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(Thesis Supervisor)

Prof. Ercan Solak Işık University
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SEMI-AUTOMATIC CUSTOMIZATION FOR

MODELING HUMAN FACE

Abstract

Model-based vision has firmly established its roots as a robust approach in rec-

ognizing and locating known traits in rigid objects even under the presence of

noise, clutter and occlusion. However the application of such systems has not

displayed the same efficiency in modeling non-rigid objects. The dilemma with

the prevailing modeling techniques is that that they compensate model specificity

to accommodate variability, or the vice versa compromising the robustness of the

3 dimensional model during the image interpretation progression. Face, being a

non rigid and a sophisticated structure makes it more arduous to model, using

such approaches.

In this study we have presented a novel method in modeling 3 dimensional images

employing a generic wireframe and a single 2 dimensional image. Known traits are

located in the 3 dimensional space using a variant of ray tracing method. Non-

landmark traits are positioned employing a nearest neighbor weighted average

customization. Proposed technique has proven its robustness in the experiments

conducted employing the Bosphorous database. Furthermore the relative error

values attained employing NNWA customization illustrated significantly low val-

ues. We compared the obtained results with the ASM and Procrustes Analysis.
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İNSAN YÜZÜ MODELLEME İÇİN YARI OTOMATİK

ÖZELLEŞTİRME

Özet

Modele dayalı imge işleme katı nesnelerde belirlenmiş nirengi noktalarını işaretleme

ve nesne tanımada uygulama bulmuş bir yaklaşımdır. Ancak var olan sistem-

ler aynı başarıyı esnek nesnelerin modellenmesinde gösterememektedirler. Bu

yaklaşımlardaki ikilem modeli tespit ederken modelin esnekliğinin, veya esnekliği

temsil ederken modelin güvenilirliğinin göz ardı edilmesidir. Esnek ve karmaşık bir

yapı olan insan yüzü çoğunlukla bu yaklaşımlarla modellenmeye uygun değildir.

Bu çalışmada 2 boyutlu tek bir resim ve 3 boyutlu genel bir telkafes modeli kul-

lanılarak insan yüzünün 3 boyutlu modellenmesini konu alan özgün bir çalışma

sunuyoruz. Bu yaklaşımda önceden belirlenmiş nirengi noktaları yüz resminin

üzerinde işaretlenir. Nirengi noktalarının 3 boyutlu uzaydaki yeri ışın izleme

metodu kullanılarak belirlenir. Nirengi noktaları haricindeki genel telkafes nok-

taları en yakın komşulara ait yer değiştirmelerin ağırlıklı ortalaması kullanılarak

bulunur. Önerilen yaklaşımının güvenilirliği Bosporus 3 boyutlu yüz veri bankası

kullanılarak gösterilmiştir. Buna ek olarak yaklaşımın literatürde sıkça kullanılan

Procrustes Analizi çözümünden daha hassas sonuç verdiği gösterilmiştir. Önerilen

algoritmanın karmaşıklığı literatürdeki diğer algoritmalardan daha düşüktür.
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Chapter 1

Introduction

Over 2500 years ago ancient Greek philosopher Plato introduced the “Theory

of Forms”. He asserted that non-material information possesses the highest and

most fundamental kind of reality. Human mind is very skilled in extracting this

non-material information, in other words doing pattern recognition. This skill

provides humans the valuable capability of abstraction to identify and differenti-

ate objects. He explained this paradigm with the simple fact that an object X

is not object Y because there is an ideal form of object X which we employ in

identifying all objects of the same kind. Clearly there is an ideal form of object

Y as well. He went on to emphasize that these forms are the only true subjects

of study that can provide us with genuine information in the notion of a material

object.

2500 years later modern science confirms Plato’s Theory of Forms. Now we

refer to Plato’s forms as schemas. We are born with an innate ability to learn

to recognize and identify objects. The way human mind do this is a highly

complicated, astonishing process. Plato did not go as far to elaborate how human

mind differentiates between objects of the same kind. He simply stated that there

is a basic ‘form’ of any particular object that human mind represents it with, in

other words “the model” to identify it.

For decades one of the main tasks of computer vision was to model and differen-

tiate objects. Perhaps the ultimate and the most challenging goal was to create
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a model of a human face. Face, being a non-rigid and deformable structure, is

more sophisticated compared to many other objects we encounter. These char-

acteristics of face makes modeling of it an intricate task. A simple movement of

a facial muscle can drastically change the appearance of the face and convey a

different, yet important message.

Face modeling in computer vision terminology is to create an epitome that can

be exploited in simulating any facial behavior or expression. The goal of the face

modeling studies is to develop an automated modeling schema. To be practical,

this schema must systematically find facial features and correspondences to an

actual face with minimal user intervention.

Modeling a face requires comprehensive knowledge of face anatomy. Human facial

anatomy is flexible enough to convey thousands of different messages through

contraction of facial muscles in varying degrees and combinations. These messages

provide clues to our emotional state, our short-term feelings about our immediate

environment, our mental health and even our personality or mood. Building a

model that can simulate all these behaviors has proven to be a daunting task.

Common approach in designing face models is to employ polygons. Vertices in

each polygon represent a point on the skin of the face. The wireframe model that

is being used in our research is designed following a similar technique.

In the modern information era, machine interaction with humans became ever

so valuable. One very promising way of acquiring this information is to study a

subject’s behavior or emotions. There is no better way of unintrusively attaining

this information than facial expression analysis. It is for that reason, analysis and

modeling of human face has attracted many researchers in recent years [1, 2, 3,

4, 5].

Face detection and face recognition are few of the most popular applications of

face modeling. A face model provides substantial information when compared

with an image. Once a 3D model of the subject is acquired, vast number of syn-

thetic training images under varying pose, expression and illumination conditions
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can be effortlessly rendered. These variations in the synthetically rendered im-

ages of a subject can be used to expand the training dataset of a face recognition

system. Therefore it drastically increases the accuracy and performance in face

recognition [6].

Applications of face modeling are not limited to facial expression analysis and face

recognition. Human face modeling has diverse range of applications including but

not limited to medical purposes [2, 7, 8, 9, 10], computer animation [4, 11, 12,

13, 14, 15], video surveillance [3, 16], lip reading [17] and virtual reality [18, 19,

20, 21]. In many of these cases, especially in medical and security applications,

very high precision is expected when designing a face model.

One of the main concerns in plastic surgery is to be able to predict the outcome of

the operation. Doctors have not been able to do such predictions in the past. With

the current advancements of technology this question may not go unanswered. By

obtaining 3D volumetric data from a patient it is possible to generate a realistic

model. A surgeon can utilize this model to predict the appearance of a person

after performing a surgery.

A critical duty of law enforcement agencies is to identify suspects. Most of the

time this is performed through the testimony of the witnesses who describe the

suspect’s face as detailed as possible. The faces are sketched manually by skilled

artists. This is a time consuming as well as ineffective method. Furthermore the

quality in re-creation of the face depends on the skill of the sketch artist. The

whole process can be made more efficient with 3D face modeling. A properly

designed 3D model with enough parameters can generate not only different poses

but will be able to preview how the person would look like with different disguise

techniques and ambient conditions. This can be employed in forensic investigation

as well.

One sector that has been changed drastically by 3D modeling techniques is the

entertainment industry. Various new techniques are used to keep the spectators’

attention to a movie and arouse their curiosity. Especially in Hollywood, a new
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wave of 3D animated movies achieved box office records, “Avatar” , “Toy Story

3” , “How to Train Your Dragon” , “Rise of the Planet of the Apes” to name

a few. As the animations become realistic, more processing time needs to be

allocated to animation of facial expressions.

Facial animations are also used in generating special characters in cinema. These

animated characters are being used in performing dangerous stunts and to give

life to situations that would be hard to create with professional actors. One good

example was the ”Titanic” movie that was produced as early as 1997. Perhaps the

most important advantage of using such animated characters is that there would

be no risks involved. Considering the rate of advancement in digital technology,

it is conceivable that digital actors will some day entirely replace humans. Yet

there are still many hurdles to leap in the details of creating a photo-realistic

human.

