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Abstract—In this study we propose a new set of muscle activity
based features for facial expression recognition. We extract
muscular activities by observing the displacements of facial
feature points in an expression video. The facial feature points
are initialized on muscular regions of influence in the first frame
of the video. These points are tracked through optical flow in
sequential frames. Displacements of feature points on the image
plane are used to estimate the 3D orientation of a head model
and relative displacements of its vertices. We model the human
skin as a linear system of equations. The estimated deformation
of the wireframe model produces an over-determined system of
equations that can be solved under the constraint of the facial
anatomy to obtain muscle activation levels. We apply sequential
forward feature selection to choose the most descriptive set of
muscles for recognition of basic facial expressions.

I. INTRODUCTION

Humans do two-way communication through not only
words but also facial expressions, gestures and posture. Mehra-
bian [1] reported that the feeling conveyed by the speaker
in face to face communication is 7% verbal, 38% vocal and
55% facial. According to his findings tone of voice and non-
verbal behavior are more effective than the “spoken words”.
Non-verbal behavior includes facial expression, eye, hand
and head movements, posture etc. Among all gestures, facial
expressions are the most direct, natural and most of the time
involuntary expressions of the emotions. Due to this fact facial
expressions constitute a popular field of research in varying
research domains, especially in psychology. Correct analysis
of human faces is also valuable for computer science, e.g. for
enhancing the user experience in human computer interaction
(HCI). Latest efforts in HCI focus on detecting unsuitable
conditions (boredom, fatigue and stress) of the staff who work
in critical positions [2], [3].

One of the earliest known studies facial expressions is by
John Bulwer in 1649 [4], who hypothesized that the ‘motions
of the mind and muscles of the head’ are directly linked,
establishing the muscular basis of facial expressions. In mid
1800s famous neurologist Duchenne de Boulogne [5] studied
generation of facial expressions through electrical stimulation
of facial muscles on live subjects. A decade later, Charles
Darwin [6] hypothesized that facial expressions anger, disgust,
fear, happiness, sadness and surprise are common among all
cultures.

In 1978, which is about a century later after Darwin’s work,

Ekman and Friesen [7] proposed a systematic method for
analyzing appearance changes on human face, namely facial
action coding system (FACS). They defined facial behaviors
with action units (AUs) rather than muscle activations. The
most current FACS categorization uses 46 action units for
describing the facial actions, head and eye movements. Ek-
man and Friesen’s study became an important milestone for
computer based automated facial expression recognition.

A computer based automated facial expression recognition
system includes three main stages. The first stage is detecting
the human face in an input, which can be an image or the first
frame of a video sequence. The second stage is extracting the
features that discriminate facial expressions in the input. When
the observation is video, we have the opportunity to make use
of the dynamics of the expression by tracking the face and
its features. Most current approaches utilize the FACS AUs as
features. The last stage is classification of the facial expression
using the obtained numeric values of the features.

In this study we propose a set of new and robust features
that represent the muscular activities on the face. We argue
that it is possible to accurately and uniquely solve muscle
forces that constitute a facial expression by precise tracking
of feature points that are distributed over muscular regions
of influence. We show through sequential forward selection
(SFS) of muscle activity based features that it is possible to
classify facial expressions with high accuracy with very few
number of features.

The paper is organized as follows. In Section 2, we explore
the state of the art studies in facial expression recognition
field. We introduce our motivation in proposing muscle activity
based features in Section 3. The new set of features is
introduced in Section 4. We present our experimental results
in Section 5 and conclude this paper in Section 6.

II. FACIAL EXPRESSION RECOGNITION RESEARCH

The initial step of facial expression recognition study is face
detection. There are a significant number of studies in this
topic and it is now considered to be solved by works of Rowley
et al. [8], Schneiderman and Kanade [9] and Viola and Jones
[10].

The next step is extracting discriminative information for
recognizing expressions. Geometric, appearance based and
hybrid methods have been proposed for feature extraction.



