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Abstract

In this study, the purpose was to develop a user friendly software tool which
enables to design microwave filters with lumped circuit elements, distributed
transmission lines and mixed lumped-distributed circuit elements. For the design
tool, modern insertion loss approach is preferred because of several advantages such
as flexible filter specification and easy control of filter characteristic. The work is
mainly concentrated on low pass Butterworth and Chebyshev type filter designs. For
the lumped element and distributed element filter designs the available insertion loss
methods are explained and implemented. Solution to filter problems with lumped
elements alone is well established in literature. However at microwave frequencies
use of lumped elements or distributed elements alone in the circuit realization has
serious implementation problems. Thus mixed lumped and distributed filter design
have several advantages and flexibilities in monolithic integrated circuit layouts.
Unfortunately, designing filters with both lumped and distributed elements has not
been solved analytically yet. Beacuse of this reason, in this work a new
approximation scheme is proposed to construct filters with lumped and distributed
elements. Our new proposed approximation for mixed lumped-distributed filter
design and microwave filter design tool will provide new possibilities and
flexibilities in designing microwave filters.
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KARISIK TOPLU-DAGINIK GERCEKLESTIRMEYLE RADYO
FREKANS (RF) FILTRELERININ GiRiS KAYBI TASARIMI

OMER SUMER

Elektronik Miihendisligi Yiiksek Lisans Tezi
Isik Universitesi, 2007

Anahtar Kelimeler: Giris kayb1 tasarimi,Radyo Frekans (RF) filtreleri, Toplu devre
elemanl filtre tasarimi, Daginik devre elemanls filtre tasarimi, Karisik Toplu-

Daginik devre elemanl filtre tasarim

Ozet

Bu caligmadaki amac, toplu devre elemanlari, daginik devre elemanlart ve
karisik toplu ve dagimik devre elemanlan igeren, mikrodalga filtreleri tasarlayan
kolay kullanilir bir yazilim araci gelistirmekti. Filtre davranisin1 kolay kontrol etme
ve esnek filtre belirtimi gibi bir¢cok avantajlardan dolay1 tasarim araci i¢in , modern
giris kaybi1 yaklasimi tercih edildi.Calismada alcak geciren Butterworth ve
Chebyshev tipi filtre tasarimlarinda odaklanildi.Toplu eleman ve daginik eleman
filtre tasarimlar icin giris kayb1 methodu agiklandi. Literatiirde toplu elemanlardan
olusan filtre problemlerinin ¢6ziimii iyi belirlenmistir. Fakat mikrodalga frekanslarda
toplu elemanlarin veya daginik elemanlarin tek basina devre gerceklestirmelerinde
kullanilmasi ciddi uygulama problemlerine neden olmaktadir. Bu nedenle karigik
toplu ve dagmik filtre tasarimi bir¢ok avantaj ve tiimlesik devre diizenlerinde
esneklige sahiptir. Maalesef karigik toplu ve dagimik elemanlardan olusan filtre
tasarimi analitik olarak heniiz ¢6ziimlenememistir. Bu sebeble, bu calismada karisik
toplu ve dagimik elemanlardan olusan filtreleri kurmak i¢in yeni bir yaklasim diizeni
onerildi. Karisik toplu ve dagmik filtre tasarimi icin onerdigimiz yeni yaklasim ve
mikrodalga filtre tasarim araci, mikrodalga filtre tasariminda yeni olanaklar ve
esneklikler saglayacaktir.
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CHAPTER 1

INTRODUCTION

Radio frequency (RF) filter is a two-port network used to control the
frequency response of a high frequency system. In the literature there exist different
approaches of filter design for high frequency applications. Most commonly used
design methods are known as the image parameter method and the insertion loss
method. Image parameter method consists of cascade of two-port filter sections to
provide desired cutoff frequencies. Image filter design method is simple, however it
must be iterated many times to achieve desired values. Second method is the
insertion loss based design. This method uses network synthesis technique to design
filter for specified frequency response. The design is simplified by low-pass filter
prototypes. Transformation can be then applied to convert the other types of filters
such as high-pass, band-pass and stop-band.

In this thesis, we studied insertion loss based filter design approach because
of its advantages over the image parameter approach. In the work, three practically
important types of filter designs are investigated. These are lumped element design,
distributed element design and mixed lumped-distributed element design. For the
lumped element and distributed element filter designs the available insertion loss
methods are explained and implemented. For the mixed lumped-distributed filters a
new transformation based approximation technique is developed.

Solution to filter problems with lumped elements alone is well established in
literature. However at microwave and millimeter-wave frequencies use of lumped
elements alone in the circuit realization has serious implementation problem because
of the difficulties in the physical interconnection of components and parasitic effects.
Therefore distributed structures composed of transmission lines can be used.
Unfortunately, using distributed structures results in undesired harmonics in the
performance of the system. Moreover, there exist further difficulties in the physical
realization of lumped and distributed network elements during the implementation of
microwave filter circuits. Thus lumped and distributed (mixed) filter design have
several advantages and flexibilities in monolithic integrated circuit layouts.
Designing filters with both lumped and distributed elements has not been solved
analytically yet. An analytic treatment of this design requires characterization of the
mixed element structures using multivariable functions. In this context, there have
been valuable contributions for the characterization of some mixed element
topologies. However there is still not available a complete theory for the
approximation and synthesis problems for the mixed element networks.

The basic approach in obtaining filter networks with both lumped and
distributed elements is to construct is realizable two-variable network functions from
single-variable network functions. In this thesis, we gather the insertion loss design
technique with an appropriate application of two-variable transformation and
network replacement techniques.



We propose a new approximation scheme to construct filters with lumped and
distributed elements. The proposed design approach for the mixed element lumped-
distributed filters is presented with illustrative design examples and an integrated
design tool on MATLAB platform is developed. The developed microwave filter
design tool offers options for designing lumped, distributed and mixed element
filters.

In chapter 2 of the thesis, some fundamental theoretical concepts of filters are
reviewed in a brief manner. Insertion loss based filter design for Butterworth and
Chebyshev filters with only lumped and distributed elements are studied.
Applications of these filter design techniques are illustrated with design examples
using the developed microwave filter design tool.

In chapter 3, construction of mixed lumped distributed filters is discussed.
Here a new design approach is proposed and elaborated. In this part, proposed
approaches for the generation of two-variable transfer function, two-variable ladder
network and transformation of two-variable ladder into lumped and distributed filter
are discussed. Using our approximation for two-variable low pass ladder with unit
element design, we produce tabularized new filter circuit element values for mixed
element Butterworth and Chebyshev type ladders.

In chapter 4, the MATLAB based filter design tool ‘Microwave Filter
Designer’ is presented and explained with examples .

In chapter 5 concluding remarks are summarized.



CHAPTER 2

RF FILTER DESIGN

Passive RF filter is a two-port passive network used to control the frequency
response at certain point in a microwave system by providing transmission at
frequencies within the pass band of the filter and attenuation in the stop band of the
filter. There exist an extensive work on the filter design in the literature. The issue is
well elaborated and several design approaches are available. Among these
approaches the image parameter approach and the modern insertion loss based CAD
techniques are commonly used for RF and microwave filter design applications.

The image parameter method consist of a cascade of a simpler two-port filter
sections to provide the desired cutoff a frequency response over the operating range.
The procedure of image filter design is simple, and it must be iterated many times to
achieve the desired results. Insertion loss method uses network synthesis techniques
to design filters with a completely specified frequency response. The design is
simplified by beginning low-pass filter prototypes that are normalized with respect to
impedance and frequency. Transformations are then applied to convert the prototype
designs to the desired frequency range and impedance level. Both the image
parameter and insertion loss method of filter design provide lumped element circuits.
Moreover for microwave applications designs must be modified to use distributed
elements of transmission line sections. The Richard’s transformation and Kuroda
identities provide this step.

In this chapter filter design with only lumped or only distributed elements
will be investigated along with the introduction of fundamental concepts. The
insertion loss based design approaches for the lumped element and distributed
element filters will be presented .

2.1 Fundamental Concepts on Filters

The function of a filter is to separate different frequency components of the
input signal that passes through the filter network. Filters may be classified in a
number of ways. For example, analog filters are used to process analog signals,
which are a function of a continuous time variable. Digital filters, on the other hand,
process digitized continuous waveforms. Analog passive filters may be classified as
lumped element or distributed element devices. We may also classify filters as
passive or active depending on the type of elements used in their construction. Five
basic types of selective networks are commonly referred to in filter design. They
include low-pass, high-pass, band-pass, all-pass and band-stop filters. The
characteristics of the network are specified by a transfer function H(p), where p= jo
represents the complex frequency defined for the Laplace transform. The transfer
function is the ratio of output signal to input signal, voltage, or current:



V .
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H(jw) =

(2.1)
A filter network passes some of the input signal frequencies and stops others,
and being a linear circuit, this function is performed without adding or generating
new frequency components. The frequency band that passes, ideally without losses,
defines the passband, and the band that stops the frequencies, ideally with infinite
loss, is called the stopband. Figure 2.1.a shows this loss representation of the ideal
low-pass filter with a pass band corner of .. The frequency, w,, is called the cut-off
frequency of the filter. An ideal low-pass filter is physically not realizable as this
requires a circuit with an infinite number of elements due to an abrupt change from
passband to stopband. In an actual filter transfer characteristic, the transition band is
the frequency range that separates the passband and stopband where the loss make a
transitions from a minimum to a maximum value.

As the selectivity defined by the transition band approaches the ideal steep
characteristic, the more complex and costly the filter becomes. Similar
considerations can be applied in the design of filters using phase linearity and/or
group delay flatness. The concept of passband, stopband, and transition band permits
specifications of five major types of filters whose transmission behaviors are as
shown in Figure 2.1.

| Hje) | | Hje) | | Hjay) |
Hy Hy — Mg
[ [0] [P w (R mp @
Low Pass High Pass Band Pass
| Hije) | | Hjeo) |
Hy Hy
iy [ )] 1) ]
Band Stop All Pass

Figure 2.1 Transfer function characteristics for major filter types

The transfer function can easily be transformed from the time to the
frequency domain when losses are small so that p= jo. The filter transfer function is
the ratio of the output signal voltage to the input signal voltage (or current) and can
be written as a ratio of two polynomials:

+ap+a,pt+...+
H(p)= P(p) _ a,ra,p azpz a,.p
Q(p) by+bp+b,p”+.... +b,_,p

(2.2)
where polynomials P(p) and Q(p) in general are of order m and n. These polynomials
are Hurwitz stable, which requires that the order of the numerator polynomial m be
equal to or less than the denominator polynomial n, m < n.



The order of polynomial Q(p) is the order of the filter as well. Polynomials
P(p) and Q(p) can be factored and rewritten in the form

H(p)=(P_Zl)(P—Z2)(p—Z3) ...... (p-z,)
(p=k)(p=k)(p=ky).....(p—k,)

(2.3)
The values z,,z,,z,,...,z,, are called the zeros of the transfer function,
or simply transmission zeros. The roots of Q(p), k,, k,, k5, . ., k,, are the poles of

the transfer function. The poles and zeros can be real or complex, but complex poles
and zeros must occur in conjugate pairs. The magnitude plot of voltage transfer
function represents the loss or attenuation of the filter circuit, and in dB is given by

L ;=20 log |H(p)|

(2.4)
Poles and zeros of realizable passive networks must follow certain rules:

e All poles of a transfer function occur in the left half p-plane. The left half p-
plane includes the imaginary jw-axis.

e Complex poles and zeros occur in complex conjugate pairs. However, on the
imaginary axis, poles and zeros may exist singly.[1]

2.2 Insertion Loss Based Filter Design

The insertion loss method allows a high degree of control over the passband
and stopband amplitude and phase characteristics with a systematic way to
synthesize a desired response. The necessary design can be evaluated to best meet
the application requirements. If for example, a minimum insertion loss is most
important, a binomial response could be used. Chebyshev response would satisfy a
requirements for the sharpest cutoff. If it is possible to sacrifice the attenuation rate, a
better phase response can be obtained by using a linear phase filter design. In all
cases, the insertion loss method allows filter performance to be improved in a
straightforward manner, at high order filter. In the insertion loss method a filter
response is defined by its insertion loss or power loss ratio P,

__
1T (@)’

PLR

o |

(2.5)
where; P, =Power delivered to the load, P,= Power available from the source and
I'= the reflection coefficient at the input port. The insertion loss (IL) in dB is

IL=10log P,
(2.6)

We know that |l“(a))|2 is an even function of @, therefore it can be

expressed as a polynomial in @” .We can write



M(@*)

T(w)| =
F@) M(@*)+ N(@?)

2.7)

Where M and N are real polynomials in @>.If we substitute this form in power loss
ratio gives following form.

+M(a)2)
N(@*)

IR =

(2.8)
For a filter to be physically realizable its power loss ratio must be given in this form.

e Maximally Flat:

This characteristic is also called the binomial or Butterworth response. It
provides the flattest possible pass band response for a given filter complexity or
order. For a low-pass filter, it is specified by

P, =1+k* (/o)™
(2.9)
where n is the order of filter and @, is the cutoff frequency. The passband extends

from @w=0to @ =@, , at the band edge the power loss ratio is 1+ k”.If we choose
this as -3 dB point, we have k=1. For @)@, , the attenuation increase monotonically

with frequency. For @)@, P, =k’(@/®,)*" which shows that the insertion loss
increases at the rate of 20 dB /decade.

e Equal Ripple:

This characteristic is also called the Chebyshev response. If Chebyshev
polynomial is used to specify the insertion loss of an n order low-pass filter as

P, =1+k’T, (0 ®.)
(2.10)

The pass band response will have ripples of amplitude 1+k?, since T, (x)
oscillates between 1 for |x| <1.Thus k> determines the pass band ripple level.

For large x, T, (x) =1/2(2x)" so for w))a,, the insertion loss becomes

2 2n
P :k_ 2_60
T4l w

c

2.11)

The insertion loss for the Chebyshev case is (2°")/4 greater than
Butterworth response, at any given frequency where &))@, .