The game industry is another important application area where face modeling is

gaining popularity. In more recent games a very high priority is being given to

computer graphics. The whole concept of gaming has been changed in the recent

few years. Modern gaming has a storyline underneath and the player is supposed

to play a role in the story. Game makers rely on high quality computer graphics

to make this happen. The most important concern in rendering faces in computer

games is the speed. Most of the time graphic makers rely on high performance

graphic cards to accomplish this. With the advances in computer hardware and

software, obtaining cinematic quality in face modeling is not far ahead.

Face modeling applications are being utilized in the media sector, one rapidly

growing field being the news casting. Face modeling in news casting is suprisingly

less processor intensive than many other application areas. News casting is an

emotionless task where there is no room for exaggerated facial expressions. In

other words it requires a limited set of expressions. Hence such a face model

requires a small set of parameters. Furthermore a newscaster would generally

be stable in one position, showing only a frontal profile to the viewers. The
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critical task here is synchronizing the lip movement. There has been an increasing

attention to speech synchronization for virtual models [22, 23]. Less camera

and head movements together with the limited set of emotions, has made face

modeling a plausible solution in virtual news casting.

Human Computer Interaction (HCI) applications are making the technology ex-

perience more pleasant with the help of face modeling. We live in a world where

many tasks are done through the help of computers. For instance most of the

banking needs are computerized today and a client can do transactions without

any human assistance. However most of these tasks require input from users.

Such information is acquired using an input device and a simple interface. This

can be made more pleasant and convenient by the help of virtual characters. The

necessary information can be asked from the user and the user will only have to

speak out the requested information. This is still an open field of research and

its applications are in their infant stages. The most challenging task in here is to

create a meaningful conversation between the man and the machine. There are

some pilot projects that are able to continue a virtual dialogue. Perhaps the best

example for this is the “Siri”that is introduced with iPhone 4S in 2011.

Law enforcement agencies may also use expression recognition to detect deceptive

actions of a suspect. Today such techniques are even being employed by some

companies to measure the faithfulness of their employees. Specifically security

agencies such as CIA and NSA use such technologies in interrogating suspects as

well as measuring the reliability of their agents. These applications also benefit

from advancements in face modeling techniques.

Other various tasks like Avatar generation, fatigue detection, virtual mouse and

numerous amounts of frivolous applications exploit the concept of face modeling

[24].

As illustrated with the aforementioned examples, the existing and potential use

of face models and animation span a diverse variety of scientific and artistic

applications. Different applications require varying qualities depending on the
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application context. For instance a surveillance application would require the

face model to be both accurate and real time. However an application in plastic

surgery would demand very high precision that could be attained at the expense

of time. When it comes to movies and applications of the entertainment industry,

accuracy becomes less important and rendering quality and smoother animations

come to the forefront. In the computer science discipline, challenges include

geometric modeling, rendering, animation, numerical simulations and interaction

techniques. The system requirements vary greatly with the targeted applications.

Face modeling is becoming an essential part of many applications ranging from the

medical sector (requires high precision) to the entertainment industry (requires

high speed rendering). Due to the high demand, face modeling has been widely

studied at length during the past years. The key challenge of face modeling from

2D images or video frames is the difficulty in establishing accurate and reliable

correspondences between the 2D facial image and a generic face model, since faces

are non rigid objects, displaying a high degree of variability in shape, texture and

pose. Often attaining accurate results necessitate very high computational costs

which can be a crucial point in any computer software.

There are two main approaches that have been commonly exploited by researchers

in face modeling: parameterized and statistical. Parameterized face modeling ex-

ploits the known features of an object in modeling it. This requires an extensive

knowledge of human anatomy in order to fully parameterize a human face. Also

it is very important in here to have accurate stress-strain relationships of the

muscles. Perhaps one of the most prominent parameterized face modeling ap-

proaches is mass-spring-damper systems. A statistical model relies on a set of

training images to construct an accurate face model. A precise model requires a

large and complete training set.

In this report we propose a novel method in appearance based face modeling to

fit a 3D wireframe model onto a set of 2D images or a sequence of frames in a

video stream. Different poses or different frames enable construction of different
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regions of the face. Our method does not require extensive knowledge of the hu-

man anatomy, nor it requires a complete training data. It depends only upon a

set of landmark points manually selected by the user. With carefully selected 32

locations we manage to fit our model onto different images with acceptable accu-

racy. We compared our results with the results obtained by Procrustes Analysis

and Active Shape Model (ASM) techniques.

The rest of this report is organized as follows: Chapter 2 will illustrate the re-

search that has been carried out in this field. It will provide an in-depth review

of anatomy of face, which is a crucial part in accurate face modeling. Further-

more mass-spring-damper method, Procrustes Analysis and ASM techniques are

explained in detail here. In Chapter 3 we will discuss the implementation of

our proposed technique. Chapter 4 will illustrate a comparative analysis of the

available face modeling techniques. We will compare some of these techniques

with our proposed method. We will also discuss about the advantages and dis-

advantages of our approach. Chapter 5 discusses the improvements that could

be made on the proposed system and speculates about the future research in the

field, concluding this report.
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Chapter 2

Literature Survey

2.1 Facial Anatomy

The objective of our research is to generate a 3 dimensional face model employ-

ing a 2 dimensional image of the face. Face modeling requires a comprehensive

knowledge of the human face. Fleming and Dobbs [25] presented an in-depth

review of face anatomy. In our studies we utilized their research outputs.

2.1.1 The Skull

Human skull consists of two major components: cranial and facial components.

Approximately two thirds of the mass of the human skull is occupied by cra-

nial. Remainder is occupied by the facial components. Both facial and cranial

components are crucial in generating an accurate face model. Cranial delineates

the structure of the face model while facial components are imperative in the

construction of the facial texture. Another very important phenomenon of the

human head is that it can be fit into a square that is of same height and depth.

When modeling a face this is a helpful feature that can be utilized in preserving

the proportions. Flemming and Dobbs [25] identify 12 important features on the

human skull [Figure: 2.1].
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Figure 2.1: Human skull and its features [25]

Table 2.1: Labels of the 24 landmarks on human skull

Skull Feature Importance

A - Frontal bone Forms the forehead structure
B - Temporal ridge Creates the square shaped appearance

of the upper skull
C - Parietal bone Defines the sides of the head
D - Nasion Frontal bone meets nasal bone
E - Supraorbital margin Creates the ridge above the eyes
F - Nasal bone Creates the structure of the nose
G - Orbital cavity The eye sockets
H - Infraorbital margin Lower portion of the orbital cavity
I - Zygomatic bone Creates the structure of the cheeks
J - Maxilla Upper jaw bone
K - Mandible Lower jaw, creates the chin structure
L - Mental protuberance Tip of the lower jawbone

2.1.2 Facial Muscle Structure

Conserving the ratios of the facial trait dimensions is a key element in constructing

accurate face models. For instance the distance from the nose tip to mouth is in

general much smaller when compared with the distance from the lower lip to chin.

Another critical task in designing a face model is to comprehend the behavior of

the facial muscles. Effective implementation of the mass spring damping method

greatly relies on understanding this phenomenon.
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Figure 2.2: Structure of a muscle fiber [26]

Two main variations of muscles can be observed in the human head; muscles

of mastication and muscles of expressions. Muscles of mastication primarily deal

with the movement of lower jaw and are utilized in mouth movements. Muscles of

expressions deal with generating expressions such as happiness and anger. There

is no exact count of the facial muscles due to the fact that some muscles can be

viewed as a combination of a cluster of minor muscles [Figure: 2.2]. Therefore

different sources provide different figures as to the number of facial muscles.

The analysis of muscle structure and facial anatomy is of great significance in

constructing parameterized face models. Contradictory to parameterized meth-

ods, statistical methods of face modeling do not rely on the prior knowledge of

facial anatomy.

2.2 3D Face Databases

Conventionally modeling of human faces and analysis of facial expressions are

performed either on static images or video sequences. 2 dimensional data is

capable of providing limited information. Most importantly it does not provide

any information about the profile of the object; hence no information about the

depths of the feature points are provided. This is a major drawback in the current

research efforts.
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Figure 2.3: Natural occlusion due to yawning, crying, reading glasses and hair

Our research capitalizes on constructing a 3 dimensional face model through the

use of a single 2 dimensional image. We can either use a 2 dimensional image or

a 2 dimensional video sequence together with a generic wireframe to construct

a 3 dimensional face model. We make use of a 3 dimensional data set that

serves as ground truth and enable us to evaluate the accuracy of the developed

3 dimensional model. With the researchers’ growing interest in face modeling

significant amount of different 3 dimensional data sets were made available. A

brief description of some of the existing 3 dimensional datasets are provided in

[Table:2.2].