Geometric features are derived from the coordinates of distinc-
tive regions of the face such as eyes, nose and lips. Detected
or marked facial feature points are tracked in consecutive
frames and their geometrical displacements are utilized to train
different classifiers [11], [12], [13].

Appearance based methods deal with the texture of the
skin including wrinkles, bulges and furrows. Gabor filters
[14], [15], [16], Haar features [17], multilevel motion history
images [18] and local binary pattern descriptors [19] are a few
methods for extracting appearance based features.

Researchers also proposed hybrid approaches that combine
the geometric and appearance based features at the feature or
decision level. It has been shown that hybrid features consis-
tently achieve better recognition performances than individual
features [20], [21], [22].

Model based methods are proposed to derive a mathematical
model of variation modes of geometric or appearance based
features. Typical examples are active shape model (ASM)
[23] and active appearance model (AAM) [24]. ASM is a
parametric deformable model. A statistical shape model of
the face object is built using a set of training examples. Pose
and shape parameters are iteratively modified for a better fit.
AAM combines the statistical model of the shape and the
gray-level appearance of the object of interest. The synthesized
model is projected onto the face image and matching is done
iteratively. Lucey et al. [21], [25] and Cheon and Kim [26]
derived features based on AAM and employed them for facial
action and facial expression recognition tasks.

The last stage of facial expression recognition is classifi-
cation. Kotsia et al. [20] classified six basic expressions and
neutral and obtained 74.3% accuracy with texture based, and
84.8% accuracy with shape based features. They improved
the classification accuracy to 92.3% by combining texture and
shape based features. Cheon and Kim [26] achieved 86.5%
accuracy in classification of six basic expressions with differ-
ential AAM features. In our previous work [27], we obtained
89.0% accuracy in classification of six basic expressions and
neutral through muscle based features and Adaboost. These
studies were carried out using leave-sequence-out strategy on
the Cohn Kanade (CK) [28] dataset.

Lucey et al. [21] classified six basic expressions and con-
tempt with shape and appearance based features, obtaining
50.4% and 66.7% classification rates, respectively. When com-
bined, shape and appearance based features resulted in 83.3%
classification accuracy. This study was done on the extended
Cohn Kanade (CK+) [21] dataset. These classification perfor-
mances are close to human recognition ceiling that is believed
to be in range 87.0% [29] to 91.7% [30].

In this paper we propose the activation levels of a subset of
facial muscles as novel features. Muscle forces are the ultimate
base functions that compose all facial expressions under the
constraint of facial anatomy. We utilize a semi-automatic
customization method to fit a generic face model to subject’s
face. The projection of vertices that lay on the influence
regions of muscles onto the image plane are identified as facial
features and are tracked in consecutive frames. Coordinates of

tracked feature points are utilized to estimate head orientation
of the face model and relative displacements of vertices. We
model human face with a system of springs and solve muscle
forces through convex optimization.

III. MOTIVATION

FACS defines 46 AUs based on psychological studies of ex-
pressions. Each AU is defined with the motivation to represent
a head, eye or face activity that is empirically known to relate
to an emotion. Since the basis of FACS coding is humans’
perception of emotions and not the anatomical structure of
the face, an AU may refer to the action of a unique muscle or
the compound visual effect of a set of muscles.

Action units compose facial expressions individually or
in different combinations. The combinations can be additive
or non-additive. In non-additive combinations, the compound
effect alters the appearance of individual action units. Once
AUs are compounded, it is extremely difficult to decompose
an expression back to AUs unless a large rule base is made
available. Investigation of facial expressions revealed more
than 7,000 possible combinations of AUs [31].

We argue that the muscular activities can be uniquely
and accurately solved by observing displacements of feature
points that are dispersed in muscular regions of influence. Our
reasoning can be outlined as follows:

1) Depending on the anatomical structure of the human
face, we can estimate the layout of muscles for a person
through customization of an anatomy based generic
model to the detected face in an observed scene.

2) Once the model is customized, the estimated layout
of muscles completely defines the muscular regions of
influence on the skin.

3) The displacement of each feature point that lies in the
region of influence of a muscle is an evidence of related
muscular activity.