2.3 Low-Pass Lumped Prototype Filter Design

Insertion loss based design method uses network synthesis techniques to
design a filter with a completely specified frequency response. The design is
simplified by beginning with a low-pass filter prototype that is normalized with
respect to impedance and frequency. Once the low-pass prototype is obtained,
transformations are then applied to convert the prototype design to the desired
frequency range and impedance level. Two fundamental low-pass characteristics are
commonly preferred for the prototype filter design. These are Butterworth and
Chebyshev type filters.

2.3.1 Butterworth Filter

The Butterworth, or “maximally flat” response provides the flattest possible
pass band response for a given filter complexity. A filter with many reactive
elements would be expected to more closely approximate an ideal filter with
rectangular shape than one with few reactive elements. For a filter with n poles (n
reactive elements), the low pass Butterworth approximation provides the maximum
flatness in its passband near © =0 .

'l i

y2 un or

'l
U

or Hn

i ga
T 1 "1
fl'\{.-'z T g4 " T On gﬁmi vt
- .

Figure 2.2 Low-pass filter network topology

Go

The gain function for this type of filter is given by

2 H
H(jw)| =G, =——9%
| ( )| "l (ol @)™
(2.12)

where H, <1. The first 2n-1 derivatives of the denominator of this function are all

zero at =0, implying that it is maximally flat. The poles of this function all have a
magnitude of 1 and are separated from one another on the unit circle by 7 /n radians.
Furthermore there are no poles on the jo axis.

Often minimum requirements are placed on the shape of the passband. In this
instance the minimum number of poles needed to produce a desired specification is



e log[(loamin/lo _1)(10amax,/10 _1)]
2log(o, / @,)

(2.13)
In this expression the maximum attenuation in the passband 0 <® <, is

& ... The minimum attenuation in the stop band, ® , <® < o0, is @

in *

At the edge of the passband, the filter attenuates the power by Y2 or -3 dB. A
recursion formula for the filter elements g, as indicated in Figure 2.2 that would
produce this response can be found in a variety of references [2].

k=1,2,3,...,n
2n

.| Qk-Drx

(2.14)

For a normalized low-pass design where the source and load terminations are
1 Q, if the cutoff frequency is set as @, =1 rad/s and passband ripple is assumed 3

dB, the element values are calculated as in Table 2.1 [2].

It is possible to scale the response to have other attenuation levels at @w=1
rad/s. For an attenuation of K, in dB:

wKP — (10()11(,, _1)1/(2")
(2.15)

In order for the filter to have K, attenuation at w=1 rad/s , the 3 dB case

pole positions or component values must be scaled @, value.

Table 2.1 Normalized low pass Butterworth filter element values (@, =1 rad/s ; 3 dB

passband ripple)
N | g 8> 83 8, 8s 86 87 8s 89 810
1 2.000
2 1.414 | 1.414
3 1.000 | 2.000 | 1.000
4 0.765| 1.847 | 1.847 | 0.765
5 0.618 | 1.618 | 2.000 | 1.618 | 0.618
6 0.517 | 1.414 | 1931|1931 | 1.414 | 0.517
7 0.445|1.246 | 1.801 | 2.000 | 1.801 | 1.246 | 0.445
8 0.390 | 1.111 | 1.662 | 1.961 | 1.961 | 1.662 | 1.111 | 0.390
9 0.347 | 1.000 | 1.532 | 1.879 | 2.000 | 1.879 | 1.532 | 1.000 | 0.347
10 1 0.312 10907 |1.414|1.782 | 1975|1975 |1.782 | 1.414|0.907 | 0.312
Ll C2 L3 C4 LS C6 L7 CS L9 Cl()




Referring to Figure 2.2 , for a normalized low-pass design where the source
and load terminations are 1 Q , the cutoff frequency is @, =1 rad/s and passband

ripple 1 dB , the element values are calculated as in Table 2.2 [2].

Table 2.2 Normalized low pass Butterworth filter element values (@, =1 rad/s; 1 dB

passband ripple)

N 8 8> 83 8, 8s 86 87 85 89 810

1 1.017

2 1.008 | 1.008

3 0.798 | 1.596 | 0.798

4 10.646 |1.560 | 1.560 | 0.646

5 0.539 | 1.413|1.747 | 1.413 | 0.539

6 |0.562 |1.263|1.726|1.726 | 1.263 | 0.562

7 0.404 |1.132|1.636|1.815 | 1.636 | 1.132 | 0.404

8 0.358 | 1.021 | 1.528 | 1.802 | 1.802 | 1.528 | 1.021 | 0.358

9 10322 (0927 |1.421|1.743 | 1.855 |1.743]1.421]0.927 | 0.322

10 1 0.292 | 0.848 | 1.321 | 1.665 | 1.846 | 1.846 | 1.665 | 1.321 | 0.848 | 0.292
L C, L, C, Ly Cs L, G L, Cy

Example 2.1

According to Table 2.1 normalized Butterworth filter structure and element
values for order 5 are given in Figure 2.3 and the transfer function plot is as shown in

Figure 2.4.

L1 L3 LS
- e B g S

=2 = C4

Figure 2.3 Low-pass Butterworth filter network topology for order 5 with
normalized element values: L1= 0.61803 H, C2=1.61803 F,
L3=2.0 H, C4=1.61803 F, L5=0.61803 H

Fregquency Characteristic of Butterworth Lowpass Filter

0 ns 1 15 2 25 E
MNormalized Frequency

Figure 2.4: Frequency response of low-pass Butterworth filter for order 5




2.3.2 The Chebyshev Filter

In filter design the Chebyshev function provides the maximum possible
bandwidth for a given passband ripple or the minimum possible passband ripple for a
given bandwidth. The Chebyshev (equal ripple) low-pass filter transducer gain
function is

2 H
H(jw) =G, = 0
[H (o) T+ e (0l w,)

(2.16)

where o, is the low-pass cutoff frequency. The value € is a number < 1 and is a
measure of the passband ripple. The Chebyshev function, T, (x) , oscillates between
+1 and -1 when its argument is less than 1. The poles of this transfer function lie on
an ellipse with no jo axis poles. For x > 1, T,k (x) rapidly becomes large. The
Chebyshev function can be written in a form that clearly shows this characteristic:

T, (x)=cos[nx arccos(x)] 0<x<1
T (x)=cosh[n X arccosh(x)] x>1
2.17)
Since T, (x) < 1 in the passband, the passband transfer function is
2
<IH(jw)| <1
1+¢&° [H (o)
(2.18)
For an attenuation of K » in dB, ¢ can be calculated as
e=+10""% —1
(2.19)

Outside the passband, T, (x) increases approximately exponentially. The

Chebyshev functions can be found in terms of a polynomial of its argument from a
recursion formula:

T, x)=2xT (x)-T,_,(x)
(2.20)

The formula begins by setting T ,(x) =1 and T, (x)= x. Furthermore for n odd
T,(00=0 and T,(£l)==%1, while forneven 7,(0)= (-D™*  and T (x1)=1.
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The next few Chebyshev functions are shown below:

T,(x)=2x" -1

T,(x)= 4x* —3x

T,(x)= 8x* —8x% +1

T(x)= 16x° —20x> +5x

T, (x) =32x° —48x* +18x” -1

T,(x)=64x" —112x° +56x° —7x

T, (x) =128x* —256x° +160x* —32x” +1
T,(x) = 256x° —576x" +432x° —120x° +9x

(2.21)

Just as in the Butterworth approximation, there is a set of recursion formulas

for the Chebyshev filter. Finding expressions for the g values for the filter requires

first expanding the Chebyshev functions by its own set of recursion formulas. The

low-pass prototype filter structure (for a given number n of reactive elements) is then

equated to the nth order filter function so that a correlation is made between the
circuit and the function.

One important difference between the Butterworth and Chebyshev
approximations is the value for g ,, . The unequal impedance levels for the even-
order Chebyshev termination impedances is often avoided by simply restricting the
choices of n for the Chebyshev function to odd values. The circuit element values for
these two filter functions were found by using network synthesis techniques after
determining the poles of the transfer function.

The recursive element value expression for Chebyshev filters with prescribed
ripple and order are calculated as given below[2]

2a,
8T T oA
sinh SI2N
2
ﬁ:mVH% +{
1+k* -1
b, = sinh? 2£ +sin? k—ﬂ,
. 2k-1
a, =sin T,
2N
4 k
- k=1,2,3,....n
b8

(2.22)
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For different passband ripple levels (which is a function of €) there exist
tabularized filter element values for a Chebyshev response [1]. A typical ripple case
with 1 dB passband ripple is given in Table 2.3 [1].

Table 2.3 Normalized low pass Chebyshev filter element values( @ =1 rad/s; 1 dB

pass band ripple)
N 8 8, 83 84 8s 86 87 83 89 810
1 |1.017
2 | 1.821 ] 0.685
3 12.023 0994 |2.023
4 12.099 | 1.064 |2.831]0.789
5 |2.134]1.091 |3.000|1.091 |2.134
6 |2.154|1.104 |3.063|1.157 |2.936 |0.810
7 2166 1.111 |3.093|1.173 |3.093 |1.111]2.166
8 [2.174 | 1.116 |3.110|1.183 |3.148 | 1.169 | 2.968 | 0.817
9 |2179|1.119 |3.121|1.189 |3.174 |1.189 | 3.121 | 1.119 | 2.179
10 | 3.538 | 0.777 | 4.676 | 0.813 | 4.742 | 0.816 | 4.726 | 0.805 | 4.514 | 0.609
Ll C2 L3 C4 LS CG L7 CS L9 CIO

If the maximum passband frequency is ®_, and the minimum stopband

frequency beyond which the attenuation is always greater than o is o, then the

min *

number of poles required in the function is n :

arccos h[l (10%™10 _ 1)_% }
£

n=
arccosh(w, / ,)

(2.23)

Example 2.2

According to Table 2.3 normalized Chebyshev element values for order 5 are
given in Figure 2.5 and the transfer function plot is as shown in Figure 2.6.
L1 L3 LS

Fa s o o UEEEEEE— o W— . o

= C2 - C4

Figure 2.5 Low pass Chebyshev network topology for order 5 with normalized
element values:L.1=1.58846 H, C2=1.78565 F, L.3= 1.83856 H,
C4=1.48558 F, L.5=0.76996 H
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Freguency Characteristic of Chebyshev Lowpass Filter

------------------------------------------------------

[Hijw) 2

________________________________________________________

I
15 2 25 3
Morralized Freguency

Figure 2.6 Frequency response of low-pass Chebyshev filter for order 5 with 3
dB ripple

2.4 Distributed Element Filter Design

The lumped filter design generally works well at low frequencies, but two
problem arise at microwave frequencies. First, lumped elements such as inductor
and capacitors are available only for a limited range of values and are difficult to
implement at microwave frequencies and they must be approximated with distributed
components. In addition, at microwave frequencies the distances between
components is not negligible. Richard’s transformation is used to convert lumped
elements to transmission line sections, while Kuroda’s identities can be used to
separate filter elements by using transmission line sections. Such additional
transmission line sections do not affect the filter response.

¢ Richard’s Transformation

The transformation
Q =tan gl

(2.24)
This transformation introduced by Richard to synthesize an LC network using

open and short circuited transmission lines. If we replace the frequency variable
awwith Q, the reactance of an inductor can be written as

jX, = jQL= jLtan Al
(2.25)

and the susceptance of a capacitor can be written as

JjB. = jQC = jCtan A
(2.26)

13



These results indicate that an inductor can be replaced with a short circuited
stub of length fland characteristic impedance L, while capacitor can be replaced

with an open circuited stub of length S/ and characteristic impedance 1/C. Cutoff

occur at unity frequency for low-pass filter prototype. To obtain the same cutoff
frequency for Richard’s transformed filter, we used this equation.

Q=I1=tanfl
2.27)

which gives a stub length of [ = 1/8 where A is the wavelength of the line at cutoff
frequency @,. At the frequency @, =2w,, the lines will be A/4 long, and
attenuation pole will occur. At frequencies away from @_, the impedances and the

filter response will differ from desired prototype response. Also, the response will be
periodic in frequency repeating every @, .The inductors and capacitors of lumped

element filter design can be replaced with short circuited and open circuited stubs as
illustrated in Figure 2.7.Since the lengths of all the stubs are the same A/8 at @_,

these lines are called commensurate lines.[1]

Alg at w,
D— S —

Be oC.

(b)

Figure 2.7 Richard’s transformation (a) For inductor to short circuited stub
(b)For a capacitor to an open circuited stub

e Kuroda’s Identities

The four Kuroda identities utilize redundant transmission line sections to
achieve a more practical microwave filter implementation. Those additional

transmission line sections are called unit elements and are 4/8 long at @,, the unit

elements are commensurate with the stubs used to implement the inductors and
capacitors of the prototype design.

14



The four identities are illustrated in Figure 2.8 where each box represents a
unit element or transmission line of the indicated characteristic impedance and length
(A/8 at @,).The inductors and capacitors represents short circuit and open circuit

stubs respectively.[1]

21
2
n
1 L - — 2
Iz T g
n
(a)
Z1
e —i O
72 —_— n221 — 21—
n-zZ2
o — o—
(b)
1n?
o | o n
z1 72 — 22 Zl ‘
n2 H2
(©
N 1
£2 n°z2 n2 o1
oA — S —
71 —_— nQZW ‘
o — o
(d)
Figure 2.8 The Four Kuroda identities
SIe
seres
stub
) i
- Unit
7 0.
shunt elerment
7 stub
N =1+22/71

Unit
element

Figure 2.9 Equivalent circuit Kuroda identity of Figure 2.8(a)
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2.4.1 Filter Design with Cascaded Transmission Lines

The most important application of commensurate line or unit element
synthesis methods, particularly in the microwave region, has been to problems of
insertion loss design. The scattering formalism is most useful in considering the
insertion loss problem. If we consider a general lossless reciprocal two-port in the A
domain The scattering matrix of the two-port is

S(/l):{s“(ﬂ) 512(2)}

521 (4) 55, (D)
(2.28)
Except for a possible branch point pair at 4 = + 1, the s ,( 1) are analytic in

Re A > 0. As we see for a cascade of lines forming a two-port, under A=tanhT ,
$,,(A) may be irrational but s, (A1), s,,(A) are rational. However, all products

s;(A)s;(-A) are even and rational. The unitary requirement demands

|S11(j9)| 2=|S22(jQ)| ?=1- |Slz(]Q)| 2
or

s, (D) s,,(=D)=5,,(4) s (=A)=1-5,(A) s,,(-4)
(2.29)

If the scattering matrix normalization numbers at the two-port r, and r, are
real and positive thenif r, ,r, terminate the two port, we have

P(Q

P (L)

|s12 ( jQ)| ’= = Available gain

(2.30)

where P,, is the available r; generator power at port 1 and P, is the power
delivered to r, .Since 10 log |1/ s12|2 is generally defined as the insertion loss. It is

clear that we can examine the properties of s,,(A4) for a cascade of unit elements.