In this research we employed Bosphorus 3D Face Database [27] to carry out our

experiments and the embodied 3D data to evaluate the accuracy of the proposed

technique. The database contains 4666 3-dimensional images captured from 105

different subjects. Each subject has approximately 44 images. Among the 105

subjects 60 of them are men and 45 subjects are women. Majority of the subjects

are males between 25 - 35 years of age. 18 of the 60 male subjects have beard

or moustaches. Database consists of images with partial occlusion due to the

hair, reading glasses or poses that demonstrate crying and yawning [Figure: 2.3].

These partially occluded images were produced maintaining neutral poses.

Even though our research focuses on neutral poses of the subjects, many other

expressions are also depicted in the Bosphorous dataset. Among these poses, six
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Table 2.2: Face datasets
Database Name Subjects Resolution Variations
BU-3DFE 100 1040 x 1329 Pose

Expression
BU-4DFE 101 1040 x 1329 Pose

Expression
Honda / UCSD 20 640 x480 Rotation

Partial occlusion
UOY 97 1040 x 1329 Pose

Expression
Face in Action 200 640 x 480 Pose

Illumination
Extended M2VTS 295 720 x 576 Speech

Rotation
Max Plank Institute 246 786 x 576 Pose

Facial action
VidTIMIT 43 512 x 384 Speech

Rotation
Texas 284 720 x 480 Pose

Expression
Yale 10 640 x 480 Pose

Illumination
PIE 68 512 x 384 Pose

Illumination
AR 126 768 x 576 Occlusion

Illumination
Expression

CAS-PEAL 1040 360 x 480 Pose
Illumination
Expression

CASIA 123 640 x480 Pose
Expression
Illumination

EQUINOX HID 91 240 x 320 Speech
Expression
Illumination

Bosphorous 105 1374 x 1260 Expression
Occlusion
Pose
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Figure 2.4: 6 basic universal emotions

Figure 2.5: Landmark locations provided in the Bosphorous database [27].

basic universal emotions, anger, disgust, fear, happiness, sadness and surprise are

available [Figure: 2.4]. The reason behind the exploitation of neutral poses in our

research is to simplify creating an initial 3 dimensional model. Since our generic

wireframe model is anatomically accurate, it can be exploited in synthesizing

different facial expressions once the 3 dimensional model is constructed.

On each image of the database 24 feature points are marked. These feature points

are illustrated in [Figure: 2.5] and [Table: 2.3]. The corresponding landmark

vertices on the generic face model are presented in [Figure:2.6].

2.3 Data Cloud Manipulation Techniques

Discovering the correspondence points and alignment of shapes is both a critical

and an intricate task. Statistical analysis of shapes plays an important role in
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Table 2.3: Labels of the 24 landmarks

01. Outer left eye brow 02. Middle of the left eye brow
03. Inner left eye brow 04. Inner right eye brow
05. Middle of the right eye brow 06. Outer right eye brow
07. Outer left eye corner 08. Inner left eye corner
09. Inner right eye corner 10. Outer right eye corner
11. Nose saddle left 12. Nose saddle right
13. Left nose peak 14. Nose tip
15. Right nose peak 16. Left mouth corner
17. Upper lip outer middle 18. Right mouth corner
19. Upper lip inner middle 20. Lower lip inner middle
21. Lower lip outer middle 22. Chin middle
23. Left ear lobe 24. Right ear lobe

Figure 2.6: Landmark locations employed in our experiment

determining the correspondence of the key traits and determining the validity

of the algorithm that is being employed in positioning the landmarks. There are

several techniques that have been utilized in shape correspondence and data cloud

matching. Among them two are of very high importance: Procrustes Analysis

[28] and the Iterative Closest Point (ICP) algorithm [29, 30].

The generic model we employ and the images exploited in this research are of

two different scales. Original ICP does not offer a scaling transformation [31].

However today extensions that provide affine scaling in ICP is available. In our

research we have made use of Procrustes Analysis both in initial alignment and
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Figure 2.7: Procrustes Analysis and General Procrustes Analysis

performance evaluation of the proposed method. Comprehensive descriptions of

Procrsutes Analysis and ICP are provided in the subsequent sections.

2.3.1 Procrustes Analysis

Procrustes analysis [28] is a mathematical technique for superimposing one or

more shapes onto another. This is performed by exploitation of isotropic scal-

ing, translation, and rotation. Procrustes Analysis iteratively finds the best fit

between two or more shapes outlined by the landmark points. It only allows

rigid body transformations on the datasets and the transformations conserve the

relative distance between feature points. Procrustes Analysis has many different

forms and variations. Of these different variations, General Procrustes Analysis

[32], otherwise known as GPA is one of the more commonly exploited techniques

in shape correspondence.

The key difference between Procrustes Analysis and General Procrustes Analysis

(GPA) is that, GPA employs a set of shapes in the alignment process. Procrustes

Analysis performs this task exploiting only two shapes; original and the target

[Figure: 2.7]. It utilizes a least square shape metric that involves the alignment

of two shapes with one to one correspondence.
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The alignment process of the General Procrustes Analysis consists of six funda-

mental stages [33].

1. Normalize all shapes to unit size and translate their center of masses to

origin.

2. Determine mean shape m =
∑

xi.

3. Align each shape with m via rotation Ti.

4. Re-calculate m = 1
n

∑
Ti (xi).

5. Translate m to origin, and normalize its size.

6. Repeat the alignment process until convergence.

Fundamentally General Procrustes Analysis attempts to obtain the transforma-

tion Ti which minimizes the difference between the mean shape m and target

shapes xi [Equation: 2.1].

D =
∑
||m− Ti(xi)||2 (2.1)

and the mean shape is updated as,

m =
1

n

∑
Ti(xi) (2.2)

Procrustes Analysis requires same number of input arguments for each shape

and provides distance D, rotation component T and scaling component s. This

information can be utilized in measuring the similarity of two shapes. In our

experiments we exploited Procrustes Analysis employing 32 designated landmark

traits and obtained the similarity transformation parameters in the form of scale,

rotation and translation. These transformation parameters were then applied on

all 612 nodes of the generic wireframe to align the generic 3 dimensional model.
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2.3.2 Iterative Closest Point

Iterative Closest Point algorithm [29,30] is an iterative approach to minimize the

difference between two clouds of points. At each stage data point correspondences

are reconsidered as the solution comes closer to the local minimum error. As any

other gradient descent method, ICP performs best when a relatively good starting

point is provided. This significantly reduces the possibility of being trapped in a

local minimum.

ICP algorithm performs data matching in six simple steps.

1. Determine sample points from the data cloud x.

2. Determine sample points on data cloud y.

3. Calculate the weight of the correspondences [Equation: 2.3].

4. Reject unsuitable point pairs.

5. Assign an error for the current transform.

6. Go to step 2 until the error converges to a minimum.

There are several ways in selecting samples from datasets. In the original ICP

Besl and McKay [29] employed all available points. Another commonly used

method in selecting samples is to apply uniform subsampling. Masuda et al.[34]

proposed a random sampling in each iteration to select the sample points.

Once the points are selected the next step is to match points in the data clouds.

In the original algorithm closest points are selected as the match. However in

another version of the algorithm [30] normal shooting is done. This is to draw

a perpendicular line from the sample point to the other data cloud. The first

intersection is selected as the match.

Weighting pairs is performed to recognize the resemblance of the objects. Two

commonly employed techniques are available for weighting of pairs. The simplest
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method is to assign constant weights to all sample points. But more commonly

used technique is to assign higher weights to points with lower point to point

distance.

Weight = 1− Dist(P1, P2)

Distmax
(2.3)

Again there are numerous methods for rejecting incompatible point pairs. If

exist, pairs containing points on the boundaries of the data cloud are generally

rejected. Rejection is done using a threshold value for point to point distance.

Also a predefined percentage of less incompatible pairs based on a certain metric

can be rejected.

Error metric generally is the sum of the squared distances between the correspond-

ing points. Repeatedly sample points are generated and current transformations

are applied. The intention of this iterative process is to acquire the transformation

that minimizes the error metric.

The main advantage of ICP over Procrustes Analysis is that it does not require

same number of sample points as input. Also it does not require the knowledge

of correspondence between sample points.