4) A set of n feature points carefully distributed in regions
of influence of m muscles generates an over-determined
system of equations if n > m. An error-minimizing
solution for this system is achievable through convex
optimization methods provided that the condition num-
ber of the coefficient matrix is low.

IV. MUSCLE FORCE BASED FEATURES

A. Generic wireframe model

In this study we use a generic wireframe model that con-
forms to the human face anatomy. High polygon generic face
model (HIGEM) comprises of 612 nodes and 1128 polygonal
surfaces [32]. HIGEM includes 18 major muscles of the human
face. Each muscle is represented by an insertion point (on the
skin) and an attachment point (on the skull). The structure of
muscles on HIGEM is illustrated in Figure 1.

B. Muscle Model

Based on Waters’ research on 3 dimensional animation
of facial expressions [33], we define our muscles as linear
springs with distributed forces in their regions of influence.



Fig. 1. The muscle structure on HIGEM.

We consolidate the effects of muscles on wireframe vertices
in matrix A, which serves as our muscle map [27]. The muscle
map is solely dependent on the anatomical structure of human
face. The product of A with the vector of muscle activations
~fm produces the vector of muscle forces on each vertex in
each axis ~f s (Equation 1).

A~fm = ~f s (1)

C. Semi-automatic customization

Our feature extraction method commences with customiza-
tion of the generic wireframe model (HIGEM) to a subject’s
face. We use the nearest neighbor weighted average customiza-
tion (NNWA) in this stage, which is computationally efficient
for customization of high-polygon models and sufficiently
accurate for our purposes [32]. This procedure is done once
for a subject and only on the first frame of the video.

D. Tracking facial features

Given a model that has been customized for a subject, we
can identify its vertices that are in the region of influence of
a muscle using Waters’ muscle model. We identify the facial
feature points through projection of these vertices onto the
image plane, as shown in Figure 2. These facial feature points
will be tracked on the image plane using optical flow [34] .

Fig. 2. Identifying feature points to be tracked.

E. Estimating head orientation

Precise alignment of the face model with the observed face
image is mandatory for estimation of relative displacements
of vertices, i.e. the deformation due to the performed facial
expression. The orientation of the subject’s head is determined
by greedy search on feature points and their corresponding
vertices in 6 degrees of freedom. A similar greedy search
algorithm for finding the head orientation was implemented
by Dornaika and Ahlberg [35].

F. Estimating deformations

Once the estimation of head orientation is complete, we
have the face model aligned with the observed face on the
image plane. Note that the projections of the wireframe
vertices still would not precisely overlap with the facial feature
points. The deviations between these tracking points and the
projections of corresponding vertices serve as indicators of
facial expressions. We apply ray tracing to extract the relative
displacements of vertices.

Figure 3 depicts a landmark vertex x0 and its neighbors on
the wireframe model. Assuming that the surfaces are small
enough so that they do not bulge or wrinkle, this vertex
hypothetically moves on one of the faces it resides on. In
this illustration, x0 moves on the surface defined by x0, x1

and x2.

Fig. 3. Estimating the new coordinates of vertices through ray tracing.

If we can identify the plane of motion for the vertex, we can
estimate its new coordinates through a line-plane intersection.
The plane of motion can be any of the faces the vertex resides
on. We find the intersection of the ray with each of these faces.
The intersection point x′

0 may be found within or outside the
boundaries of a triangular face as depicted in Figure 4.

Fig. 4. Identifying the plane of motion.

To eliminate those intersection points that do not lie in the
plane of motion, we determine three normal unit vectors for
each face;

~n1 = −−→x1x0 ×
−−−→
x0x

′
0/||
−−→x1x0 ×

−−−→
x0x

′
0||

~n2 =
−−−→
x′
0x0 ×−−→x0x2/||

−−−→
x′
0x0 ×−−→x0x2|| (2)

~n3 = −−→x1x0 ×−−→x0x2/||−−→x1x0 ×−−→x0x2||

where x0, x1 and x2 are the vertex and its neighbors on the
aligned wireframe model. The intersection point x′

0 is the back
projection of the tracked feature point found through line plane



intersection. Note that for x′
0 to be in the region bounded by

the face, normal vectors must point to the same direction;

~n1 · ~n3 > 1− ε and ~n2 · ~n3 > 1− ε (3)

These two conditions enable us to identify the plane of
motion and the new coordinates of the corresponding vertices.

