ϕ2

∂ξ2
+ n3 − ϕ3 − ϕ1ϕ2 −

ϕ3
1

6
= 0. (17)

O(ϵ4) equations:

−∂n4

∂ξ
+

∂u4

∂ξ
+

∂n3

∂τ
− dP1

dτ

∂n2

∂ξ
− dP2

∂τ

∂n1

∂ξ
+

∂

∂ξ
(n1u3 + n2u2 + n3u1) = 0,

−∂u4

∂ξ
+

∂ϕ4

∂ξ
+

∂u3

∂τ
− dP1

∂τ

∂u2

∂ξ
− dP2

∂ξ

∂u1

∂ξ
+

∂

∂ξ
(u1u3 +

1

2
u2
2) = 0,

∂2ϕ3

∂ξ2
+ n4 − ϕ4 − ϕ1ϕ3 −

1

2
ϕ2
2 −

1

2
ϕ2
1ϕ2 −

1

24
ϕ4
1 = 0. (18)

2.1. Solution of the field equations

In this sub-section we shall present the solution of the field equations
given in Eqs.(15)-(18). From the solution of the set of Eqs.(15) we obtain

n1 = u1 = ϕ1(ξ, τ). (19)

where ϕ1(ξ, τ) is an unknown function whose governing equation will be
obtained later. Introducing the solution (19) into (16) we have

n2 = ϕ2 +
1

2
ϕ2
1 −

∂2ϕ1

∂ξ2
, −∂ϕ2

∂ξ
+

∂u2

∂ξ
+

∂ϕ1

∂τ
+

∂3ϕ1

∂ξ3
+ ϕ1

∂ϕ1

∂ξ
= 0,
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−∂u2

∂ξ
+

∂ϕ2

∂ξ
+

∂ϕ1

∂τ
+ ϕ1

∂ϕ1

∂ξ
= 0. (20)

Eliminating u2 and ϕ2 between the equations (20) the following evolution
equation is obtained

∂ϕ1

∂τ
+ ϕ1

∂ϕ1

∂ξ
+

1

2

∂3ϕ1

∂ξ3
= 0. (21)

This is just the conventional Korteweg-deVries(KdV) equation. From the
solution of Eq.(20) u2 can be given by

u2 = ϕ2 −
1

2

∂2ϕ1

∂ξ2
, (22)

where ϕ2 is another unknown function whose governing equation will be
obtained from the higher order perturbation expansion.

Introducing Eqs.(19), (20) and (22) into the differential equations (17)
we have

−∂ϕ3

∂ξ
+

∂u3

∂ξ
+

∂ϕ2

∂τ
+

∂

∂ξ
(ϕ1ϕ2) +

∂3ϕ2

∂ξ3
+

∂

∂ξ
[
ϕ3
1

3
− 3

2
ϕ1

∂2ϕ1

∂ξ2
]

+ϕ1
∂ϕ1

∂τ
− ∂3ϕ1

∂ξ2∂τ
− dP1

∂τ

∂ϕ1

∂ξ
= 0,

∂ϕ3

∂ξ
− ∂u3

∂ξ
+

∂ϕ2

∂τ
+

∂

∂ξ
(ϕ1ϕ2)−

1

2

∂

∂ξ
(ϕ1

∂2ϕ1

∂ξ2
)− 1

2

∂3ϕ1

∂ξ2∂τ
− dP1

∂τ

∂ϕ1

∂ξ
= 0,

n3 = ϕ3 + ϕ1ϕ2 +
ϕ3
1

6
− ∂2ϕ2

∂ξ2
. (23)

Eliminating u3 and ϕ3 between the equations (23) the following evolution
equation is obtained

∂ϕ2

∂τ
+

∂

∂ξ
(ϕ1ϕ2) +

1

2

∂3ϕ2

∂ξ3
= R2(ϕ1), (24)

This evolution equation is the degenerate(linearized) KdV equation with non-
homogeneous term R2(ϕ1) defined by