2.4 Face Modeling Techniques

Various image based approaches have been utilized in automatic generation of

human face models. These approaches can be distinguished by the type of the

image data they employ. A single image, two orthogonal images, a set of images

or a video sequence can be exploited in generating face models [5].

There has been considerable amount of research on constructing face models

employing multiple images captured from different angles. Stereo vision through

two cameras can be utilized in constructing a model. Sometimes as many as

five cameras from different angles are exploited in the process of building face
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models [1, 5, 8]. Although this approach can produce promising results, it is

not very practical for model generation in daily life. His system is capable of

automatically generating the correspondence points between images. However it

requires a complicated set of apparatus to attain acceptable results.

A sequence of video can be utilized for modifying the model, exploiting a single

camera to acquire different poses of the face. In this front there are two popular

approaches; statistical modeling and parametric modeling. Subsequent sections

will provide an extensive review of these approaches. In our research we are

interested in constructing a face model by use of a single image obtained from a

single camera.

2.4.1 Parameterized Face Modeling

Parameterized face modeling is one of the more tedious methods of face modeling.

In order to generate an accurate face model one should possess a substantial

knowledge in human facial anatomy. The main aim of parameterized modeling is

to construct a model that would integrate all the key poses of a subject. However

as the number of the key poses increases building a model that can replicate these

poses becomes a daunting task. This is exactly the situation with the human face.

Face is a non-rigid body that is capable of producing many different mimics that

would generate distinctive emotional expressions.

Intrigued by the complexity of the task, Parke developed one of the earlier param-

eterized face models [35]. Parke’s model originated as an extension to key-pose

animation. His intention was to develop an encapsulated model that could gen-

erate a wide range of diverse faces and facial expressions exploiting a small set

of input parameters. Parke’s model was quite constrained due to the relatively

simple techniques he employed. Today the availability of more complex model-

ing and image synthesis techniques has enabled more complicated parameterized

models that permit better facial animations.
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The ideal parameterized model would be the one that allows any possible face

with any possible expression to be replicated by merely selecting an appropriate

parameter value set. A parametrization that enables all possible individual faces

and all possible expressions and expression transitions is referred to as a complete

or universal parametrization [36].

There are two methods that are being widely employed in constructing facial

parameter sets. More commonly employed technique is to observe the surface

properties of the face and then to develop a parameter set that would replicate the

observed behavior. The second method which is more robust is to understand the

underlying anatomical structure in triggering a mimic and develop a parameter set

based on the mechanism of the facial expression. A combination of both of these

methods can be utilized in creating a model. In this hybrid approach parameters

are based on anatomical perception wherever possible and are enhanced as needed

through observation.

In parameterized modeling two different kinds of parameter sets are available.

These are the expression parameters and conformation parameters. Expression

parameters are the parameters that are employed in controlling expressions of

the face. Some of the expression parameters found in a facial structure are the

eyebrow - eyelid separation, eyelid opening, mouth corner position and upper

lip position. Conformation parameters are utilized in controlling the general

structure of the face. Jaw width, chin shape, eye size and eye-to-eye separation

are a few of the conformation parameters in the human face. To some extent

these two sets overlap, but in practice they are considered to be distinctive.

There are three key modeling techniques that require the knowledge of facial

structure that triggers muscle mimics: Mass-spring systems, vector representa-

tion and layered spring mesh representation. Mass-spring systems disseminate

muscle forces in an elastic spring mesh that models skin deformations. Vector

representation employs motion fields in delineated regions of influence to observe

the facial mesh deformations. Layered spring mesh as its name suggests is an
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extended version of mass-spring systems. It exploits multiple layers such as skull,

muscle and skin to model the face.

Benchmark in parameterized face modeling is the mass-spring damping method

which was first introduced by Platt and Balder [37]. It evolved as a result of a

series of experiments on modeling human anatomy. It was initially introduced

as a technique to model muscles. Mass-spring system replicates the skin defor-

mations by propagating muscle forces in an elastic mesh. The skin is modeled

as a mesh and the muscles are represented by springs attached to nodes of the

skin conforming with the anatomical structure of the face. The entire structure is

designed to achieve biphasic stress-strain relationship to simulate the dynamics of

a real face. Each contraction of a muscle exerts a pressure on the mesh, causing

it to deform. These different deformations depict various facial expressions. The

forces exerted by the muscles on the skin comply with Hook’s law [Equation: 2.4].

F = Kx (2.4)

F represents the forces exerted on the skin mesh and x is the displacements of

the ends of the springs from their equilibrium states. K is the spring constant

matrix that reflects the stress-strain relationship of the skin or muscles. Platt’s

later works [37] illustrate a facial model represented as a collection of muscles

combined as a block in defined regions of the facial structure. His model contains

38 muscle region blocks connected with a spring system. Later Zhang (2001)

exploited mass-spring models in real time animation of facial expressions [38].

Terzopoulos and Waters [39], proposed one of the early facial models that conform

to the anatomical structure and dynamics of a human face [Figure: 2.8]. Their

model contains three layers that correspond to skin, fatty tissue and muscles.

Spring elements were employed in connecting muscle elements to the mesh nodes

of each layer.
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Figure 2.8: The muscle model proposed by Waters [26]

2.4.2 Statistical Face Modeling

Parameterized face modeling requires extensive knowledge about the anatomy of

human face. It is a tedious task to construct an accurate parameterized model.

Furthermore it is challenging to model the different stress-strain relationships of

various muscles. Due to these difficulties resarchers turned to statistics to model

human faces. Statistical face modeling relies upon a set of training images in

constructing a model. This proved to be both convenient and an efficient method

of modeling faces.

Faces can vary widely, but variations of the face can be broken down into two

main factors; changes in shape and the texture. Both of these features can also

vary among the poses of the same individual due to changes in expressions and

camera viewpoints. In developing an appearance based face model statistical

techniques can be employed.

To generate a statistical model we rely on obtaining a sufficiently large data set of

facial images with a collection of data points defining the correspondences within

the set. The positions of the feature points are exploited in defining the shapes,

and the pattern intensities are analyzed in developing a texture model.
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Figure 2.9: 32 landmark points employed in defining the facial features [27]

How one chooses the training data set is crucial in constructing a shape model.

The chosen set should cover the types of variations that is to be represented by

the model. Another very important point is that the resolution of the data set

should be at least as high as the testing data.

Detection of the key traits is done either automatically or manually with human

intervention. Since these traits are exploited in correspondence throughout the

testing set, a predetermined number of traits needs to be marked in images. We

exploited a 66 point facial feature set in our preliminary experiments to define a

model. Among them 40 feature points are employed in delineating the contour

of the face. Remaining 26 points are exploited in defining the key features of the

face such as the eyebrows, eyes, nose and mouth. During our studies we managed

to reduce the number of traits to 32 by trial and error [Figure: 2.9].

Landmark selection should be performed cautiously. A good landmark should be

conveniently located on facial images. Commonly, marking of landmark locations

are done manually. This is a very time consuming task that needs to be carried

out throughout the training set. Hence one should be careful to select minimally

sufficient number of landmark points that would describe a face. In more recent
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studies, semi automatic [40] and automatic methods have been developed to aid

the marking process with a reduced number of landmark traits.

Corners of eyebrows, eyes, nose and mouth can be precisely located, which make

them excellent feature points. Unfortunately human face does not contain many

such features that would provide us sufficient statistics. As a result we have

to mark a modest amount of feature points in between the corners [41]. The

annotated feature point locations for each image are then put into a vector as the

training dataset in order to perform statistical analysis.

It is vital to verify that the dataset is properly aligned before we commence

statistical analysis. There are a number of methods that have been utilized in

aligning a dataset. Procrustes Analysis is one such method [28]. Another widely

employed method for aligning data is the Iterative Closest Point (ICP) algorithm

[42]. We covered the details of these algorithms in Section 2.3.

Once the dataset has been aligned, our next target is to model the shape varia-

tions. It is important that our shapes comprise of the most indispensable varia-

tions. An initial dimension reduction technique is applied to streamline the shape

modeling process. One such technique that is commonly applied in dimension re-

duction is Principal Component Analysis (PCA) [43]. [Figure: 2.10] illustrates

12 different modes of faces that are extracted from a training set. Note that the

dimensionality of the model is reduced from twice the number of pixels to only

12.