If the unit element (UE) is lossless then generally in a passband region
A=tanhT (p) takes the real frequency axis j@ into jQ in the A domain.
Specifications in true frequency ware merely transformed into a similar
characteristic but plotted against a distorted frequency scale in j€Q. The change in
frequency scaling is generally no impediment to rational design. On the other hand, if
the UE is dissipative the imaginary axes in Richard’s transformation do not map into
each other. Even in the lossless case we have the problem that the reference UE
characteristic impedance r(p) may be frequency dependent even though real.

16



The synthesis process has been extended by Kinariwala to a cascade of
unequal length lines. The method uses an exponential frequency transformation [3].

For commensurate line structure ,we consider available gain function |s12 ( jQ)| g

A=tanhT"=tanhy L
(2.31)
and at real radian frequencies w=27f

A=jQ=j tanh fL=jtan wr
(2.32)

where the fixed delay length of the UE is 7 :£ with v the propagation velocity on
v

the line.At real frequencies we can write the polynomial P, (Q?*) as

P,(Q*)=C,+C, +.....+ C,, Q"

(2.33)
Hence by,
P,(Q%)=C,+C,tan’ @T+......+ C,, tan”" @r
(2.34)
Furthermore, the numerator of |s12 ( jQ)| 2is 1+ Q%)" =sec™ wr
(2.35)
2\n
Dividing numerator and denominator of |s,, (G| 2 4+
P(Q%)
(1+Q%)" =sec™ wr yields
(2.36)
50 :
Ky =
s C,cos™ @t +C,sin> @rcos™ " wr+........ +C,, sin” wr
(2.37)

Since each denominator term is even in both sin( wz ) and cos( wr ), one can
make this denominator an even polynomial in either of these quantities by using

sin® wr+cos’ wr =1
(2.38)

Thus the expression is completely equivalent to

2_
|S12| =

(2.39)
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where the new variable x can have either form

X=C COS Wr or X=a sin wr
(2.40)

with & any real positive constant. The advantage of this form in x is that the
approximation problem is reduced to determining a polynomial, the denominator.[3]

¢ Design of an Equal Ripple Low Pass Filter with UEs

Low-pass filter can be constructed with cascaded lines. The filter is to have
Chebyshev performance in the pass band. A typical insertion gain shape |s12| s

drawn in Figure 2.11.

The response characteristic must be periodic in the variable @ . This means

that the point wr =§ = w,7 must be chosen at a high enough frequency to provide a

satisfactory upper limit for the end of the stop band. In other words, this point sets
the entire useful operating frequency range of the filter.

To construct an appropriate insertion gain function which will have the
desired filtering shape and be physically realizable, the polynomial representation of

2 . .
|s12| given in

|S12| t=
(2.41)
1s used with the variable x=¢ sin wr

This frequency variable is chosen so that the middle of the passband for @z
(dc) also goes into the origin in the transformed frequency scale Q, simplifying the
determination of an analytic insertion gain characteristic. The parameter ¢ is used
to adjust the normalized cutoff frequency to occur at x= £ 1. At cutoff (@ =% @,)

then

(2.42)
x=asin(t @, )=%1
Thus
1
a=— > 1
sin@, 7
(2.43)

The length of each line section is chosen to be 1/4 wavelength at the
prescribed frequency @,, which occurs at the high end of the stopband.

18



The value of L hence is 7 determined. The parameters associated with
x=a sin(@r ) are completely defined. Lumped parameter insertion gain functions
suggest that

1
S, (X) 2 -
5229 1+& T2 (x)
(2.44)
where T(x) is the Chebyshev polynomial of order n, with £ < 1.

This has equal ripple response in the normalized passband -1< x < 1 and the
gain falls off monotonically outside this region. The values of £ and n are to be
adjusted to control the ripple in the passband as well as the insertion loss at x=¢,
the end of the stop band which the function repeats in the frequency variable @r .

Example 2.3
Consider the design of an equal ripple filter with the following specifications:

1. Ripple factor to give 0.4 dB maximum insertion loss in passband.

2. End of useful frequency range to be 3000 MHz, corresponding to
o, T=7n/2,x=C.

3. Cutoff frequency = 1000 MHz, corresponding to x = 1.

Minimum gain in the passband occurs when T(x)= 1. At the maximum pass

band loss point, insertion loss = 10 10g|1/s12|2 =10log (1+¢ )=0,4 £ °=0,1

l—2

sin%_

Since L=1/4 wavelength at 3000 MHz, L=2.5cm, wr= 7/6, and a=

When x>>1 T (x)=2 "1 x" and x=a requirement leads to

10log (1+£* 2" @™ )*)>40dB

N=5 is smallest odd integer which satisfies this requirement. In this case
T, (x)=16x"-20x > +5x

10 log [(1+€& *(T?s(x)]=41.2 dB

The insertion gain function is

1
1+0.1[16x° —20x° +5x]°

|S12 (x)| t=

where
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. 4tan’ wr 40*
x*=a’sin’ wr = > =— and > =-Q% =—tan’ wr
l+tan"wr A" -1

If this is substituted in the equation we obtain s, (x)”and in turn we obtain
the equation for s, (4) s,,(-4)=1-s,,(4) s,(-4) which is then factored and the

left half plane denominator roots are used for s, (4) . The reflection factor obtained
is

114520 +44274 +3.164
114.52° +83.214" +74.4820° +28.894° +8.534 +1

s, (A)=

The extraction of lines from the obtained reflection function can be carried
out using the Richards extraction technique until the final 1 € termination is
reached.. The filters insertion loss characteristic is shown in Figure 2.11 [3].

318 0443 4328 0.443 318

Figure 2.10 5 section Chebyshev filter circuit with transmission lines (L=2.5cm)

1512/
1 0 T
09r 4 =
08r ok
0.7F sl
i)
06F %
. o A
& 0sf =
) s |
0.4F 4
=
ok
03f
0ol ] S35+
oAt g -0k
0 . \ \ \ 45 . \ , \
i} 2 4 B 8 10 0 2 4 B ] 10
Mormalized frequency £ Maormalized frequency £

Figure 2.11 Low-pass cascaded line 5 section Chebyshev filter frequency
response and insertion loss
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2.4.2 Filter Design with Commensurate Lines and Stubs

An optimum multi-pole is defined as a two-port network, which is
constructed with minimal number of elements (L’s, C’s and Unit Elements) with the
given specifications and whose element values are chosen such that the transfer
response most resembles to rectangle in a Butterworth or Chebyshev sense. An
optimum multi-pole filter is obtained by combination of non-redundant number of
quarter-wave stubs (LC elements) and unit elements. All filters employing only
quarter-wave lines can be reduced to non-redundant form by suitable application of
Kuroda’s identities and/or series parallel reduction. It should be noted that
introduction of redundant elements does not improve the response of the filter but in
practical cases just enough redundancy is introduced to be able to construct the filter.

The design of optimum multi-pole filters involves three distinct steps.

1. Determination of the polynomial form of the ratio of reflection to
transmission coefficients for a composite two-port filter containing both short
or open circuited quarter-wave stubs and unit elements.

2. Development of the approximation function, usually chosen as maximally flat
(Butterworth) or equal ripple (Chebyshev), used to approximate a rectangular
low-pass or high-pass prototype power transmission characteristic.

3. Synthesis and physical realization of practical network in the form of
distributed quarter wave lines.

Step 1 Polynomial Ratio of Reflected to Transmitted Power

Referring to the two-port network representation shown in Figure 2.12, the
wave cascading matrix R is defined as

(2.45)

where a, a,, and b,, b, are the incident and reflected waves as shown in Figure
2.12.

= A1 o—— —o0 a, 4mx
o b, xmp

Figure 2.12 Two-port network
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Scattering matrix can also be written for the same network as

|:bl:|:{g11 S12:||:a1:|
b, Sar S |4

(2.46)
where
b = s,,a,+ 5,0, , b, =5,a,+5ya,
(2.47)
if equation (2.47) is rearranged to look like equation (2.45), that is,
a, = Lbz - Sﬁaz
S 21
b, _{SIZ 11S22j 2 SAbz
521 521
(2.48)
thus, the wave cascading matrix R is obtained as follows
R= L{_ A, S11:|
Syl=sn 1
(2.49)

where A =s,,s,, — 5,5, Is the scattering matrix determinant. The individual R
matrices of cascaded two-ports can be multiplied to give the overall R matrix of the
cascade.

As an example, wave cascading matrix R can be easily derived for distributed LC
ladder as

j_sL L
_ 2 2
R= sL sL
I 1+_
2 2
(2.50)
which can be written as in the form
R = sL(L I+A")
sL
(2.51)
-1 -1 -1 1
where A=l ;and;AT=l
21 1 1 21-1 1
(2.52)
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The constant matrix A with transpose A" appears in the R matrix for each of the
distributed L’s, C’s and U.E.’s as shown Table 2.4.

Table 2.4 Wave cascade matrix R for distributed LC ladder and unit elements

Filter Elements | SCHEMATIC R-MATRIX
. | ugre)
L LS| —I+A
Ls
LOW .
C 1T CS (i I+A" j
PASS I Cs
UE. * a Fl +(ZAT + Z‘IA)}
-] — 1-s*Ls
i— ——— 1 T —1
U.E. : [s(za™ + 27 A) +1]
HIGH o—| |—o
C L (cst+47)
PASS o 4| Cs
———— |
L é — (LsT+ A7)
-— Ls

e High Pass Prototype

High pass filters are comprised of distributed series C’s, shunt L’s, U.E.’s and
a unit terminating load. The C’s, L’s, and U.E.’s may occur in random sequence.
However, in order to be non-redundant filter, no two C’s nor L’s may occur adjacent
to each other even separated by one or more U.E.’s. Otherwise the elements may be
combined, reducing the total number, by simple parallel or series combinations
possibly in conjunction with use of one of

Kuroda's identities. An optimum highpass filter, having a mixed cascade of m
high-pass ladder elements and n unit elements terminated in a unit load, will have an
overall R-matrix, by taking into account the form of the individual R-matrix of the
lossless high pass elements in Table 2.4, of the form,

R = (lj (;j Bm+n (S)
§ 1-s°
(2.53)

where Bp,,(s) is an (m+n)th degree 2x2 matrix polynomial in s. The R-matrix

element of interest in equation (2.50) is r , =s,,/s,, representing the ratio of input

2
reflected wave to that transmitted in to load.
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(2.54)

For simplicity s,,and s, will be renamed as p and ¢ respectively. Then total
power into the filter is conseved, thus

ol + | =1
(2.55)
rearranging to show the dependence of the power transmission response on r,, =p/t
e = —
L+ /" 1+|n,
(2.56)
using equation (2.54), we obtain
ra|” = 1y (), (—5) = (Lz)m( L )nbnm ($)by,, . (=)
- I-s
(2.57)

The general form of the resultant numerator polynomial, which has real
coefficients, will not change if each term is multiplied by a real constant involving

C

s; =(jtan6,)* where 6, =
2w,

and @, is designated to be the filter cutoff

frequency. Then,
ol _(=sV(1=s2)p (=5
|t|2 —S2 l_sz m+n —SC

where P 1S a (m+n)th degree polynomial in —sz/—sc2

S}

(2.58)

e Low-Pass Prototype

A low-pass optimum filter can be comprised of series L’s, shunt C’s, and U.E
’s in random sequence. However, to be non redundant L.’s must be adjacent to C’s if
not separated by a U.E., or L’s must be adjacent to C’s if not separated by a U.E. or
L’s must be adjacent to each other (and likewise C’s) if separated by a U.E. By
applying a procedure similar to that used above for the high-pass filter, the low-pass
prototype response ratio of reflected to transmitted power is given by:

ﬂ: —s2Y —sz(l—sf) "Q —s;
o[ (=52 —s2(1-s?)) T =52

where Q. 1S a (m+n)th degree polynomial in -s2/-s*

(2.59)
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Step 2 Approximation Functions

There are two common approximations, which are the maximally flat
(Butterworth) and the equal ripple (Chebyshev). They are given as follows [4];

Butterworth:
2n
. o (s,jzm -5
High-pass: —=|—
i s V1-s?
(2.60)
|p|2 ( s sz P I_SCZ 2n
Low-pass: ==
| ! | Se s A1—s?
(2.61)
Chebyshev:
2 B — — )
High-pass: Q =¢? Tm(s_chn -5, _um(s_cjun A=
|¢] § 1-s s J1—s?
(2.62)
2 — — )
Low-pass: Q =g Tm(S_JTn syl—s. _um(i}tn sy1—s.
|t| L\ sN1—s° s, s, [1_ 2

(2.63)

where T, (x)=cos(m arccosx) and U, (x)=sin(m arccosx)are unnormalized mth

degree Chebyshev polynomials of the first and second kinds, respectively.