G. Solving muscle forces

The wireframe is modeled as a 3D surface that is composed
of polygons. Each face on the wireframe model is defined by
three vertices, representing a triangular plane in the 3D space.
The edges between each neighboring vertices are modeled
with springs as illustrated in Figure 5.

Fig. 5. Representing the edges of the wireframe model with springs.

The spring force vector on vertex i, exerted by the contrac-
tion of the spring between vertices i and j, can be represented
using Hooke’s elasticity law;

~fij = kij(lij − ||xi − xj ||)
xi − xj

||xi − xj ||
(4)

In Equation 4, kij is the stiffness of the spring attached to
vertices i and j, lij is the rest length of this spring, xi and xj

are the 3D coordinates of the vertices.
Given the 3D coordinates of wireframe vertices (Section

IV-F) and the stiffness matrix we can compute the external
forces on each vertex using Equation 4. Our aim is to
extract muscle activations from the external forces under the
constraint of human anatomy. Under the anatomic constraints,
external forces are represented in terms of muscular activations
as shown in Equation 1. Equations 1 and 4 constitute a linear,
over-determined system of equations. We use constrained least
squares optimization (~fm > 0) to solve this system.

V. EXPERIMENTAL RESULTS

We carried out our classification experiments using support
vector machine (SVM) classifier on the original CK [28]
and extended CK+ [21] datasets. The original CK dataset
contains 228 image sequences labeled as one of the six
basic expressions. The extended version, CK+, contains 327
image sequences of seven expressions including contempt.
The input to our classifier is a set of muscle activations for
a snapshot image. We consistently used leave-sequence-out
cross-validation scheme in our experiments.

Table I presents our results for the multi-class SVM clas-
sifier on the CK dataset. We obtained the lowest classifica-
tion accuracy in fear (64.7%). It was confused with anger,

happiness and sadness. We achieved highest performance in
the surprise expression (98.6%). The overall classification
performance is found as 84.9%.

TABLE I
CLASSIFICATION OF SIX BASIC EXPRESSIONS ON THE CK DATASET WITH
LEAVE-SEQUENCE-OUT CROSS-VALIDATION. A: ANGER, D: DISGUST, F:

FEAR, H: HAPPY, SA: SAD, SU: SURPRISE

A D F H Sa Su %
A 26 1 0 0 2 0 89.7
D 3 30 0 0 0 1 88.2
F 1 0 11 3 2 0 64.7
H 0 1 3 57 0 0 93.4
Sa 2 0 2 0 12 0 75.0
Su 0 0 1 0 0 70 98.6

Table II presents our results for the multi-class SVM classi-
fier on CK+ dataset. We obtained the lowest classification rate
in contempt (44.4%). A significant percentage of contempt
examples were misclassified as anger (27.7%). Once again
we obtained the highest accuracy in the surprise expression
(94.0%). The overall classification performance is found as
75.5%.

TABLE II
CLASSIFICATION OF SIX BASIC EXPRESSIONS AND CONTEMPT ON THE
CK+ DATASET WITH LEAVE-SEQUENCE-OUT CROSS-VALIDATION. A:

ANGER, D: DISGUST, F: FEAR, H: HAPPY, SA: SAD, SU: SURPRISE, C:
CONTEMPT.

A D F H Sa Su C %
A 32 1 3 0 5 0 4 71.1
D 2 54 1 0 0 0 2 91.5
F 3 1 15 2 3 0 1 60.0
H 2 1 4 59 0 1 2 85.5
Sa 3 0 2 0 23 0 0 82.1
Su 1 0 3 0 0 78 1 94.0
C 5 2 0 2 1 0 8 44.4

We utilized sequential forward selection (SFS) strategy to
obtain the best subset of muscle based features. SFS starts
search with an empty set and sequentially selects the most
significant feature. This procedure is repeated until there is no
improvement in classification performance.