Statistical model of texture is built using the intensity of color over an image

patch. The texture model is constructed abiding a three step process. Initially

pre-computation of the pixel positions of the sample in the model reference frame

is done. Then employing a warping function landmarks of the mean shape are

mapped to the target points. Finally each element in texture model is sampled

utilizing the target image at corresponding location using a predefined neighbor-

hood of the feature point [41]. A texture sample always contains a fixed number

of pixels, independent of the size of the objects in the target image. Once this is

24



Figure 2.10: Principal components of a face shape model [41]

performed it is then normalized to remove global lighting effects. Generation of

a statistical model of texture is depicted in [Figure: 2.11].

Shape and texture models can be coalesced in order to obtain a combined model

of appearance. Shape and texture are in general correlated. Therefore again PCA

is applied to reduce dimensionality before generating a combined model.

2.4.2.1 Active Shape Model

Active Shape Model (ASM) [44 , 45] can be considered as the pinnacle of research

in statistical face modeling. We employ ASM in our research as a benchmark to

assess the performance of our proposed method. ASM relies on selection of a

reliable set of training data with adequate number of identified feature points

[45]. Given a rough initial approximation, an instance of the model will be fit

onto the image of the object. A set of shape parameters are utilized in defining

the shape of the object in an object centered co-ordinate frame. Then an iterative

approach is used in fitting the model onto the object.
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Figure 2.11: Extraction of shape-free texture model

ASM relies on an adequately large training set of images to construct a model

that is flexible enough to cover the different variations of an object. An object

shape is epitomized utilizing a series of labeled points or landmarks. In order to

demonstrate the overall shape and the details of the object, the number of feature

points should be sufficiently large. Labeled training set S encompasses N shapes

each comprising of n landmarks.

Each shape is represented by a matrix of feature point coordinates as in [Equa-

tion: 2.5].

Xi = [(xi1, yi1), (xi2, yi2), ......(xin, yin)]T (2.5)

where (xij, yij) represents the jth landmark coordinate of the ith shape.

In order to simplify the calculations, we employ PCA and reduce the dimensions

of the shape space. In many applications it can be assumed that the first few
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principal components accounts for a sufficient percentage of the total variance of

the original data.

We can express the difference between an observation and the mean of all observa-

tion as a linear combination of the principle components, since this dissimilarity

vector will also lie in the 2n dimensional space spanned by principal components.

Dissimilarity vector between xi and the mean vector x̄ can be represented as in

[Equation: 2.6].

dxi = xi − x̄ (2.6)

where,

x̄ =
1

N

N∑
i=1

xi (2.7)

In these equations xi and dxi are 2n × 1 vectors that are obtained by reshaping

the shape matrix.

Representing the difference dxi as a linear combination of the principal compo-

nents we acquire [Equation: 2.8].

dxi = bi1a1 + bi2a2 + bi3a3 + .........bi(2n)ai(2n) (2.8)

Where, eigenvectors are represented with a and the scalar weights that construct

dxi are represented by bi. But since xi = x̄ + dxi , this yields [Equation: 2.9].

xi = x̄ + abi (2.9)
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Assuming that the first t principal components represent a sufficiently high per-

centage of the total variance of the original data, we can further simplify the

[Equation: 2.9] to yield [Equation: 2.10].

xi = x̄ + Ab (2.10)

where,

b = [b1 b2 b3 b4 ....bt]
T (2.11)

and,

A = [a1 a2 a3 a4 ....at]
T (2.12)

This model has (2n − t) fewer dimensions with respect to the original shape

space. Yet it still accounts for a considerable amount of variability in the dataset.

Moreover these eigenvectors characterizes the specific variability of the class the

shapes belong to.

Once the training process is completed, acquired mean shape is exploited in the

stage of modeling the candidate subjects. Abstract algorithm of the shape align-

ment process is illustrated in [Figure: 2.12].

Comprehensive algorithm exploited in the modeling process is described below:

1. Initialize shape parameters, b to zero.

2. Generate the model points using s = x̄ + Ab

3. Find pose parameters (xt, yt, s, θ ) to align observed shape y with the

current model s.
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Figure 2.12: Shape alignment algorithm

y
′
= Txt,yt,s,θ(y) (2.13)

4. Update the model parameters to match to shape model with y
′
using [Equa-

tion: 2.10].

b = AT(y
′ − x̄) (2.14)

5. If not converged return to step 2.
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The transformation process exploits Procrustes Analysis in the alignment stage.

Procrustes Analysis follows a three step progression. Initially the image is posi-

tioned on top of the model aligning the Center Of Gravities (COG). Then scaling

and rotation is performed on the model progressively to obtain the best fit for the

object. A more detailed description of Procrustes Analysis is provided in Section

2.3.1.

ASM can be implemented in a multi-resolution framework to increase its efficiency

and robustness. A faster algorithm is attained by first modeling the object in a

coarse image and then refining the shape model with a series of finer resolution

images. Since this follows a cascade structure more expensive computations are

performed at the later stages making this both an efficient and a reliable algo-

rithm. In order to do this the subsequent levels in the pyramid are created by

smoothing and subsampling.

The main hindrance of ASM is that it solely depends on the shape parameters

in modeling an object. Image texture embodies substantially more information

about the object characteristics when compared to the shape parameters. Moti-

vated by this fact, Active Appearence Model (AAM) evolved after a substantial

amount of research conducted in this field [45]. AAM utilizes both shape param-

eters and texture parameters in model adaptation.
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Chapter 3

Semi-Automatic Customization

We propose a semi automatic wireframe fitting technique to represent the ap-

pearance of a subject with a generic model. Previously a similar approach was

proposed by Krindis and Pitas [46]. They utilized a 2 dimensional mesh and

manually labeled corresponding positions of the face image and wireframe model.

Our method differs from Krindis’s since we extend customization to non land-

mark vertices through a semi-automatic technique in landmark positioning. Our

algorithm employed in wireframe fitting can be sketched as follows.

1. Select feature points on image and landmark vertices on the generic 3 di-

mensional model.

2. Find the center of gravity of the target image and the generic 3 dimensional

model.

3. Translate the model in 3 dimensional space to align the projection of its

center with the center of the image.

4. Scale the model to fit its projection to image feature points.

5. Determine and update the coordinates of the landmark vertices using ray

tracing through the target image.

6. Apply distance based nearest neighbor weighted average algorithm to non

landmark nodes to fit the model to the target image.
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Starting from the introduction of our 3 dimensional generic face model we will

comprehensively elucidate the steps of our algorithm in the subsequent sections.

3.1 A New Generic Face Model: HIGEM

In our research we propose a novel method for constructing a 3 dimensional

face model exploiting a single 2 dimensional image. We require a 3 dimensional

dataset to conduct Procrustes alignment experiments and employ it as ground

truth in evaluating the performance of our technique. For this purpose we em-

ployed Bosphorus 3 dimensional face dataset. The details of this database were

covered in Section 2.2. In face modeling domain there are two key approaches

pursued by the researchers; parameterized and statistical techniques. Parame-

terized modeling benefits from the prior knowledge of facial anatomy. Statistical

modeling exploits statistical techniques as its name suggests. An in depth review

of these techniques is provided in Section 2.4.

We take a different path in creation of an accurate 3 dimensional face model

employing static images. Our proposed method does not require prior knowledge

of human anatomy as parameterized modeling and does not rely on a training

dataset as statistical modeling techniques. It combines the robustness of the

parameterized modeling and the convenience of the statistical modeling methods.

In the context of this research we developed HIgh polygon GEneric Model (HIGEM).

HIGEM is a generic wireframe model that conforms to human face anatomy. Re-

search works conducted in this area has made very little effort in engineering such

a generic model. Candide 3 introduced by Ahlberg [47], with 180 vertices is per-

haps one of the most sophisticated models available prior to our work. Prevailing

generic models were inadequate and we required a more sophisticated model that

would enable us to replicate human face more precisely.

Our developed model comprises of 612 nodes [Figure: 3.1]. These nodes come to-

gether to generate 1128 polygons, which are known as faces in computer graphics
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Figure 3.1: HIgh polygon GEneric Model: HIGEM

terminology. Our model incorporates anatomically accurate muscle forces and the

edges of the wireframe are modeled as springs, permitting it to replicate diverse

facial mimics. This feature enables us to utilize the model in facial animation.