Step 3 Network Synthesis

Solving the realization problem is the final step for obtaining optimum filter.
As stated earlier the optimum filter is consist of cascaded unit elements and
distributed L’s and C’s which obey the form of approximation functions given in
equations 15, 16, 17 and 18. If the input impedance of this cascade is determined

from the specified power function,

Richard’s theorem can be applied to determine

unit element values and pole-removing techniques can be used to determine the LC
values. The power reflection coefficient IpI2 can be written as

ol = ol !
1+|of /e

(2.64)
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Then the desired reflection coefficients are determined from the squared
approximating function Ipl* by finding roots of the numerator and denominator
polynomials and associating thee left half-plane poles with p. Then applying the
transformation

_1+p
l-p

in

(2.65)

the input impedance is obtained. Once input impedance is obtained the element
values can be determined by using Richard theorem and pole zero remove
techniques [4].

Example 2.4

As an example we consider the design of a three-section maximally flat low
pass filter of 70 percent bandwidth. Using the reflected to transmitted power ratio
approximation functions given by equation (16), for n=3, first all stub structure is
obtained from the obtained impedance function.

2742 +3.054+1.19
Zin (2’) = 3 2
20 +2.744° +3.054+1.19
Then Kuroda identities are applied to obtain the final circuit. The output

screen of the developed toolbox yields the filter structure as shown in Figure 2.13
and the transfer function characteristic as shown in Figure 2.14.

Distributed Filter Design with Commensurate Lines and Stubs
Filter Settinga.

’j’iﬁer Type: | Butterworth Low-Pazs j # of Sections:| 3 #of UE's:| 2 #ofLC's | 1
Filter Prototype
‘1-) e -] 2 -] wme -] 4 5 &)
Realization Settings ———— -~
Design plot ______ = Freguency Characteristic Plot
Mormalization Mumber: a0 Chim
Input Refflection
Fractional Banduvicth: 70 %
Re(Zin) and Il Zin)
by z
T i
50 39 3 B0 a0
. 274 303 119
Zin=
2 274 305 1419

Figure 2.13 Low-pass Butterworth distributed filter with commensurate lines

and stubs for order 3
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Frequency Characteristic of Butterworth Filter

Hij) 2

i i
] 05 1 1.5 2
FrequencyiHz)

Figure 2.14 Frequency response of low-pass Butterworth filter for order 3
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CHAPTER 3

Construction of Mixed Lumped-Distributed Filters

In the literature, solution to filter problems with lumped elements alone are
well established. Especially at microwave and millimeter-wave frequencies, use of
lumped elements alone in the circuit realization presents serious implementation
problems, because of the difficulties regarding the physical interconnection of
components and the associated parasitic effects. Therefore, it is inevitable to use
distributed structures composed of transmission lines, although they penalize the
performance of the system due to the resulting undesired higher harmonics. On the
other hand, from the physical realization point of view, there exist neither ideal
lumped capacitors and inductors nor ideal transmission lines in the actual world.
Hence, the physical realization of the lumped and distributed network elements
during the implementation of microwave discrete, hybrid or monolithic integrated
circuits (MIC) is associated with several problem. In general, lumped elements can
be represented with distributed ones due to their physical sizes and the real world
transmission lines can be modeled with ideal lines and fringing lumped elements.
Therefore, in the microwave circuit designs, such as filters, an important problem is
to construct lossless two-ports with ideal lumped and distributed elements, so that the
physical parameters which arise during the implementation process can easily be
absorbed in the resulting circuit structure and the actual connections are thereby
made possible. In this regard, the utilization of mixed lumped and distributed circuits
would appear to offer several advantages and flexibilities in MIC layouts.

It has long been appreciated that the cascade of reciprocal two-port networks
connected by means of equi-delay ideal transmission lines constitutes a reasonable
model for real distributed structures. The sub networks which also compensate
junction and discontinuity effects may consist of lumped elements or may be mixed
lumped and distributed in nature. Microwave filters incorporating such cascaded
structures combine obviously the properties of both lumped and distributed networks
and offer advantages over those designed with lines or lumped elements alone. One
of the most important advantages is the harmonic filtering property of the mixed
structure. Additionally, the required physical circuit interconnections in MIC layouts
is provided by no redundant transmission line elements which also contribute to the
filtering performance of the structure. In the literature, there exist no general
procedure to design filters with mixed lumped and distributed elements. Exact
formulation of the synthesis problem of mixed-element structures require solutions to
transcendental or multivariable approximation problems. Over several decades, the
approximation problem of multivariable transfer functions which results in the
lossless two-ports consisting of mixed, lumped and distributed elements was of
serious concern in the literature. This problem has not yet been solved analytically.
Rather, research efforts have been concentrated on the realizability conditions of the
restricted class of two variable functions and some synthesis procedures had been
devised by [12], [13], [14].
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The basic idea in obtaining a filter network which incorporates both lumped
and distributed elements is to construct realizable two-variable network functions
from those of the single variable ones. For filter problems, there are a number of
efforts in the literature on the one to two-variable reactance function transformations.
Especially in conjunction with the design of reference circuits for the
multidimensional wave digital filters, some synthesis procedures have been proposed
by [15] and [16]. Because of the problems associated with the factorization of
multivariable polynomials and the complex realizability conditions in the
multivariable synthesis procedures, it is difficult to use these approaches in filter
design. Regarding the practical design of microwave filters, [3] and [11] and [17]
have proposed different procedures in which a cascaded commensurate transmission
line prototype filter is employed. In both of these approaches, it was aimed to obtain
an approximate equivalent of the transmission line cascade with parasitic junction
capacitors which can be considered as a quite special class of mixed networks.

In practice, starting from a chosen topology with unknown mixed elements,
an attempt is made to optimize the transducer gain of the system under consideration
which in turn yields the element values. As a matter of fact, an optimization
technique specifically devised for the design of lumped-distributed two-ports are
suggested by [18]. In a similar manner, widely known and commercially available
computer packages can be used as well. In this case, the problem is highly nonlinear
and one needs to initiate the optimization with very good guesses on the element
values, no matter how excellent the optimization algorithm is.

As a consequence of the above considerations, for the design of filters with
mixed lumped-distributed elements, an organized combination of the approximate
methods with CAD techniques possibly provides the best approach utilizing the
presently available mathematical techniques.

In this chapter, an integrated design tool to construct filters with mixed
lumped and distributed elements is presented. The design tool gathers the insertion
loss design technique with an appropriate application of two-variable transformation
and network replacement techniques.

3.1 Proposed Design Method for Mixed Lumped Distributed Filters

In the first step of the design method, the prototype filter transfer function
and the network (lumped or distributed) is generated on an insertion loss basis. In
this study, the prototype is assumed to be lumped for the sake of simplicity. But it
should be obvious that the same procedure can be extended to the case where the
prototype is chosen to be distributed.

In the second step, applying a two-variable reactance transformation two-variable
transfer function preserving the given pass band specifications is generated.

In the third step, the realization of two-variable transfer function in two-variable
ladder forms is obtained.
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In the forth step, the two-variable ladder prototype networks are transformed
into mixed lumped and distributed element filters. At this step the possible mixed
element implementation forms based on the applied transformations are studied.

Here, the two-variable prototype ladder is decomposed into cascaded sub-
sections of T-type. The two-variable T-type sections are exchanged by their almost
equivalent mixed element networks using the replacement techniques. Here, the term
almost equivalent is used since the swapped distributed networks do not possess
exactly the same electrical description of their lumped counterparts; Rather an
approximation is made over the prescribed frequencies. Hence, an initial design is
generated at the end of this step with mixed lumped and distributed two-ports in
tandem connections. Finally, the initial design may be optimized to yield the desired
gain performance. In the following sections the steps of the proposed approach is
described using illustrative examples.

3.2 Generation of Prototype Transfer Function on an Insertion Loss
Basis

In the first step of the design method, the low-pass prototype filter transfer
function. For this purpose, the single-variable insertion loss design approaches
discussed in chapter 2 can directly be utilized. Based on the design specifications,
once the single-variable transfer function is obtained (in the complex frequency
variable p), then this transfer function characteristic will be preserved for the
remaining steps.

3.3 Generation of Two-Variable Transfer Function using Reactance
Transformation

Two-variable reactance functions have been used in the literature to
synthesize lumped networks with time-varying elements. These functions have found
extensive applications in the realization of lumped-distributed networks and also
have been widely employed for studying the properties of 2-dimensional digital
filters. However there is approximation problem for 2-dimensional digital filters. The
types of approximations have been mainly restricted to FIR low-pass digital filters
with circular symmetry. In the case of the IIR filters, complicated computational
procedures have to be followed. The basis of this method is a concept called g-
correspondence between a single-variable and a two-variable function.

This concept was used earlier for the design of certain very restricted classes
of digital filters. For a single-variable function H(p) and two-variable function

2(p,,p, ), the composite function H( g(p,.p,)) will be said to be g-correspondent to
H(p) and vice versa. It is shown that if H(p) is a stable transfer function and
g(p,.p,), 1s a two-variable positive real function (2-PRF), then H(g(p,.p,)) is
always stable. Further, if g(p,.p,) is chosen to be a two-variable reactance function
(2-RF), a point (an ordered pair of real’s), (@,, @, ), in the 2-dimensional frequency
region can be uniquely related to a point, & , on the l-dimensional frequency axis. In
addition, for any physically realizable transfer function H(p), if is a g(p,.p,)
realizable driving-point function with at least one known realization, the method of
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approximation given here automatically guarantees at least one realization for
H(g(p,.p, ) [5]-

I-dimensional slices of the magnitude characteristic of a two-variable filter of
a given type, such as low-pass, high-pass, etc., can be considered to be the
corresponding characteristic of a single-variable filter of the same type. For a suitable
1-dimensional slice of the two-variable characteristic, an optimal single-variable
transfer function H(p) can be obtained using known techniques. A two-variable
transfer function, H(g(p,.p,)), can now be generated from H(p) via g-
correspondence where is g(p,.p,) a two-variable reactance function which is the
solution of a contour approximation problem. Given a realization of H(p), if a
realization g(p,,p,) is known, a realization of H(g(p,,p,) ) can be obtained by
simply replacing the impedance blocks of the form ks (inductors) and k/p
(capacitors) with two-variable reactance blocks of the form kg(p,,p,) and k/g

(p,-p,) [5].

H(p) of a certain type, low pass H(g(p,,p,)), will not necessarily be of the
same type for any arbitrary reactance function g(p,.p, ). The necessary and sufficient
conditions for g(p,.p,) have been obtained such that H(p) and H(g(p,.p,)) are of

the same type, or of opposite type, in a local region of the frequency domain, or even
in the entire frequency domain.
Let H(p) be the transfer function of a stable, linear lumped finite time-invariant

network, where p is the complex frequency variable. Then the map H: C—— C can
be represented as a ratio of two rational polynomials in p where the denominator
polynomial must be strictly Hurwitz. Here C denotes the the field of complex

numbers. Let g: C x C—— C be a map where g is defined for all p,, p, € C. In that

case, the composition map C X C——-C—-2-5C=CX C—Z 5 C is obtained by
replacing p everywhere in H(p) with g(p,.p,). This resultant two-variable function

H,(p,.p,) =H(g(p,.p,)) will be said to be generated by the one-variable transfer

function H(p) under the map g. It is obvious that if g(p,,p,) is a driving-point
function, H,(p,,p,) is a transfer function whenever H(p) and g(p,,p,) are

realizable, H  (p,,p,) is also realizable and referred to as the g-correspondent of
H(p) [5].

In the single-variable case, the behavior of any network function is usually
studied under sinusoidal excitations. In that case, the values of p on the j@ -axis are

of interest. For p=jw the magnitude and the phase functions are the quantities

involved in the steady-state response to the sinusoidal excitations. Correspondingly,
in the two-variable cases, for the complex frequencies p, and p, , values on the j&,

axis and the jw, axis are the important ones. Therefore, in order to relate a point on

the (w,, w, )-plane uniquely to a point on the w axis, it is convenient to select only
those maps g for which g( j@, , j&, )= jw Then the imaginary axes of the (p,.p,)

plane will be mapped into the imaginary axis of the p-plane.
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In generating the two-variable transfer function H, (p,,p,) from H(p) it is
essential to consider the stability properties of H,(p,,p,). [ have been proved in [5]

that if H(p) is stable and g(p,,p,) is a two-variable positive real function, then
H,(p,.p,) is also stable.

In the case of 1-dimensional filters ,the passband of a low-pass filter is the
closed interval [O,w_]; the passband of a bandpass (I-BP) filter is the closed interval
@, ,@,.,]; the passband of a high-pass filter is the closed-open interval [@_ ,~]. A
parallel set of definitions can be stated such that it will be possible to establish a
direct correspondence between the response characteristics of 1-dimensional and 2-
dimensional filters. For example, a two-variable transfer function will be called an
“ideal” 2-LP, if the corresponding magnitude function, M(®,, @, ), as a real-valued
nonnegative function of two real variables, satisfies the condition

HN < o,0, > Q°
Mo ,0,) =
0,otherwise

where Q°, is a nonempty compact subset of Q, containing <0,0>. Figure 3.1
illustrates a typical ideal two-variable LP characteristic [5].

L

Figure 3.1 Typical ideal two-variable low-pass response characteristic

It is obvious that, the ideal filter characteristic can not be exactly realized in
practice and hence, have to be approximated with certain tolerances. At this point,
proper selection of the two-variable positive real transformation reactance function
g(p,.p,), controls the tolerances of the approximation while preserving the LP

characteristic. The properties and possible forms of the reactance function g(p,.p,)
leading to different filter characteristics have been discussed in [5]. A simple but
effective two-variable reactance map for LP characteristic control in two-variable
domain is defined as

gp,.pr)=ap,+PBp,

(3.1)
where o and [} are real positive constants. By proper control of the constants a and
B, the response characteristic in the one-variable transfer function can be preserved
within prescribed tolerances in the two-variable domain.

The generation two-variable filter transfer function under g transformation is
shown in the illustrative example given below.
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Example 3.1
Obtain a two-variable maximally flat low pass filter function which is flat to
0.1 dB at least in the region [0,1 kHz]x[0,2 kHz] and is more than 60 dB down in

the region [f,>13 kHz, f,>15 kHz].From the specifications, we can choose the
ap,+bp, as two-variable reactance map g. We can choose a=1 b=1 for simplicity.