R2(ϕ1) =
dP1

dτ

∂ϕ1

∂ξ
+

1

2
ϕ1

∂3ϕ1

∂ξ3
− 5

8

∂

∂ξ
(
∂ϕ1

∂ξ
)2 − 3

8

∂5ϕ1

∂ξ5
. (25)
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Here we note that the functionR2(ϕ1) contains the unknown function dP1/dτ .
From the equation (23) the function u3 can be obtained as:

u3 = ϕ3 −
1

2

∂2ϕ2

∂ξ2
+

1

2
ϕ1

∂2ϕ1

∂ξ2
− 3

8
(
∂ϕ1

∂ξ
)2 − 1

8

∂4ϕ1

∂ξ4
, (26)

To obtain the solution for O(ϵ4) equations we add the first and the second
equations in Eq.(18) side by side and substitute equations (19), (21) and (25)
into the resulting expression and utilizing Eqs.(20), (22) and (26) one obtains
the following evolution equation

∂ϕ3

∂τ
+

∂

∂ξ
(ϕ1ϕ3) +

1

2

∂3ϕ3

∂ξ3
= R3(ϕ1, ϕ2), (27)

where the function R3(ϕ1, ϕ2) is defined by

R3(ϕ1, ϕ2) =
∂

∂ξ
[−ϕ4

1

16
− 1

2
ϕ2
2 −

1

2
ϕ2
1ϕ2 + ϕ2

∂2ϕ1

∂ξ2
+ ϕ1

∂2ϕ2

∂ξ2
− 3

8
ϕ2
1

∂2ϕ1

∂ξ2

− 5

16
(
∂2ϕ1

∂ξ2
)2 +

3

8
ϕ1(

∂ϕ1

∂ξ
)2 +

1

8
ϕ1

∂4ϕ1

∂ξ4
+

dP1

dτ
(ϕ2 +

ϕ2
1

4
− 3

4

∂2ϕ1

∂ξ2
) +

dP2

dτ
ϕ1]

− ∂

∂τ
[
1

2
ϕ1ϕ2 +

ϕ3
1

12
− 3

4

∂2ϕ2

∂ξ2
+

1

4
ϕ1

∂2ϕ1

∂ξ2
− 3

16
(
∂ϕ1

∂ξ
)2 − 1

16

∂4ϕ1

∂ξ4
]. (28)

The evolution equation (27) is the linearized KdV equation for ϕ3 with non-
homogeneous term R3(ϕ1, ϕ2), which contains the unknown functions dP1/dτ
and dP2/dτ .

2.2 Solitary waves

In this sub-section we shall study the localized travelling wave solution to
the evolution equations (21), (24) and (27). For that purpose we introduce

ϕi = ϕi(ζ), ζ = α(ξ − u0τ), (i = 1, 2, 3), (29)

where α and u0 are some constants to be determined from the solution.
Introducing (29) for i = 1 into the evolution equation (21) we obtain

−u0ϕ
′
1 + ϕ1ϕ

′
1 +

α2

2
ϕ′′′
1 = 0, (30)
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where the prime denotes the differentiation of the corresponding quantity
with respect to ζ. Integrating (30) with respect to ζ and utilizing the local-
ization conditio, i.e., ϕ1 and its various order derivatives vanish as ζ → ±∞
we obtain

ϕ′′
1 +

ϕ1

α2
− 2

u0

α2
ϕ1 = 0. (31)

The equation (31) admits the solitary wave solution of the form

ϕ1 = a sech2ζ, α = (
a

6
)1/2, u0 =

a

3
, (32)

where a is the amplitude of the solitary wave. Here we note that, for this
order, the functions Pi(τ) remain as unknowns.