3.2 Selection of Landmark Locations

Our proposed technique relies on the key trait locations in generating an accurate

3 dimensional face model of a target image. Therefore precise selection of these

traits is critical.

We manually selected feature points on 104 2 dimensional images of the Bospho-

rous dataset. Theoretically, the reliability of the proposed method improves as

the number of traits increases. Marking a substantial number of features on a

facial image proved to be a daunting and time consuming task. Therefore it is

important to select the minimal number of landmark traits that is sufficient in

defining the human face.

Initially we selected 42 landmark vertices on the generic wireframe model that

delineate the shape of a face [Figure: 3.2]. Selection of the landmark vertices is

performed only once in accordance with human face anatomy. They are carefully

selected to replicate the muscle movements that aid in constructing diverse facial

expressions. We selected eyebrows, contours that define eyes and mouth, nose
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Figure 3.2: Generic wireframe model and a sample face image with 42 key traits

tip and nose saddles as some of our landmarks. Also we employed 6 landmarks

to define the contour of the face. Height and width of the target face image

is determined by its bounding box. Width of the target images is determined

employing the points that represent the two ears of the face.

These landmark points are fixed, in other words they are selected only once on

the generic face model. Through trial and error we determined 32 as a sufficient

number of landmarks to define a human face [Figure: 3.3]. This analysis is deferred

until the introduction of the performance criteria. It provides us the opportunity

to remove the key traits on cheeks which were extremely hard to locate accurately

on both face image and its 3 dimensional data cloud.
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Figure 3.3: Generic wireframe model with 32 landmark vertices, a sample face
image and its data cloud that serves as the ground truth

Figure 3.4: Centroid alignment of wireframe model and image
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3.3 Nearest Neghibor Weighted Average Customization

3.3.1 Model Alignment

The input to the model alignment stage is the generic face model with marked

landmark vertices and a face image. Once the feature points are marked on

the image, the next step is to estimate the 3 dimensional coordinates whose

projections are the 2 dimensional facial points. This is performed by ray tracing

from the image plane to the 3 dimensional wire frame model coordinates. Before

performing this operation generic wireframe model and the target image should

be properly aligned and scaled. The initial alignment is done by positioning the

generic wire frame in 3 dimensional coordinates so that the projection of the center

of gravity of the model landmarks collides with that of target image [Figure: 3.4].

Scaling in x, y and z axes is done separately [Figure: 3.5]. The height and width

of the face image are acquired by use of the feature points. We employ these

height and width parameters to scale the model in x and y directions. Scaling in

the z direction is performed employing the same scaling factor as the x direction.

This is done relying on the studies of Fleming and Dobbs [25]. They observe that

the human head can be fit in to a rectangular box that is of same width and

depth.

3.3.2 Estimation of Landmark Vertex Coordinates.

We utilize ray tracing for the purpose of back projecting the 2 dimensional feature

points into the 3 dimensional coordinate space. Our implementation of ray tracing

is similar to the ray tracing method employed in computer graphics applications.

Ray tracing in computer graphics is to generate an image by tracing the path

of the light through the pixels in the image plane. Furthermore it enables to

simulate any effects of the virtual objects in the path of the beam onto the target

pixel.
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Figure 3.5: Horizontal and vertical scaling of the generic wireframe model

Figure 3.6: Perspective projection

The essence of our research lies in the exploitation of the ray tracing method

in model fitting progression. We aim to mold the generic wireframe model in

order to replicate the target image in 3 dimensional coordinate axes. Feature

points marked prior to this stage are employed in this process to estimate the 3

dimensional coordinates of the corresponding landmark vertices.
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Coordinates of the feature points in the target image xp and yp can be quantified

exploiting perspective projection [Figure: 3.6].

xp = x(
zprp − zvp
zprp − z

) + xprp(
zvp − z
zprp − z

) (3.1)

yp = y(
zprp − zvp
zprp − z

) + yprp(
zvp − z
zprp − z

) (3.2)

Here zvp stands for the z coordinate of the view (camera) plane and (xprp , yprp,

zprp) is the projection reference point. We can simplify the perspective projec-

tion calculations by choosing the projection reference point on the z axis. This

transforms projection reference point coordinates xprp and yprp to zero. Hence it

allows us to simplify [Equation: 3.1] and [Equation: 3.2] to obtain the perspective

projection form as in [Equation: 3.3].

fp(x, y, z) = (xp, yp) = [x(
zprp − zvp
zprp − z)

, y(
zprp − zvp
zprp − z

)] (3.3)

Here our observation consists only of feature points in the image plane. We can

estimate the 3 dimensional coordinates of these feature points by keeping the

depth of the landmark vertices fixed and inverting the transformation given in

[Equation: 3.3].

x = xp(
zprp − z
zprp − zvp

) (3.4)

y = yp(
zprp − z
zprp − zvp

) (3.5)

f−1
p (xp, yp, z) = [xp(

zprp − z
zprp − zvp

), yp(
zprp − z
zprp − zvp

), z] (3.6)
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Figure 3.7: After alignment with ray tracing (a) The projection of the generic
model onto image plane (b) The generic model and the data cloud

3.3.3 Estimation of Non-landmark Vertex Coordinates

As can be observed in [Figure: 3.7] back projection of feature points to align with

landmark vertices is not sufficient to construct an accurate model of the subject’s

face. Non landmark vertices should also be transformed in accordance with the

inverse projected feature points. In the generic face model we have 612 nodes and

only 32 of them are denoted as landmark vertices. We update the coordinates of

the non landmark vertices using a Nearest Neighbor Weighted Average (NNWA)

algorithm.

Customized locations of the landmark vertices were attained using the ray tracing

technique. At this point we can exploit the transformations of the landmark ver-

tices to calculate a translation vector for each non landmark vertex. Translation

vector for each landmark vertex is calculated simply by subtracting the initial

position of the wireframe model with the customized positions of the reshaped

model [Equation: 3.7].

∆υli = υli,org − υli,custom (3.7)
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Figure 3.8: Test results on Caltech dataset

The contribution of the landmark vertex to the translation of a non landmark

vertex is inversely proportional with the square of the distance in between. We

calculated the Euclidean distance dij between each non landmark vertex and the

landmark vertices in the original wireframe model. These distances are utilized

in the NNWA algorithm to determine the effect of k-nearest landmark vertices

to a non landmark vertex [Equation: 3.8] [Equation: 3.9]. Inverse of the squared

distances of the landmark vertices are used as the weight in determining the

translation of a non-landmark vertex.

Tj =

∑k
i=1

∆υli
d2ij∑k

i=1
1
d2ij

(3.8)

υnlj,custom = υnlj,org + Tj (3.9)

Our proposed technique was applied on both Caltech and Bosphorous datasets.
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Figure 3.9: Test results of weighted nearest neighbor customization on sample
images chosen from Caltech dataset

In the experiments conducted on the Caltech dataset [Figure: 3.8], we observed

that the landmark locations of the model overlapped with the landmark locations

of the target images. Furthermore as predicted the non landmark vertices of the

model translated smoothly on the target image constructing a suitable model of

the subject.

As illustrated in [Figure: 3.9], the constructed 3 dimensional model aids us in

estimating the subject’s face structure.

Caltech is a two dimensional database. Therefore the accuracy of the experiments

cannot be verified using the information in the dataset. Hence we extended our

experiments using the Bosphorus 3 dimensional database. An in-depth review

of this extended research and the performance criteria are presented in detail in

Chapter 4.

3.4 Customization through Procrustes Analysis

Procrustes Analysis provides scaling, translation and rotation parameters for the

generic model to fit a data cloud. Detailed information in Procrustes Analysis is

available in Section 2.3.1.

Perhaps the greatest disadvantage in Procrustes Analysis is its prerequisite to

have a 3 dimensional dataset in order to construct a model of a target image. In
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Figure 3.10: Perspective projections of aligned wireframe model, wireframe cus-
tomized through Procrustes Analysis with the data cloud and weighted nearest
neighbor customization

this study we aim to construct a realistic facial model of a subject using a single 2

dimensional image. We exploit the information extracted from the 3 dimensional

image database only as ground truth.

The generic wireframe we employ is of neutral pose and illustrates a frontal pro-

file. But in real life examples we often encounter varying facial expressions and

orientations of the head. Application of Procrustes Analysis provides the generic

model with rotation and scaling parameters that would better suit the target

image.