Then it is sufficient to design a two-variable low-pass filter which is flat to
0.1 dB in the region below line f,+f, =3 kHz including the line itself and is more
than 60 dB down in the region above the line f,+f, =12 kHz including the line. The
f, intercepts of these lines are at <3 kHz, 0> and <12 kHz, 0>.We need only design

one variable low-pass maximally flat filter which is flat to 0.1 dB up to 3 kHz and is
down to 60 dB in the frequency range f>12 kHz. A 7th order Butterworth filter with
a unit radian frequency corresponding to 25 rad/s satisfies the specification. Let the
corresponding angular frequency be denoted by «,.The one-variable low-pass

transfer function is given by

H(p)= !

1+4.494p +10.0978 p> +14.592 p> +14.592p* +10.0978 p° +4.494p° + p’
where the normalization frequency is &,. The corresponding normalized expression

for the desired two-variable low pass function is then obtained as

H,(p,,p,) =[1+4494(p, + p,)+10.0978(p, + p,)* +14.592(p, + p,)’
+14.592(p, + p,)* +10.0978(p, + p,)’ +4.494(p, + p,)° +(p, + p,)' 1"

The denormalized expression for H,(p,,p,) may obtained by replacing

(p,+p,) with (p,+p,)/ @, in the above expression. 2-dimensional normalized
frequency region shown in Figure 3.2.

IH(jeet jwi2)?

1] 5 m 15 o9 o 0
Maormalized Freguency

Figure 3.2 3-dimensional transfer function frequency characteristic plot of
example 3.1

33



3.4 Two-Variable Ladder Prototype Realization

The realization of the transfer function H,(p,,p,) in ladder form can

directly be obtained from the single variable realization of H(p). Once the realization
of H(p) is obtained in ladder form, the reactance transformation p=p,+p, implies the

replacement of each p blocks by (p,+p, ) blocks of the same type [5]. That is to say,
a (pL) reactance 1is replaced by the series connection of a (p,L) and (p,L)
reactance’s; a (pC) susceptance is replaced by the parallel connection of (p,C) and

(p, C) susceptance’s. The resultant two-variable ladder realization is shown in Figure
3.3.

alpl  Dbip2 akp1 bp2
AV, - - B s S
I T R 1 - 1
2T T T o2 Betp! T T biear?
[ _ = —_ —_ = — — —_ — e

Figure 3.3 Two-variable ladder prototype

Generation of two-variable ladders is illustrated in the following example.
Example 3.2

Let H(p) be the transfer function of the network shown in Figure 3.4 which
corresponds to a 7th-order Butterworth filter. The normalized transfer function of
this filter (with respect to the cutoff frequency) is given by

1

H(p)= 2 3 4 5 6 7
1+4.494p+10.0978p~ +14.592p" +14.592p" +10.0978p” +4.494p° + p

L7 LS L3 L1

Ty T Ry o o N o o

= C6 = 4 - 2 RO

Figure 3.4 7th order normalized Butterworth filter network topology
(L1 =0.22254 H, C2= 0.6560F, L.3 = 1.05504 H, C4= 1.3972 F,
L5 =1.65884H, C6=1.7988 F, L7 =1.5576 R ,=1 Q)
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Frequency Characteristic of Butterworth Lowpass Filter

1] 05 1 1.5 2 25 3
Morrnalized Fregquency

Figure 3.5 Frequency response of example 3.2

IH(jeet jwi2)?

0 5 w0 15 g9 g 0
Maormalized Freguency

Figure 3.6 3-dimensional transfer function characteristic of example 3.2

Straight line contours which are conspicuous in regions where almost vertical

part of response surface begins to flatten out.2-dimensional normalized frequency
region shown in Figure 3.6.

Letg(p,.p,)=p,+p,.- Then H,(p,,p,) is obtained as

1
H(p)= 2 3 4 5 6 7
1+4.494p+10.0978p" +14.592p" +14.592p" +10.0978p> +4.494p° + p

H,(p,,p,) =[1+4.494(p, + p,) +10.0978(p, + p,)* +14.592(p, + p,)’
+14.592(p, + p,)* +10.0978(p, + p,)’ +4.494(p, + p,)* +(p, + p,)' 1"

2
Figure 3.6 shows the plot ‘H Lo, jo, )‘ versus <@,,®,> which can be
identified as a two-variable low-pass characteristic.
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The realization of the transfer function H, (p,,p,) is shown in Figure 3.7

which is obtained directly from Figure 3.4 by replacing the inductors k’s with
k(p,+p,) and the capacitors k/p with k/( p,+p,) for suitable real positive constant
k’s [5].

pILY  p2l7 pils  p2L3 piL?  p2L3 pILT  p2L1

1 — 1 1 - m= ] 1 —_— 1

p1Ce T Tm piCd T 7T pic4 WT T pcz

Figure 3.7 Realization of transfer function H, (p,,p,) in Example 3.2

3.5 Transformation of Two-Variable Ladders into Lumped
Distributed Filters

Lumped-distributed networks are extensively used in microwave applications.
While multivariable techniques have been used for the synthesis of such networks
from a given transfer function, one of the main unsolved problems in this area about
which very little work has been done is the approximation of a prescribed frequency
characteristic by a suitable transfer function. The objective of this section is to
present a simple solution to the above problem by utilizing the ideas developed in the
previous sections.

The single-variable reactance function can always be synthesized as a low-
pass ladder network by a continued fraction expansion. The connection between the
ladder network elements and the Routh-Hurwitz array is well established. It is also
known that not every single-variable positive real function can be realized by a
continued-fraction expansion.

Hence, it is natural to predict that not all two variable reactance functions
being generalizations of single-variable positive-real functions and hence, not all the
multivariable reactance functions, are realizable by continued fraction expansion as
ladder networks, which are corroborated by different synthesis procedures
Furthermore, for multivariable network functions, the conditions for the continued
fraction expansion and those for the realizability of ladder networks are unavailable
in the literature .In this thesis, we propose a multivariable array from which the
realizability conditions for the multivariable low-pass ladder networks (MLPL’s)
consisting of series inductors and shunt capacitors are obtained. This array ,for a
single variable, reduces to the Routh-Hurwitz array. By suitable transformations,
several other types of multivariable ladder networks and their realizability conditions
are derived starting from the MLPL. We consider two applications of the ladder
networks.
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¢ The realization of two-variable ladder networks using lumped lossless
elements and commensurate short circuited and open circuited stubs.

e The ladder realization with cascade of UE s, where the equivalence relation
between the cascade of unit elements (UE’s) separated by series lumped
inductors on one side and shunt lumped capacitors on the other side is
utilized..

3.5.1 Lumped Element and Stub Realization of Two-Variable
Ladders

For p, =sand p, =tanhs¢, (2< i < n), where s is the complex frequency

variable and &, >0 are the time delays of the transmission lines, the p,(2< i < n)-

type inductors and capacitors can, be replaced by noncommensurate short circuited
and open circuited stubs. Thus various types of filters can be developed with mixed
lumped-distributed elements from the above derived ladder structures.

Suppose the driving-point impedance Z(p), not identically O or oo, of a finite
network of lossless transmission lines of commensurate delays, ideal transformers,
and lumped inductances and capacitances, is expressed as a real rational expression
in s and e”, where b is some positive constant. Then the formal replacement of
every e” portion with the expression (1 + p’)/( 1- p’), leaving the powers of p intact,
defines a function of two independent complex variables Z (p,p’) with two-variable
reactance property.

bp,

The transformation e ™' ——( 1 + p,)/( 1 - p,) is nothing but the well-

known Richard’s transformation. defined by p, = tanh (7 p,/2) where 7 =21 JLC
is the round-trip delay time for the shortest commensurate length line, 1 is the length
of the line, and L, C are the inductance and the capacitance per-unit-length of the
transmission line conductors.

In that case, for a two-variable realizable network, whenever one of the complex
variables, say p,, is related to the variable p,, through Richards transformation, we
can conclude that a lumped-distributed realization for the network exists, where each
p, inductance (p,capacitance) is replaced by a short-circuited (open-circuited)
transmission line.

At this stage it may be pointed out that a lumped-distributed filter network
containing commensurate transmission lines has a periodic response with a
normalized period 7. Hence, any such filter may be considered as either bandpass or
band elimination. However, usually such filters are classified according to their low-
frequency behavior. In that case, by convention, the filter response is classified by
the response type in the transformed frequency interval [0, 7 /2], and depending on
the applications, a band-elimination filter may be considered low pass and a band
pass filter may be considered high pass.
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If we consider the GTP function g(p,.p,)=p,+p, - Then the correspondence
of p,, and p, through Richards transformation p,=tanh 7 p,/2 yields the
relationship

p,+tanh(7p,/2)=p
(3.2)
Replacing p= jw, by the symbol p =jq we have g(p)=p+tanh (rp/2)=p and
g(q)=q+tan(7 q/2) =& . Since the tangent function is a periodic function, g(q) has a
repetitive character with respect to q. Let q,,, q,, . . . denote the Ist, 2nd... zeroes of
g(q) in R™o .Then q,,=0 Similarly, let q,_.q,.. ... denote the Ist, 2nd,. . . values of

ge R*o for which g(q) is infinity.

H, (jq)| =|H(jo)’

obtained from a given H(p) will also be repetitive. In the first interval, [q,,.q,.. ), for

Since g(q) is repetitive, as q ranges over 0<g<co,

every (, there exists a unique w, given by g+ tan (7q/2)=@ , such that

NE . N2
H , (g)| =|H(jo) .
Thus over any such interval
N NT
|H , (g)| =|H(jo)| we (-o0,0)

If we call the interval [q,,, q,..)=[0,7/7) as the primary band. All other
intervals (q,...q,,,.,) Will be called the secondary bands

For a lumped-distributed filter to be useful, the input signal has to be band
limited so as to mainly lie within the primary band. For a given input spectrum, the
g-correspondent filter function can be designed to achieve this end by controlling the
parameter 7 so that the first of the secondary bands is sufficiently away from the
primary band. The parameter 7 can be controlled by varying either L or LC product
or both of the lossless lines.For the exact design of a lumped-distributed filter
function in the primary band, the familiar pre-warping techniques can be used.
Through the substitution g+ tan(7 q/2) =@ , the design of a g-correspondent lumped-

distributed filter function reduces to the problem of the design of a lumped filter
function. The design procedure may be listed as follows.

1)  First we must ensure that the primary band is wide enough.

1

H(p)= 2 3 4 5 6 7
1+4.494p +10.0978p" +14.592p” +14.592p" +10.0978p> +4.494p° + p
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2) Then we denote the normalized critical frequencies by q , = q,/q,, where q, is
suitably chosen. We compute a new set of transformed critical frequencies for
the analog filter, @, by @, =q_,+tan(7q_,/2)

ci? ci

3) We obtain a lumped transfer function and its realization with the properties of the
lumped-distributed filter at the new frequencies @,,, and the transformed ranges.

ci?

4) Then the desired lumped-distributed transfer function is H , (p) which is obtained
by replacing s with p + tanh(7 q/2) in H(p). A realization of H , (p) may now be

obtained by replacing the different inductors and capacitors of the form kp and
(k/p), respectively, by blocks with driving-point impedances of the form k(p +
tanh (p7/2)) and k/(p + tanh (p 7 /2)), respectively.

H,(p,,p,) =[1+4.49%4(p, + p,) +10.0978(p, + p,)* +14.592(p, + p,)’
+14.592(p, + p,)* +10.0978(p, + p,)’ +4.494(p, + p,)° +(p, + p,)’ 1"
Example 3.3
Obtain the lumped-distributed realization of a maximally flat low-pass filter
with monotone characteristics which is flat to 0.1 dB in the pass band 0 to 500 MHz

and is more than 60 dB down at frequencies beyond 1.7 GHz. This specification can
be met by a suitable Butterworth function. Choosing q,/2 7=1 GHz, the normalized

critical frequencies are 0.5 and 1.7. Hence, the transformed frequencies, @, and

@, , are obtained as

@, =0.5+tan (0.25) =0.76
@.,=1.7+tan (0.85) = 2.84

where 7 is assumed to be unity.
The lumped filter must be maximally flat low-pass with monotone
characteristic which is flat to 0.1 dB in the interval [0, 0.76] and is more than 60 dB

down at frequencies beyond 2.84.

If we apply following transformation

p=p, +p, where p,=jw, p,=jtan(@r)
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Frequency Response of Butterworth Lowpass Filter
T T T T T

-------------------

i i
25 3
Marmalized frequency

Figure 3.8 Transfer function frequency characteristic of example 3.3 for 7 =3

The above requirements may be met by a 7th-order lumped Butterworth filter.
The desired transfer function, H(p),

1

H(p)= P 3 4 5 6 7
1+4.494p+10.0978p" +14.592p” +14.592p" +10.0978p> +4.494p° + p

The typical realization in the form of a singly terminated ladder network may
be obtained as shown in Figure 3.9 where L, = 0.2225R |, C, ,=0.6560/ R, L, =

10550 R,, C, = 1.3972/R,, L, =1.6588/R,, C, = 1.7988/ R, and L., = 1 .5576

0°
R,, R, being the magnitude of the load impedance (resistance) expressed in ohms
and all L’s (C’s) are in henrys (farads).

In that case, the lumped-distributed realization (for the normalized filter) is
immediately obtained as in Figure 3.9 which has the transfer function [5]

177 | z7 15" |z 3 |z L1 71

1L
1
O
&
Tl
L1
%
I

NG AC] Y2

Figure 3.9 Lumped-distributed realization of transfer function H , (p) of
example 3.3
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In Figure3.9 L,’=L,, Z,=L, i=1,35,7 and C,’=a,C,, Y ,=(1-a,)
C, i=2,4and 6,Z,(Y,) are the appropriate characteristic impedance (admittance)

of the respective lines, where each line has 7= 1. For any ith line, 1, and the per-

unit-length inductance (capacitance) L,( C,). where 7 ,= 1=21, LC; and
Z,4L,/C,, can be chosen depending on other design requirements. Finally, the

denormalized expression for the lumped- distributed transfer function may be
obtained by replacing pin H ,(p) with (p/q).