Table III presents the results of SFS on the CK dataset.
SFS selects 11 features as the most descriptive. New feature
set increases the performance of fear expression from 64.7% to
82.4%. The overall classification performance increases from
84.9% to 85.9%.

TABLE III
FEATURE SELECTION RESULTS ON THE CK DATABASE.

A D F H Sa Su %
A 22 1 1 0 5 0 75.9
D 3 30 0 0 0 1 88.2
F 1 0 14 2 0 0 82.4
H 1 0 7 53 0 0 86.9
Sa 1 0 1 0 14 0 87.5
Su 0 0 2 1 1 67 94.4

Table IV presents the results of SFS on the CK+ dataset.
This time SFS chooses a subset of size 9. The performance of



contempt expression is increased to 55.6% with the selected
feature set. The overall classification performance increases
from 75.5% to 77.6%.

TABLE IV
FEATURE SELECTION RESULTS ON THE CK+ DATABASE.

A D F H Sa Su C %
A 33 1 2 1 7 0 1 73.3
D 5 49 1 0 0 1 3 83.1
F 3 1 15 4 2 0 0 60.0
H 2 1 4 58 0 1 3 84.1
Sa 0 0 1 0 27 0 0 94.4
Su 2 1 1 1 0 77 1 92.8
C 4 1 1 1 1 0 10 55.6

We obtained slightly higher classification performances both
on CK (+1.0%) and CK+ (+2.1%) datasets with SFS. Muscle
based features proposed in this paper competes with the state-
of-the-art algorithms that use geometric, appearance or FACS
based features in classification.

Table V presents comparative evaluation of our approach
with our previous work [27], Kotsia et al. [20] and Cheon
and Kim [26]. These studies were carried out on the CK
dataset. Texture based features utilized by Kotsia et al. are
inherently more complex than geometric or muscle based
features, although the actual number of dimensions is not
available. In this study 2D displacements of grid nodes (104
for Candide model) were used as shape based features. Muscle
activities based feature subset outperforms both inherently
complex texture based, and high number of shape based
features.

Cheon and Kim [26] chose six basis vectors for each of
the shape, appearance and AAM modalities on the avearage,
making a total of approximately 18 features. They obtained
slightly better results from the proposed feature set with
differential AAM. Note that the AAM approach requires
an iterative fit for orientation, shape and appearance of the
face, which implies that extraction of AAM based features is
significantly more complex than muscle based features.

Table VI compares our approach with our previous work
[27] and Lucey et al. [21]. These studies were carried out
on the CK+ dataset. Lucey et al. represent shape based
features with a 136 dimensional feature vector. Gray values of
8,091 pixels (87 × 93 window) denote the appearance based
features. Muscle activities based feature subset achieves higher
performance than shape based and appearance based features
when they are used alone. Note also that the number muscle
activity based features (9) is orders of magnitude lower than
shape based (136) and appearance based (8,091) features.

VI. CONCLUSION

In this study we argue that facial muscles are the ultimate
basis functions that compose all facial expressions. We pro-
pose extraction and selection of muscle activity based features
for recognition of facial expressions. The activity levels of
facial muscles are extracted unintrusively, through tracking
of facial feature points, mapping their relative displacements
onto a 3D model, and finding an error-minimizing solution

for muscle forces in an over-determined system of linear
equations.

We chose the most descriptive features among all muscle
activities through SFS. On the CK database, we obtained
85.9% classification performance on six basic expressions
with only 11 features. On the CK+ database our classification
performance is 77.6% over 7 basic expressions and using only
9 features. These performance figures are better than that of
shape and texture based features when they are used alone. The
number of muscle based features we used in our experiments
is an order of magnitude lower than shape based, and two
orders of magnitude lower than texture based features that
are commonly used in the literature. This result implies that
muscle based features are significantly more descriptive of
facial features, as our starting intuition suggests.
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