[Figure 3.10] illustrates wireframe fitting with alignment only, with Procrustes

Analysis and with weighted nearest neighbor customization, respectively. The

performance levels of the respective methods are evident with the data cloud

representation [Figure: 3.11].

In the model fitting stage performance of the Procrustes Analysis was measured

against the proposed method. Procrustes Analysis requires same number of key

traits in both data clouds. We apply Procrustes Analysis using the landmark

vertices on the generic wireframe and the corresponding feature points in the

data cloud. Once the transformation vector is obtained it is applied on non
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Figure 3.11: Comparison of aligned wireframe model, wireframe customized
through Procrustes Analysis with the data cloud and weighted nearest neighbor
customization

landmark vertices to attain a realistic 3 dimensional model of the target image.

We evaluated relative error values for both Procrustes Analysis and our method.

Proposed technique produced substantially better results in comparison with the

Procrustes Analysis. Experimental results are described in detail in Section 4.3.

3.5 Customization through Active Shape Model

Active Shape Model is one of the benchmarks in face modeling. ASM relies

on selection training data with adequate number of identified feature points in

constructing an accurate face model. Given a decent initial approximation, ASM

is capable of producing an accurate fit to the target image employing an instance

of the model. Original ASM was first introduced by Cootes et al. [44]. An

in-depth review of the ASM is presented in Section 2.4.2.1.

In our study we implemented ASM for the comparative evaluation of the proposed

face modeling technique. The original ASM was designed for 2 dimensional im-

ages. However in this study we deal with the customization of a 3 dimensional

generic face model. Therefore we implemented an extended version of ASM. A
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comprehensive explanation of the implementation is presented in the rest of this

chapter.

The 3 dimensional data cloud and the generic wireframe model we use in our

study are of two different scales. Initially we normalize both 3 dimensional data

cloud and the generic wireframe model. The scaling is performed as to fit the

largest axis of the model and the data cloud to the range [-0.5 , 0.5].

Once the model and the data cloud is translated to a common coordinate system

PCA is applied to acquire the eigenvectors. The eigenvectors are exploited in

determining the modes of variations to be used in our experiments. In our exper-

iments we employed the first 9 eigenvectors that account for 82% of the variation.

We also determine the mean model using the locations of the landmark vertices.

From this stage on the obtained mean model will serve as the generic wireframe

model. Note that the transformation is applied only on the landmark vertices.

After the preprocessing stage we explore an iterative approach similar to the

original ASM in acquiring the instance of the generic wireframe model that best

fits the target image. The iterative search process is explained in-detail in the

subsequent paragraphs.

The next stage is to estimate the Euclidean transformation for the wireframe

model for a best fit with the image feature points. Transformation vector b

comprise of translation (t) and rotation (α) parameters along the x, y and z axes.

b = [tx, ty, tz, αx, αy, αz] (3.10)

Translation in 3 dimensional space can be represented using a 3 × 1 vector. In

the same manner rotation can be represented with a 3 × 3 matrix. In order to

combine the transformations on all 6 degrees of freedom we use homogeneous

coordinates and 4 × 4 transformation matrices.
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Once the transformation is applied on the landmark vertices we find their loca-

tions in the image plane using perspective projection P. Error E is defined as the

difference between projected landmark vertices and the image feature points F.

It is therefore an n × 2 matrix where n is the number of features.

E = P (TRxRyRzX)− F (3.11)

We define residual r as the distance between projected points and the feature

points. In other words it is sum squared error E for each feature point. Thus

r is an n × 1 vector. We now find the Jacobian of residual r with respect to

transformation b.

J = Jr(b) (3.12)

The Jacobian is an n × 6 matrix which comprises of the gradient of residuals

on each degree of freedom. Once the Jacobian is generated the direction of the

steepest descent is determined using the Gauss-Newton method. Gauss-Newton

method is employed for solving non-linear least square problems.

∆b = (JTJ)−1JTr (3.13)

The next step is to refine the step size estimated by the Gauss-Newton method.

This is performed iteratively reducing the step size by half until a step size that

reduces the error is discovered. This process converges to a minimum depending

on the starting point. At this point we can update the transformation parameters.

b← b + ∆b (3.14)
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Since we have an estimation of the Euclidean transformation for the wireframe

model we can now customize the wireframe model using the 9 variation modes in

other words, the eigenvectors that we obtained from our training set.

Using [Equation: 2.10] we represent the customized model x in terms of eigenvec-

tor coefficients β as;

x = x̄ + Aβ (3.15)

The coordinate vector x is reshaped into an n × 3 matrix X. Using the estimation

of Euclidean transformation we obtained in the previous step we recalculate error

E as in [Equation: 3.11]. Residual r is calculated once again as the sum squared

error for each point. At this stage we calculate the Jacobian by calculating the

gradient of r on each of the 9 variation modes.

J = Jr(β) (3.16)

The Jacobian with respect to β is an n × 9 matrix. We again apply the Gauss-

Newton method and carry out an iterative search to determine the best eigenvec-

tor coefficients.

∆β = (JTJ)−1JTr (3.17)

β ← β + ∆β (3.18)

This entire process is repeated until error converges or decreases below a prede-

fined threshold value. This iterative process repeatedly optimizes the transforma-

tion parameters and the eigenvector coefficients. Once the iterations are complete

the coordinate matrix X becomes the customized wireframe model. [Figure: 3.12]
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Figure 3.12: Iterative model fitting progression in ASM

demonstrates the iterative model fitting process in our Active Shape Model im-

plementation.
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Chapter 4

Comparative Study of Face Modeling Techniques

Several experiments are conducted in order to evaluate the performance of the

proposed algorithm in comparison with Procrustes Analysis and ASM. In this

stage of our research we exploited the Bosphorous 3D face dataset in order to

evaluate the error rate of the algorithms. We carried out the experiments on

neutral poses of 104 different subjects.

4.1 Evaluating the Performance of Customization

In real life we often encounter faces with different dimensions. Therefore to bring

all the error measurements to a standard base we exploited relative error in our

experiments. Relative error is one of the most popular approaches in data cloud

registration. To simplify the calculations we benefited from the bounding box in

quantifying the relative error. For each subject the mean error is divided by the

diagonal length of the bounding box belonging to that subject.

We also developed a model coloring strategy to illustrate the error variation on

the surface of the model. In our first experiment on visualizing the error, each

of the 612 landmark vertices of the model is compared with the corresponding

data cloud feature points. Each of the data cloud feature points is assigned red

or green color based on the error. Positive and negative errors are displayed in

red and green respectively [Figure: 4.1].
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Figure 4.1: Binary coloring strategy to display the error variation

Figure 4.2: Illustration of error variation on a customized model

We observed that this method is not sufficient to observe the error variations in

the model. Consequently we modified the trisurf command in Matlab to facilitate

better illustration of the error rate variation through the model. The negative

errors are illustrated in shades of blue and the positive errors are displayed in

shades of red. The perfect fit of the model with the data cloud is represented in

green. The frontal and lateral profiles of a model are illustrated in [Figure: 4.2].
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Figure 4.3: Illustration of feature points on the data cloud

4.2 Nearest Neighbor Weighted Average Customization Results

4.2.1 Identifying the Landmark Vertices

Our first experiment was to evaluate the variation of the performance with respect

to the number of features used in customization. This was performed to determine

the ideal number of landmarks required to define a face accurately. It is strenuous

task to mark the feature points on the target images. It is even more exhausting

to mark the corresponding vertices on the data cloud. Frontal and lateral views

of the feature vertices on a sample data cloud is illustrated in [Figure: 4.3].

The goal of our experiment was to decrease the number of feature points utilized

in defining a face. We start our experiment with 42 key traits. These traits were

selected using prior knowledge of human anatomy. These key traits are marked

on the target image and their corresponding data cloud manually.

We perform this experiment gradually decreasing the number of key traits from 42

to 10. We exploited 15 randomly selected subjects from the Bosphorous dataset
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Figure 4.4: Relative error comparison for the proposed method with respect to
varying number of key traits

in this experiment. We manually marked feature points on the images and cor-

responding data clouds for these 15 subjects. We observed the variation of the

mean error with respect to the number of key traits allocated in defining the facial

images [Figure: 4.4].