3.5.2 Low-Pass Ladder Realization with UE Separations (LPLU)

It has been shown that the synthesis of cascaded UE’s can be performed by
means of two-element kind ladder networks. By defining p,= tanh p¢ and p,=p
cosh p¢, the equivalent relation between the cascade of UE’s separated by series

lumped inductors on one side and shunt lumped capacitors on the other side and the
TLPL is shown to exist [6]. Let

A(py) B,(p,)
a,(p,) = F(s)
Ci(p)F(s) Dy(s)
(3.3)
be the transmission matrix of UE, where p,= sinh pt and F(p) =cosh pr, and that of

the LC network be
A(p,) B(p)
a(p,) =

C(p,) D(p)

(3.4)
Then the LC network is said to be equivalent to the UE. Figure 3.10 shows
the UE and its equivalent LC network.

ZoP1 1 {1apr?
- 5 N p
4 yopﬂi ‘
S U |
Trapft:t Z0P"

o o' ol o)
F ‘ - 0P
o)

Figure 3.10 UE and its equivalents (Z, =1/Y, )
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Thus by means of the transformation p,= sinh pt , the uniform lossless
transmission line is transformed into an equivalent LC network in the p, plane,
keeping the lossless nature in both the planes. The T-equivalent relation remains
invariant when the UE’s are connected in cascade. Thus the synthesis can be carried
out by T-equivalent LC ladder network. The input admittances of these networks are
given below.

D(pl) _
n\py)= =yu(p)/F
yu(py) B(p,) Yu(p)/F(s)
3.5)
_D(p1)_—
z2u(p) = C(p) =Zu(p)F(s)
(3.6)

where y,,(p,) and z,,(p,) are the short-circuited and open circuited driving point
functions of the LC equivalent networks and Yy, (p,)and Z,,(p,) are the
corresponding admittances of the cascaded UE’s.

Using the same idea, let
A(py» p,) B(p,,p,)
a(p,,p,) = F(s)
C(p, p,)F(s) D(p,,p,)

(3.7)
be the matrix of a UE with the shunt lumped capacitor termination at the second port
as shown in Figure 3.11 (a) and let

a(pr.p )={A(P19P2) B(p17p2):|
PP Cppy) D(pyLpy)

(3.8)
be the matrix of the two-variable ladder of Figure 3.11(b). In such a case, the two
networks are considered to be equivalent.

Zop1 1 1+p1?
O Y
Zo = _ 1 o -
pe Yopl T T 2
< @
(a) (b)
Loz A < o P o
Ls Lp2
o < o )
(c) (d)

Figure 3.11 (a) UE terminated in capacitance. (b)Equivalent network of (a)
(c) and (d) series inductor equivalents.
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Similarly, we can see that the series inductors of Figure 3.11 (c) and (d) are
equivalent, their respective matrices being

poL B(p;)
aj(p))=|" F(p)|= Alp2) F(p)
0 1 C(py) D(py)
(3.9)
a,(ps) = I p,L _ A(p,) B(p,)
1270 C(p) D(ps)
(3.10)

Using these equivalences it is possible to show that the equivalence relations
remain invariant when the corresponding elements are connected in cascade.
Utilizing the above derived equivalent relations, the realizability conditions for the
cascade of UE’s separated by series lumped inductors on one side and shunt lumped
capacitors on the other side, and with a resistive termination as shown in Figure
3.12(a), are derived in terms of the two-variable ladder with resistive termination. In
the cascaded structure of Figure 3.12(a), if the UE and capacitor are replaced by
Figure 3.11(b), the series inductors by Figure 3.11(d), and the UE by Figure 3.10(c),
the two-variable ladder of Figure 3.12(a) is obtained. In a similar manner, a two-
variable lumped ladder in p,, p, type elements can be transformed into a lumped
ladder structure with UE separations as shown in Figure 3.12 [6].

L1s L2s Lys
Y v | et
201 I 202 Zok
(a)
alpl  bip2 a,p1 by.p2
[ o GV o0 b _ = I - = — —_ — VWY AV
1 o e 1 1 I -
azpl T T bopz A, qp1 T T bp2
I S T T e T ]
(b)

Figure 3.12 (a) Cascade of UE’s separated by series lumped inductors on one
side and shunt lumped capacitors on the other side (LPLU)
(b) Equivalent two-variable ladder
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3.5.3 Design algorithm for Low Pass Ladders with UE
Step 1 p-domain design:
From insertion loss specification of transfer function for an nth-order filter

(Butterworth or Chebyshev) obtain the transfer function in single-variable and the
corresponding prototype (Figure 3.13).

1
H(p)=
D= AT Ay tA
(3.11)
ne 3F Y e

(}_M_m _— — J— — e a's ot o]

1L 1

BE T P T
o - - - — o}

Figure 3.13 Low-pass filter topology at p domain
Step 2 Single-Variable to Two-Variable Transformation

By applying the reactance transformation p=a p,+ 3 p,, transfer function of
the two-variable low-pass characteristic is obtained as

1
1+A0(p1+p2)+A1(p1+p2)2 ....... +A (p,+p,)"

H(p,,p,)=
(3.12)

By proper control of the positive real constants o and [, the response
characteristic in the one-variable transfer function can be preserved within prescribed
tolerances in the two-variable domain. Here, choose p,=sinh(pz ), p,=p. cosh(p7),

where 7 is the delay length which is a function of the cutoff frequency.
For real frequencies the transformation function f( @ ) can be written as

x = f(w) = asin(wr) + facos(wr)
(3.13)

To adjust normalized cut off of the two-variable transfer function at x=+1,
corresponding to @,=1 Hz in the single variable prototype, we can calculate the

weighting constants o and B. In particular for a preselected fixed value of «, P
parameter can be used to control the passband edge and can be computed as

l=x=asin(@,7) + fw. cos(w,7)
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for w =1, f= —atan(7)

cos(7)

where 7= b and @, represents the attenuation pole point or the repetition
[0

frequency for the resulting periodic transfer function. The resulting two-variable
ladder is as shown in Figure 3.14.

aripl Brip2 ar3pl  Brap2 arpl Prap2

arzZp] T T Brapz2 Urapl TBJ‘"HDQ

Figure 3.14 Two-variable ladder prototype

Step 3 Decomposition of Two-Variable Ladder into Unit -T Sections

Using a partial decomposition scheme, two-variable ladder can be put into
periodic connection of T-type subsections, which we call Unit-T sections, as shown
in Figure 3.15.

Brip2 | (art)p1 ¥p1 | Br3p2 | r37p1 5 p
o W BT ! P o W L L Vo W B Yo Fa g5 7 UNN URU Y o )
Y P B (R D B
(arZ)p? T T Brop2 (ardip1 T T prdn2
Sae e e
T ' T2

Figure 3.15 Decomposition of two-variable ladder network into unit-T sections

At this point, in order to ensure positive element values, the partial
decomposition should satisfy the constraints

s 99 __

ry +I’3 =0orn
s 99 __

Iy +I"5 =0rs
s 99 __

r, +r7 =ar

s 99 __
Iy +I"9 =0r

r’+r ’=ar for n=3,5,79...... (odd numbers)
(3.14)
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e Unit-T and UCU Equivalence

Using the two-variable ladder equivalences defined in section 3.5.2 it can
easily be shown that a Unit-T section p, and p, elements type is equivalent to a UE-

C-UE section (UCU) in the real frequency domain p, which is represented in Figure
3.16(b).

In the UCU equivalence the element value correspondence is as described below:

I. ar, =Z,>0
(3.15)
2. an=(Y+Y,)= L+ Y,
ar,
(3.16)
3. =01, - ! >0 which implies o > !
ar, \/Zrz
(3.17)
4. n’= L >0
Y2
(3.18)
5. =0 r,—-r">0
(3.19)
(art)p1 (r3p1
o ' o S,
1 — — 1
(arZip1 T T prapz
(@)
{:}7.
21 l 1 £2
i
O—

(b)

Figure 3.16 Unit-T section(a) and its UCU Equivalent(b)
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Utilizing the Unit-T and UCU equivalences for each T-sections generated in
the decomposition step in Figure 3.16, the two-variable ladder is transformed
sequentially to a low-pass ladder with Unit Element separations resulting in the
desired LPLU structure of Figure 3.12(a).

In the sequential application of Unit-T and UCU replacements for n-number
of Unit-T sections, one should compute o parameter value for each T-subsection
separately using

(3.20)

and select the maximum a value to ensure positive element values in decomposition
step.

As a result of sequential process, there will be a remainder inductance in p,
variable at the final step as shown in Figure 3.17.

Brip2 Brap2 3 p1
e aa e Y g S P N
1 I Z2
ppC
L - - P ——

Figure 3.17 UCU equivalent of T network for nth-order

We use final element transformation to combine p, and p, type inductors to

obtain an approximate equivalence by adding these inductors as shown in Figure
3.18. The approximate equivalence at this point requires :

A A
P = P, SINWT =@coswr, @ —tanw,

(3.21)

This approximation will result in small perturbation for small values of delay

/4 /4

lengthor @.7=0, — <<—
20 8

e

(3.22)
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Brapz rapl

[ oot SV S
Ve
Prip2 vp
T I T
Z1 — 1 £2
BpC
I

Figure 3.18 LPLU equivalent for order 3
Example 3.4

According to our algorithm, the first step is selecting the appropriate circuit
topology for Butterworth or Chebyshev filter .3rd order Butterworth filter topology
shown in Figure 3.19.Transfer function of this network

1
H(p)=

P’+2p*+2p+1
3rd order Butterworth filter topology in p domain is shown in Figure 3.19

n=1H, rn=2F, r,=1H

r2p T
o o

Figure 3.19 Butterworth filter topology for order 3

Using the transformation p=oa p,+ Bp, when p,=sinh(pz) , p,=p.cosh(p7)

H(Pl,Pz): -----------------
(ap+Bp,)° +2(ap, +Bp,)* +2(ap, +pp,) +1
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Prip2 | {arlip1 r3fp1 prap2 3 p1
Q_M_M’V\ MM{:}

11
| 1]
11
1
™
=
(o)

{ar2ip

T1

Brip2 Brap2 ra”pl
(e aa e P v

Z1 == 72

Figure 3.20 (a) Unit-T, UCU transformation steps for order 3
Brap2 3" p1

Prip2 Yp
[t N A
Z1 = 1 72
Bpc
SE—
(b)
L1 L2

Figure 3.20 (b) LPLU equivalent for order 3 filter
For a =2,$=0.6957
L1=0.6951 H, Z1=1.990 Q, C1=1.39 F, Z2=0.2860 Q ,L.2=0.9923 H
Minimum value for o is computed as 1.5 . Selecting o =2 , B is computed as
B=0.6957 .For repetition frequency=10 Hz , n=3 lumped Butterworth low-pass
transfer function characteristic is shown in Figure 3.21, two-variable transformed

Butterworth filter frequency characteristic is shown in Figure 3.22,Butterworth filter
frequency characteristic of LPLU transformation shown in Figure 3.23.
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Freguency Characteristic of Butterworth Lowpass Filter

[Hijwi)l?

0 05 1 15 2 25 E
Mormalized Freguency

Figure 3.21 Lumped Butterworth low-pass filter frequency characteristic
for order 3

2-ariable Frequency Response of Butterworth Lowpass Filter

Hijwd 2

1] 05 1 15 2
Maormalized fregquency

Figure 3.22 Two-variable transformed filter frequency characteristic for
order 3

Frequency Characteristic

[H ()2

0 0.5 1 1.5 2 25 3
Frequency(Hz)

Figure 3.23 Filter frequency characteristic of LPLU transformation
for order 3
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Example 3.5

Obtain the lumped-distributed realization of a maximally flat low-pass filter
with monotone characteristics for order 7 and cutoff frequency 1 Hz. Transfer
function of Butterworth low-pass filter for order 7 is

1
H(p)= 2 3 4 5 6 7
1+4.494p+10.0978p° +14.592p° +14.592p" +10.0978p> +4.494p° + p
L1 L3 L5 L7
Sy St e e o et P

Cc4 =

Figure 3.24 (a) Lumped Butterworth low-pass filter topology

L1=0.44504 H ,C1=1.24698 F, L.3=1.80154 H, C4=2 F, L5=1.80154 H,
C6=1.24698 F, L7=0.44504 H

By applying the reactance transformation p= o p,+ fp, when p,=sinh(p7),

p,=p.cosh(p7), transfer function of the two-variable low-pass characteristic is
obtained as

H(p,,p,)=[1+4.49%(ap, + fp,)+10.0978(ap, + ﬁp2)2 +14.592(op, + ,sz)3
+14.592(ap, + /sz)4 +10.0978(ap, + /sz)s +4.494(ap, +,Bp2)6 + (ap, +,3p2)7]_1

Selecting a =2 , B is computed as f=0.6957 repetition frequency=10 Hz, n=7,
lumped Butterworth low-pass transfer function characteristic is shown in Figure
3.24(b), two-variable transformed Butterworth filter frequency characteristic is
shown in Figure 3.25, Butterworth filter unit-T section LPLU transformation
topology shown in Figure 3.26(a), Butterworth filter frequency characteristic of
LPLU transformation shown in Figure 3.26(b)

Freguency Characteristic of Butterworth Lowpass Filter

IHw) 2

0 0.s 1 15 2 25 3
MNormalized Freguency

Figure 3.24 (b) Lumped Butterworth low-pass filter frequency characteristic
for order 7
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2-\ariable Frequency Response of Butterworth Lowpass Filter

] 0.5 1 15 2 25 3
MNormalized frequency

Figure 3.25 Two-variable transformed Butterworth filter frequency
characteristic for order 7

Selecting a. =2 , B is computed as f=0.6957

L1 L2 L3 L4
Y LA Lrvvv Fasa=——2;
C1 C2 1c3

FANNE . 7z [T | z s T | 6
= E—

Figure 3.26 (a) Butterworth filter unit-T section LPLU transformation
topology for order 7

L1=0.3095H L2=1.2531H L3=0.1994H L4=0.0219 H
21=0.8897Q Z3=2.1410Q2 Z5=3.0710Q
C1=0.8672F C2=1.3903F C3=0.8672F
72=0.7033Q 7Z4=0.2655Q Z6=0.4291 Q
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Hejw)l?