Inserting (29) and (32) for i = 2 into the evolution equation (24), inte-
grating the result with respect to ζ and utilizing the localization condition
we have

ϕ′′
2 + (

12

a
ϕ1 − 4)ϕ2 = (

12

a

dP1

dτ
− 2a)ϕ1 + 12ϕ2

1 −
14

a
ϕ3
1. (33)

The first term on the right-hand side causes to secularity in the progressive
wave solution. In order to avoid the secularity the coefficient of ϕ1 must
vanish, i. e.,

12

a

dP1

dτ
− 2a = 0, or P1 =

a2

6
τ, (34)

and the remaining part of equation (33) becomes

ϕ′′
2 + (

12

a
ϕ1 − 4)ϕ2 = 12ϕ2

1 −
14

a
ϕ3
1. (35)

The solution of (35) yields

ϕ2 = −3

2
aϕ1 +

7

4
ϕ2
1. (36)

This solution can be expressed in terms of hyperbolic functions as

ϕ2 =
a2

4
sech2ζ(1− 7tanh2ζ). (37)

This solution is exactly the same with those of Malfliet and Wieers [10] and
Demiray [4], but different from that of Sugimoto and Kakutani [12].
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Finally, to obtain the progressive wave solution for ϕ3(ζ) we introduce
Eq.(29) for i = 3 into Eqs.(27) and (28), integrating the result with respect to
ζ and utilizing the localization condition, the following equation is obtained

ϕ′′
3 + (

12

a
ϕ1 − 4)ϕ3 = (

12

a

dP2

dτ
− 10

9
a2)ϕ1 −

107

2
aϕ2

1 +
333

2
ϕ3
1 −

943

8a
ϕ4
1. (38)

Again, the first term on the right hand side causes to secularity; thus, the
coefficient of ϕ1 must vanish, i.e.,

12

a

dP2

dτ
− 10

9
a2 = 0, or

dP2

dτ
=

5

54
a3 (39)

and the remaining part of the equation (39) becomes

ϕ′′
3 + (

12

a
ϕ1 − 4)ϕ3 = −107

2
aϕ2

1 +
333

2
ϕ3
1 −

943

8a
ϕ4
1. (40)

The particular solution of equation (40) gives

ϕ3 =
1

240
(306a2ϕ1 − 1223aϕ2

1 + 943ϕ3
1). (41)

In terms of hyperbolic functions the solution takes the following form

ϕ3 =
a3

240
sech2ζ(26− 663tanh2ζ + 943tanh4ζ). (42)

This solution is exactly the same with those of Malfliet and Wieers [10] and
Demiray [4], but different from that of Sugimoto and Kakutani [12].

The total solution up to and including O(ϵ3) terms reads

ϕ = ϵϕ1 + ϵ2(−3

2
aϕ1 +

7

4
ϕ2
1) +

ϵ3

240
(306a2ϕ1 − 1223aϕ2

1 + 943ϕ3
1). (43)

The phase function ζ may be expressed in terms of the real space and time
variables as

ζ = ϵ1/2[x− (1 + ϵ
a

3
+ ϵ2

a2

6
+ ϵ3

5a3

54
+ ...)t]. (44)

As is seen from equation (44), the speed correction terms are, respectively,
a/3, a2/6 and 5a3/54 for the orders of ϵ, ϵ2 and ϵ3.

3. Results and Discussions
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Modifying the PLK method and introducing a new set of stretched co-
ordinates we have studied the propagation of weakly nonlinear waves in a
collisionless cold plasma and obtained the evolution equations governing the
various order terms in the perturbation expansion. Seeking a progressive
wave solution to these evolution equations we obtained the speed correction
terms so as to remove the possible secularities that might occur in the so-
lution. The result so obtained is exactly the same with that of modified
reductive perturbation method [4, 5] and of the re-normalization method of
Kodama and Taniuti [9], which is rather heuristic. The present method can
be applied for higher order speed correction terms. In order to save the space
these calculations will not be given here.

4. Conclusions

Employing the modified PLK method, the propagation of weakly nonlin-
ear waves in a collisionless cold plasma is studied and a set of KdV equa-
tions are obtained as the evolution equations. By seeking a progressive wave
solution to these evolution equations a set of speed correction terms are ob-
tained so as to remove possible secularities. The result obtained here is the
same with those of modified reductive perturbation[4] and re-normalization
[9] methods. The method presented here is quite simple as compared to the
re-normalization method of Kodama and Taniuti [9].
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