Frequency Characteristic

1 18

Frequency(Hz))

Figure 3.26 (b) Butterworth filter frequency characteristic of LPLU
transformation for order 7

3.5.4 LPLU Element Value Tables for Butterworth and Chebyshev

Filters

Using the proposed approach, we can generate the LPLU structure element
values from prototype lumped filters. Thus for different ripple specifications, LPLU
filter element values can be tabularized.
In the following, the LPLU equivalent circuit element values are derived from the
corresponding lumped filter for a 1 dB passband ripple specification and given in

table forms

Table 3.1 Normalized Butterworth Element Value(1dB pass band ripple)

N |gl g2 a3 g4 g5 g6 g7 g8 29 g10

1 1.017

2 1.008 | 1.008

3 0.798 | 1.596 | 0.798

4 0.646 | 1.560 | 1.560 | 0.646

5 0.539 | 1.413 | 1.747 | 1.413 | 0.539

6 0.562 | 1.263 | 1.726 | 1.726 | 1.263 | 0.562

7 0.404 | 1.132 | 1.636 | 1.815 | 1.636 | 1.132 | 0.404

8 0.358 | 1.021 | 1.528 | 1.802 | 1.802 | 1.528 | 1.021 | 0.358

9 0.322 1 0.927 | 1.421 | 1.743 | 1.855| 1.743 | 1.421 | 0.927 | 0.322

10 ]0.292 | 0.848 | 1.321 | 1.665 | 1.846 | 1.846 | 1.665 | 1.321 | 0.848 | 0.292
L1 C2 L3 C4 L5 C6 L7 C8 L9 C10
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L1

21

Lz

72

Figure 3.27 Transformed Butterworth filter network topology For Odd

Degrees

Table 3.2 Transformed Butterworth Element Values For Odd Degrees
(alfa=2; p=0.6957; 1 dB pass band ripple; repetition frequency=10 Hz)

Order 3 5 7 9

L1 0.5554 0.3756 0.2811 0.2241
71 1.5967 1.0790 0.8081 0.6765
Cl 1.1108 0.9833 0.7877 0.6453
72 0.3895 0.5260 0.9735 2.1271
L2 0.5688 1.2155 1.1382 0.9887
73 2.4423 2.2987 0.8575
C2 0.9833 1.2633 1.2129
74 0.3813 0.2928 0.3219
L3 0.2206 0.1811 1.2907
75 2.9794 3.5700
C3 0.7877 1.2129
76 0.4769 0.2834
L4 0.2304 0.9887
77 2.7012
C4 0.6453
78 0.5643
L9 0.0780
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L1

Z1

- C1

72

L2

C2

4||7

Figure 3.28 Transformed Butterworth Filter network topology For

Even Degrees

Table 3.3 Transformed Butterworth Element Values For Even Degrees
(alfa=2; p=0.6957; 1 dB pass band ripple; repetition frequency=10 Hz)

Order 4 6 8 10

L1 0.4497 0.3217 0.2494 0.2034
Z1 1.2928 0.9250 0.7171 0.6725
Cl 1.0857 0.8790 0.7104 0.5904
72 0.4259 0.6914 1.5423 2.1459
L2 1.5787 1.2008 1.0632 0.9195
C2 0.6464

73 2.0692 1.5131 0.8902
C3 1.2008 1.2541 1.1587
74 0.3114 0.3053 0.2991
L3 1.3248 1.2541 1.2844
C4 0.4623

75 3.3000 3.9473
C5 1.0632 1.2844
76 0.3442 0.2417
L4 1.1813 0.5793
C6 0.3585

77 3.5891
C7 0.9195
78 0.3425
L5 1.1196
C8 0.2924
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Table 3.4:Normalized Chebyshev Filter Element Values(1dB pass band ripple)

N |gl g2 23 g4 g5 g6 g7 g8 29 g10
1 1.017
2 1.821 | 0.685
3 2.023 1 0.994 | 2.023
4 2.099 | 1.064 | 2.831 | 0.789
5 2.134 | 1.091 | 3.000 | 1.091 | 2.134
6 2.154 | 1.104 | 3.063 | 1.157 |2.936 | 0.810
7 2.166 | 1.111 13.093 | 1.173 | 3.093 | 1.111 | 2.166
8 2.174 | 1.116 | 3.110 | 1.183 | 3.148 | 1.169 | 2.968 | 0.817
9 2.179 | 1.119 | 3.121 | 1.189 | 3.174 | 1.189 | 3.121 | 1.119 |2.179
10 |3.538 | 0.777 | 4.676 | 0.813 | 4.742 | 0.816 |4.726 | 0.805 |4.514 | 0.609
L1 C2 L3 C4 L5 C6 L7 C8 L9 C10
L1 - LZ
-, o
71 — 72
o -

Figure 3.29 Transformed Chebyshev Filter network topology For
Odd Degrees

Table 3.5 Transformed Chebyshev Filter Element Values For Odd Degrees

(alfa=2; p=0.6957; 1 dB pass band ripple; repetition frequency=10 Hz)

Order 3 5 7 9

L1 1.4078 1.4852 1.5072 1.5164
Z1 4.0471 4.2697 4.3331 4.3594
Cl 0.6915 0.7590 0.7732 0.7786
72 0.5743 0.5133 0.5019 0.4977
L2 2.0164 2.0877 2.1522 2.1715
73 49751 5.1833 5.2473
C2 0.7590 0.8164 0.8276
74 0.4803 0.4433 0.4378
L3 2.3020 2.1522 2.2085
75 5.2986 5.4736
C3 0.7732 0.8276
76 0.4697 0.4370
L4 2.3608 2.1715
77 5.3687
C4 0.7786
78 0.4661
L9 2.3842
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L2

C2
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Figure 3.30 Transformed Chebyshev Filter Network Topology For

Even Degrees

Table 3.6 Transformed Chebyshev Filter Element Values For Even Degrees
(alfa=2; p=0.6957; 1 dB pass band ripple; repetition frequency=10 Hz)

Order 4 6 8 10

L1 1.4603 1.4989 1.5126 1.5151
71 4.1981 4.3091 4.3487 4.3671
Cl 0.7405 0.7681 0.7764 0.7801
72 0.5289 0.5060 0.4994 0.4966
L2 1.9696 2.1312 2.1641 2.1765
C2 0.7891

73 5.1148 5.2226 5.2640
C3 0.8012 0.8236 0.8301
74 0.4533 0.4401 0.4363
L3 2.0430 2.1905 2.2185
C4 0.8100

75 5.4172 5.5052
C5 0.8136 0.8341
76 0.4450 0.4334
L4 2.0652 2.2080
C6 0.8175

77 5.4807
C7 0.8183
78 0.4422
L5 2.0748
C8 0.8209
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CHAPTER 4

MICROWAVE FILTER DESIGNER TOOLBOX

4.1 Microwave Filter Designer Toolbox Program Description

Microwave filter design toolbox is a tool for filter design (lumped,
distributed, mixed )and analysis under a single GUI window. It has 4 design options.
These are lumped filter design, distributed filter design, mixed filter design, analysis
module.

Given a type of filter (Butterworth or Chebyshev low-pass ), filter order, pass
band, stopband and repetition frequency, passband ripple, termination impedance it
can list transfer function, plot frequency characteristic of filter and calculate needed
inductor and capacitor values for circuit implementations at every design parts. The
screenshot of main program module is as shown in Figure 4.1

MICROWAVE
FILTER DESIGNER

[ Lumnped Filter Design ]

[ Distributed Filter Design with Cascaded Transmission Lines ]

[ Distributed Filter Design with Commensurate Lines and Stubs ] :

[ Mixed Filter Design with Lumped Elements and Stubs ]

| wixed Filter Designwith LPLU |

Cnobis )

Figure 4.1 Microwave filter designer main module
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Microwave filter design program algorithm can be shown as

Microwave Filter Design Tool Algorithm

Selecting Filter Design Type

Lumped Insertion Loss Based | | Distributed Insertion Loss Based Mixed Filter Design via
Filter Design Filter Design Transformation

Lumped Insertion Loss Based
Filter Design

Butterworth or Chebyshew
Filter Design

List Transfer Function

Flot Poles and Zeros

Flot Frequency Characteristic
of Transfer Function

Flot circuit Implementation
of Filter
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Filter Design

Distributed Insertion Loss BEased

Filter Design with Commensurate U E.

Eutterwarth or Chebyshey
Filter Design

Flot Frequency Characteristic
of Transfer Function
[
Flot circuit Implementation
of Filter

Filter Design with Commensurate

Lines and Stubs

Butterworth or Chebshey
LF or HP Filter Design

Flot Frequency Characteristic

of Transfer Function

Flot Input Reflection
[

Flot circuit Implementation

Mixed Filter Dasign via
Transformation

of Filter

Transformation 1
pl=p  pZ=tanhipT)

Buttenaorth or Chebyshey
Filter Design

Produce one Variable
Transfer Function

Transform one Wariable
Transfer Function to 2 Variable

Plot Frequency Characteristic
of Transfer Function

|
Flot circuit Implementation
of Filter

Transformation 2
pl1=sinh{pT)
nZ =p.coshipT)

I
Butterworth or Chebyshey
Filter Design

Froduce one Yariable
Transfer Function

Transform one Variable
Transfer Function to 2 Variable

60

Flot Freguency Characteristic
of Transfer Function

LFLU Transformation

Butterworth or Chebyshey
Filter Design

Transform Unit T sections
into UCL

Flot Frequency Characteristic
of Transfer Function

I
Flot circuit Implementation
of Filter




4.1.1 Lumped Filter Design Module:

The inputs of of this module are filter order, passband, stopband and
repetition frequency, passband ripple, termination impedance. To obtain normalized
frequency characteristic of filter, user must be choose passband frequency and
termination impedance 1 Hz and 1 ohm. Transfer function displays the transfer
function H(p) required to implement lumped filter .It display transfer function in
polynomial form. User can compare filter performance by plotting frequency
characteristic of filter. The frequency response window allows the user to compare
filter performance. The screenshot of lumped filter design module examples is
shown in Figure 4.2 and 4.3 for Butterworth and Chebyshev filter characteristic.

LUMPED LOW PASS FILTER DESIGN

Filter Order i > L
1 ]
Fassband Frequency i Hz S e -
Stopband Frequency 2 Hz
—
) _—
Passband Ripple e d8
Termination Impedance 1 ohm o R
[ Mormalization Yalue Rs=Rl=1 ohm )
) Filter Elerment Values
Transfer Function
CLTHy C2Fy  L3H CARY LS iHY )
1+alp+aZp2+adp I +adpd+ 0.444889 1.24656 1.80133 1.95932 1.80133
e 1.24656 0.444588
al= 449244 ab= 449244
a2= 100844 a7= 0.999561
S 145363 o= Design Butterworth Fiter
a= 145000 o
e 0=

Frequency Characteristic of Butterworth Lowpass Filter

1 ., N . . SO, SO N SO SR .

| e

0.7 f------ :

06 |----- '

| —

H(wI

0.3f------ ,

[ — '

1) SR

T i
' '
' '
n a
' '
' '
' '
. £
' '
' '
' '
' '
T 1
' '
' '
' '

04t------ Loooooo dooooo o

B 0 I
' '
' '
' '
. -
' '
' '
' '
T k]
' '
' '
' '
1 1
v '
' '
' '

0 02 04 0B 08 1 1.2 1.4 16 1.8 2
Frequency (Hz)

Figure 4.2 Lumped filter design module (Butterworth filter example)
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LUMPED LOW PASS FILTER DESIGN

Filter Order i L, L,
Passhand Frequency i Hz A S -
Stopband Frequency 2 Hz
(5
Passhand Ripple E LE ?
Termination Impedance 1 ohm _ _
( Moralization Value Rs=Rl=11 ohm )
Transfor Funchion: Filter Element Values
1 {L1{H), C2(F),L3(H) C4A(F) (LS H) )
1+al praZp2+adp 3+adp™+ 3.51852 0.7722 453398 0.80381 4.53899
P 0.7722 351862
al=  0.56842 ah= 0148153
aZ= 191155 a7= 00158621
ad= 103184 20= | Design chelryshey Fiter |
Open Fil o :
e Fie | Freguency Characteristic of Chebyshey Lowpass Filter
1 T
] ik EOLOREE EEEEECE R EREE PR -
0.8 g d i i SRt SRRt e ossass o=
07 :
0B -
o i
£ 05 4
T i
04 4
0.3 -
0z 4
0.1 4
o |

Fraguency (Hz)

Figure 4.3 Lumped filter design module (Chebyshev filter example)
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4.1.2 Distributed Filter Design with Cascaded Transmission Lines
Module

At distributed filter design with transmission lines module, given filter order,
passband, stopband and repetition frequency, passband ripple, termination
impedance , it can synthesis realization of practical network in the form of
transmission lines, plot frequency characteristic of transfer function .In this module,
p=sinh(p7) transformation is used to obtain frequency characteristic. The

screenshot of lumped filter design module examples is shown in Figure 4.4 and 4.5
for Butterworth and Chebysheyv filter characteristic.

Distributed Filter Design with Cascaded Transmission Lines

i T
Filter Order L || I,
Passband Frequency 1 Hz
Stopband Frequency 2 Hz 71 P 73
Passband Ripple 3 dB
Repetition Frequency 3 Hz o - I I
Termination Impedance 1 ahrm
[ Mormalization value Rs=RI=1 ohim ) Filter Element Values:
Transfer Function {21 {ohmy, 72 {ohm) , 73 {Ohrm) )

1

096534 1 20606 0646943 169766 055642 121922 0976754
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p=sinh(p*tau)
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Figure 4.4 Distributed filter design with transmission lines module
(Butterworth filter example)
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Distributed Filter Design with Cascaded Transmission Lines
Filter Order a

o3 — —- - — =
Passhand Frequency 1 Hz
Stopband Frequency 2 Hz Z1 7o 73
Passhand Ripple i dB
Repetition Frequency 3 Hz o _— - - — -
Termination Impedance 1 ohm
 Mormalization Yalue Rs=Ri=1 ohm 1 Filter Element Values:
Transfer Function: {(Z1 (ohm) , Z2 {ohm) , Z3 (Ohm) ..o )
1

0850655 111962 0FI0541 160962 0568995 131566 0825516 0948951
1+al p+a2p*2+adp*3+ad pid+

p=sinh{p*tau)

al= 0566345 alim  DEEIRES

az= 216071 a7= 00564813 ‘ Desigh Chebyshey Filter
= 00110617

ad= 04971947 al -

ad= 14667 ad=

a5= 0471599 all=

Freguency Response of Chebyshey Lowpass Filter

[Hijw) 2

1
0 0z 04 06 08 1 12 14 16 18 2
Freguency (Hz)

Figure 4.5 Distributed filter design with transmission lines module
(Chebyshev filter example)
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4.1.3 Distributed Filter Design with Commensurate Lines and Stubs

Module

The wizard is developed in Matlab with graphical user interface. The inputs
of the wizard are filter type, number of unit elements, number of stubs (LC)
elements, filter prototype, normalization number and fractional bandwidth. The filter
type is Butterworth or Chebyshev and low-pass. Number of unit elements and LC’s
determines the number of corresponding elements, the filter contains. Filter
prototype enables to arrange filter elements in the desired order. Normalization
number is necessary for denormalization at the final step and fractional bandwidth
determines the bandwidth of the filter.

When we click on the design button the output of the program is shown in Figure
4.6.Where corresponding circuit is drawn for visualizations. It should be noted that
calculated elements values may not physically realizable. As stated earlier Kuroda’s
identities are used to obtained realizable element values. The screenshot of
distributed filter with commensurate lines and stubs design module examples is
shown in Figure 4.6.

Distributed Filter Design with Commensurate Lines and Stubs
Filter Settings.

’VFilter Type: | Butterworth Low-Pass j # of Sections:| 5 #of UE's;| 2 #of LC's: |1

Filter Prototype

‘1-3 € -] 2 - s -] 4 5 £)
Realization Settings —M —M—
Design [ — = Frequency Characteristic Plot
Mormalization Mutnber. 50 Ohmn ;j P
Fractional Bandwvicth 70 )
Re(Zin) and Inf Zin)

274 305 119
2 274 305 149

Zin=

Freguency Characteristic of Butterwarth Filter

HGw?

] 05 1 15 2 25 3
Freguency(Hz)

Figure 4.6 Distributed filter design with commensurate lines and stubs
module (Butterworth filter example)
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4.1.4 Mixed Filter Design with Lumped Elements and Stubs Module

At mixed filter design with stubs module, given filter order, passband, stop
band and repetition frequency, passband ripple, termination impedance, it can
synthesis realization of practical network and plot frequency characteristic of filter.
In this module, transformation 1 (p, =p and p,=tanh(p7)) is used to obtain
frequency characteristic. The screenshot of mixed filter design with stubs module

examples is shown in Figure 4.7 and 4.8 for Butterworth and Chebyshev filter
characteristic.

Mixed Lumped Distributed Filter Design with Lumped Elements and Stubs

Filter Crder T
Passband Frequency 1 Hz I
Stopband Frequency 2 Hz .|. c2 / T C4
Passband Ripple 3 4B g - T —4o
PP Y2 va
Repetition Freguency 3 Hz
L Filter Element Valus
Termination Impedance 1 ohm
i B Sy Y ( LACH) , 21 (ohe) | Y2 (S), €2 (F) , L3 ( Hy , Z3 (ohm) , ¥4 (S) , C4 (F) )
Transfer Function 0444889 0444389 0.801666 1.24556
1
150133 180133 049953 199832
1+alp+a2pr2+adprd+adpr+ 180133 1.80133 0.501666 1.24656
pep+p2 pl=p  p2=tanhiptau) 0.444559 0444883
al= 449244 ab= 449244
aZ= 100944 af= 0999861
ai= 145868 ab=
ad= 145568 a0=
5= 10,0944 1 Deszign Butterwaorth Fiter J [Design Chebyshev Fiter ] [ Reset ] [ ain Menu
= I all=

Frequency Response of Butterworth Lowpass Filter
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a 0z 04 0B 08 1 12 14 16 18 2
Frequency (Hz)

Figure 4.7 Mixed filter design with stubs module
(Butterworth filter example)
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Mixed Lumped Distributed Filter Design with Lumped Elements and Stubs

Filter Order 7
Fasshand Freguency 1 Hz
Stopband Freguency 2 Hz
Fasshand Ripple 3 dB
Repetition Freguency 3 Hz
) Filter Element Value
Termination Impedance 1 ohrm
{ Normalization Yalue Rs=Rl=1 ohm ) ¢ LA(H) , 21 (ohm) |, Y2 (S),C2(F) L3¢ H) , Z3 (ohm) , ¥4 (3) ,C4 (F) ...
Transfer Function 351852 351852 1295 124656
1
4 63898 4 63898 1.24408 199932
1+alp+aZp®2+adpS+adpd+. .. 4 63898 463898 1.295 124656
p=pl+p2 pl=p p2=tanhip*tau) 351852 351852
al= 056842 ab= 0145153
a2= 181155 7= 0.0156621
ad= 083144 a8=
al= 105184 9=
6= D30T 10 Des=ign Butterworth Fitter ] ‘ Design Chebyshew Fiter J [ Reset ] [ Mzin Menu
= 0 210=

Frequency Response of Chebyshev Lowpass Filter
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Figure 4.8 Mixed filter design with lumped elements and stubs module
(Chebyshey filter example)
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4.1.5 Mixed Filter Design with LPLU Module

At mixed filter design with stubs module, given filter order, passband, stop
band and repetition frequency, passband ripple, termination impedance and
bandwidth control parameter, user can synthesis realization of practical network and
plot frequency characteristic of filter. In this module, transformation 2
(p, =sinh(p7) and p, = p.cosh(p7)) and LPLU transformations is used to obtain
frequency characteristic. The screenshot of mixed filter design with LPLU module
examples is shown in Figure 4.9 and 4.10 for Butterworth and Chebyshev filter
characteristic.

Mixed Lumped Distributed Filter Design with LPLU
&l

Filter Order
FPassband Frequency 1 Hz L1 L2
[ | v o
Stopband Frequency 2 Hz
Passband Ripple 3 B Z1 -|- C1 22
Repetition Frequency u Hz ---
Termination Impedance 1 ahm .
( Normalization ‘alue Rs=Ri=1 ohrm ) Filter Elerment Values:
Bandwitdth Control Pararmeter] 2 Odd Degrees: { L1(H),Z1(ohm) C1(F} Z2(ohm) L2(H)...... .......)
{ &lfa Yalue ) Even Degrees:( L1{H}),Z1(ohm),C1(F) Z2(chm),L2{H) C2{F) )
Transfer Function:
0635146 199842 139029 0286005
T+alpta2p'2+adp 3+adp™d+ RS

p=(alfa*p1)+{beta™p2)
pl=sinh(p*tau) p2=pTcosh(p™tau)

al= 199842 af=

a2=  1.99842 al=

33= 0.993209 aB=

ad= 39=

ah= all= Design Butterworth Fiter ] [Design Chebyshey Fitter ] [ Reset ] [ Main Meru

2-Variable Frequency Hesponse of Butterworth Lowpass Filter
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Frequency (Hz)

Figure 4.9 Mixed filter design with LPLU module
(Butterworth filter example)
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Mixed Lumped Distributed Filter Design with LPLU
&

Filter Order
1 H L1 L2
Passband Freguency z e
Stopband Frequency 2 Hz J_ -
i Z1 c1 722
Passband Ripple 3 dB -I-
Repetition Frequency 10 Hz -
Termination Impedance h .
[ Mormalization Value%s=Rl=1 ohin ) ! ehm Filter Element Values:
Bandwitdth Control Parameter] 2 Odd Degrees:( L1(H) Z1{ohm),C1(F) Z2(chm),L2(H)............... 1
{ &lfa Value ) Even Degrees:{ L1{H) Z1{ohm) C1({F) Z2{ohm) L2{H) C2({F)

Transfer Function:

23297 659747 0495127 0734674
1+alp+aZpi2+adprd+adprd+. e
p=(alfa*p1)+beta*p2)
pl1=sinhip*tau) p2=p*coship*tau)
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a2= 0928348 a7=
a3= 0250594 a8=
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ah= all= Design Buttarwarth Fiter ] | Design chebyshew Fiter | [ Reset ] [ Main Menu

Frequency Response of Chebyshey Lowpass Filter
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4.10 Mixed filter design with LPLU module
(Chebyshey filter example)

69



4.1.6-Analysis Module

At analysis module, given filter circuit element type, element value and
repetition frequency, user can obtain frequency characteristic of filter. User can enter
inductor, capacitor, unit element, inductive short stub and capacitive open stub in
element type blocks to compare performance of filter characteristic. The screenshot
of analysis module examples is shown in Figure 4.11 and 4.12 for Butterworth and

Chebyshev filter.

Element Type Element Yalue

Analysis
et — ] - -
1 2 <N
Element Element Element

P — 1 | - -
Elerment Types:
L: Inductor
C: Capacitor
LI Unit Element
L3: Inductive Short Stub
CS: Capacitive Open Stub

Repetition Frequency : 1n Hz
Ahalyze ] [ Reset ] I Main Menu

Frequency Characteristic

L 042
U 123
c 112
U 061
L 139
U 27
C 112
u 034
L 037

1

0.9

08

[Hijwil

SIS SISttt

15

Frequency(Hz)

Figure 4.11 Analysis module
(Butterworth filter example)
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Figure 4.12 Analysis module
(Chebyshev filter example)
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CHAPTER 5

CONCLUSION

In this thesis, insertion loss based design of microwave filters with lumped
and distributed elements is studied. The purpose was to develop a user friendly
software tool which enables one to design microwave filters with lumped circuit
elements, distributed transmission lines and mixed lumped-distributed elements. For
the design tool, modern insertion loss approach is preferred because of several
advantages such as flexible filter specification and easy control of filter
characteristic. The work is mainly concentrated on Butterworth and Chebyshev type
filter designs. First of all low-pass filter prototypes with maximally flat or equal
ripple characteristics are designed. Transformation can be then applied to convert the
other type of filters such as band-pass, band-stop or stop-band. As far as the
realization of filters are concerned, the objective was to come up with designs with
lumped elements, distributed elements and mixed lumped-distributed elements.

Design of filters incorporating solely lumped reactive elements is well
elaborated in the literature and explicit design equations are already available.
Similarly, for the design of transmission line filters, there exist well formulated
insertion loss design techniques.

It is well known that lumped element design has serious implementation
problems at microwave frequencies, such as difficulties of interconnection of
components and parasitic effects. Because of these disadvantages, we studied
distributed filter design technique at second part of the thesis. In that part, two
different design method is investigated. These are distributed filter design with
transmission lines and distributed filter design with commensurate lines and stubs. In
the work, first these techniques are studied to form the basis of the filter design
theory. Then the filter design techniques with only lumped and only distributed
elements are developed and integrated in the design tool developed.

Because of the periodic nature of the transfer function of distributed
structures, distributed element filters result in undesired harmonics in the frequency
response of the filter. Because of this reason, to obtain better performance at
microwave frequencies we examined lumped and distributed (mixed) filter network
structures. Both lumped and distributed (mixed) filter design problem has not been
solved analytically yet in literature. We examined two different design method of
mixed filter design. These are mixed filter design with stubs and mixed filter design
with low pass unit element (LPLU). For this purpose, a novel design method for
mixed lumped distributed filters is proposed. Our proposed design method for mixed
filter with LPLU has four steps. In the first step of the design method, the prototype
filter transfer function and the network (lumped or distributed) is generated on an
insertion loss basis. Then applying a two-variable reactance transformation two-
variable transfer function preserving the given pass band specifications is generated.
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The realization of two-variable transfer function in mixed lumped distributed ladder
forms is obtained. Here, the two-variable prototype ladder is decomposed into
cascaded sub-sections of T-type. The two-variable T-type sections are exchanged by
their almost equivalent mixed element networks using the replacement techniques.
Thus, using our new approximation, a new approach for the transformed mixed
element Butterworth and Chebysheyv filter circuit elements is deviced. It is believed
that the new mixed element ladder structures and the design tables will provide new
possibilities and flexibilities in designing microwave filters.

The developed mixed element design approach for Butterworth and
Chebyshev type filters is integrated to the developed design tool. The design tool is
developed in GUI supported MATLAB environment. The developed software tool,
‘Microwave Filter Designer’ consist of five major user friendly interactive design
modules, which enables one to obtain complete design results for different practical
implementation choices of Butterworth and Chebyshev filters. The design options
offered by the design tool are Lumped Filter Design, Distributed Filter Design with
Transmission Lines, Distributed Filter Design with Commensurate Lines and Stubs,
Mixed Filter Design with Stubs, Mixed Filter Design with LPLU and the Analysis
Module.

In the work different design examples are studied for each design module and
the resultant performance characteristics are compared with those of the ideal
prototype designs. The tool presents an integrated usage of different filter design
algorithms and provides complete solutions. Hence it is believed that it will be very
useful for the successive works concentrated in filter design area. Also the user
friendly nature of the tool is thought to be useful for generating different design
topologies leading to the easy comparison of different filter implementations. Easy
usage features can also be utilized for instructive purposes. A possible future
extension of the tool would be the addition of new modules for pass-band or stop-
band type transformations. Also, for practical design problems the tool can be
complemented with the inclusion of physical implementation parameters for a typical
planar realization technique such as microstrip realization.
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