As expected we observed that the mean error of the model increases as the number

of key traits decreases. There is a tradeoff between the effort required in locating

key traits and the accuracy. Taking this fact into consideration we decide to

employ 32 landmark traits in the customization process. These key traits are

illustrated in [Figure: 4.5]. All of our subsequent experiments are conducted

using these key traits.

4.2.2 Choosing the Number of Neighbors

One of the other experiments we performed was to evaluate the effect of the num-

ber of neighbors to be used in the Nearest Neighbor Weighted Average (NNWA)

customization stage. The customization of the non-landmark vertices depends

highly on the number of landmarks utilized as the nearest neighbors. When the
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Figure 4.5: Illustration of selected feature points on face image and landmark
vertices on HIGEM

Figure 4.6: Relative error comparison for the proposed method with respect to
the varying number of nearest neighbors

number of neighbors increases we encounter an overfitting problem. On the other

hand selecting too few neighbors would impede the smooth distribution of land-

mark vertex translations to the non landmark vertices. The neighbor size should

be selected in a manner that would delineate facial muscle groups that can act

independently. Relative error magnitudes we observed for the Bosporous dataset

with respect to the varying number of neighbors are depicted in [Figure: 4.6].

We observed that the variation rate of relative error with respect to the number
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Figure 4.7: Magnitudes of relative error using 5 neighbors for all subjects in the
Bosphorous dataset

of nearest neighbors is not very oscillatory. This is partially due to the astute

selection of landmarks. Landmarks are selected in a fashion that they would

delineate the independent facial muscle regions. There is only a slight increase in

the relative error as the number of nearest neighbors decreases. Due to overfitting

we occasionally observed a slight increment in relative error when the number of

neighbors is increased. From our experiments we deduced that 5 to 7 neighbors

can be considered sufficient in NNWA customization.

Computation time increases linearly with the number of neighbors exploited in

NNWA customization. Therefore in the customization of the non landmark ver-

tices we have employed 5 neighbors. Using the NNWA customization described in

Chapter 3 we acquired the results depicted in [Figure: 4.7]. These error measures

are normalized exploiting relative error. The results demonstrate substantially

low error magnitudes.

[Figure: 4.8] illustrates the results of the proposed method with 5 nearest neighbor

customization on a randomly selected subject together with the data cloud. The
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Figure 4.8: Feature points on sample subject, generic wireframe model overlayed
on the image, acquired 3 dimensional model and the data cloud (Subject Number
15)

Figure 4.9: Error magnitudes for model vertices when nearest neighbor weighted
average customization is applied (Subject Number 15)

graph that demonstrates the error magnitudes for each of the 612 vertices is

presented in [Figure: 4.9].

We also generated a histogram to observe the variation of error [Figure: 4.10].

As can be observed the majority of the error values lie in close proximity to the

mean error. In other words the variation of the error is quite small.

[Figure: 4.11] demonstrates the distribution of the error on the acquired facial

model surface. As expected the regions adjacent to landmark vertices have higher
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Figure 4.10: Relative error histogram for a sample subject (Subject Number 15)

Figure 4.11: Varying view points for the obtained 3 dimensional model for a
sample subject (subject number 15)

accuracy rates when compared to the distant regions.

4.3 Procrustes Analysis Results

Procrustes Analysis is employed generally as an alignment technique. Transfor-

mation vector produced by Procrustes Analysis can be employed in the 3 dimen-

sional modeling process. We also employed Procrustes Analysis in the relative
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Figure 4.12: Relative error comparison for the proposed method against Pro-
crustes Analysis

error evaluation process.

We exploit Procrustes Analysis only to evaluate the performance of our algorihm.

Procrustes Analysis cannot be utilized in the modeling process since it requires

a 3 dimensional data cloud. [Figure 4.12] illustrates the comparison of the rela-

tive error value variations for the subjects in the datasets for the two methods;

the proposed technique and Procrustes Analysis. We observed substantially bet-

ter results for all the subjects in the dataset when modeling with the proposed

method.

4.4 Active Shape Model Results

In the face modeling field there are two prominent methods; parameterized and

statistical face modeling. Methods such as mass-spring-damping fall under pa-

rameterized techniques. They require extensive knowledge about the anatomy of

human face. Due to this reason they have become less popular today. Statistical

modeling relies on a training dataset in constructing a face model for a given
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Figure 4.13: ASM - Iterative model fitting process

subject. Despite the fact that the training process is time consuming, statistical

face modeling is capable of producing reliable results.

We compared the performance of our proposed technique with Active Shape

Model (ASM) and Procrustes Analysis. ASM is originally implemented for 2

dimensional images. In our research we extended ASM to be employed with a 2

dimensional image and a 3 dimensional generic face model. More detailed report

of this implementation is presented in Section 3.5.

We implemented ASM to facilitate comparison with the results of our algorithm.

Iterative fitting process of ASM is shown in the figure [Figure 4.13]. Initially

we compared the results obtained by ASM and Procrustes Analysis. Procrustes

Analysis being a model alignment and registration technique illustrated abysmal

results in comparison with the ASM.

4.4.1 Comparison of Face Modeling Methods

In the performance evaluation stage of our proposed technique, we utilize the re-

sults obtained for the aforementioned three algorithms; ASM, Procrustes Analysis
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Figure 4.14: Relative error comparison for NNWA customization and ASM

and finally NNWA customization. Employing NNWA customization we achieved

substantially lower error results consistently for all the subjects in the dataset.

Procrustes Analysis is generally employed as a data registration and alignment

technique. This fact justifies the higher relative error values produced by Pro-

crustes Analysis.

ASM demonstrated significantly better error results in comparison with our pro-

posed technique [Figure 4.14]. This fact alone does not make ASM better than

our proposed technique. There are a lot of constraints in customizing a model

with ASM. ASM does not guarantee the convergence of the model to the global

optimum. It is quite possible for the model to converge in to a local optimum.

Furthermore the demonstrated relative error values for ASM are quantified em-

ploying only the 32 key trait locations. Whereas NNWA customization provides

the customization for the non-landmark vertices of the model as well. Finally

when comparing the relative error magnitudes for ASM and proposed technique

it is visible that the magnitudes of the relative error values are very low for both

of these methods.

Furthermore we compared the complexities of the three algorithms. Procrustes

Analysis provides the transformation relying on the distance between the generic

model and the target image of the subject. It operates in the complexity of θ(n2).

ASM is an iterative method which involves calculation of Jacobian matrices and
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solution through Gauss-Newton approximation. For that reason time complexity

of ASM is substantial. The highlight of our proposed technique is the use of

nearest neighbor algorithm. This is performed offline and only once for a generic

wireframe model. Ray tracing, positioning of the landmark vertices and weighted

average customization of the non-landmark vertices are performed in linear time

making the complexity of our algorithm θ(n) where n is the number of vertices

in the generic wireframe model.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

Modeling has history that spans over 2500 years. Earliest idea of modeling was

presented by Plato in his theory of forms. He articulates that each entity has

its own form and this attribute abets in differentiating one object from another.

Yet for over centuries face modeling is considered as a disheartening task. This is

mainly due to the sophisticated structure of the face and numerous complications

that arise in modeling at large as a reason of the non-rigid form that it possesses.

This challenging behavior of the task has intrigued many researchers to experi-

ment in this field. Researchers’ immense interest in this field is not only due to

the challenging nature of the problem but also due to the enriched application

areas that it promises.

Parameterized and statistical methods are the two prominent approaches in face

modeling. Parameterized Face modeling is greatly dependent on the prior knowl-

edge of facial anatomy including the muscle structure. Construction of an accu-

rate parameterized model is a daunting task due to the fact that a simple move-

ment of a muscle can generate an entirely different yet significant facial expression.

There are diverse variations of modeling techniques that utilize the concepts of

parameterized face modeling. Among them mass-spring-damping method is the

most famous approach.
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In statistical modeling as its name suggests, statistical techniques are exploited in

representing an object. The most significant advancement was the introduction

of Active Shape Model (ASM) that utilizes shape parameters to identify an ob-

ject. This is an iterative method which involves calculation of Jacobian matrices

and solution through Gauss-Newton approximation. For that reason the time

complexity of this method is substantial.

Apart from these two methods there have been studies in constructing a 3 di-

mensional model employing multiple images captured from multiple cameras in

precise orientations. The main shortcoming of this approach is the inability to

employ it in daily life.

In this report we have presented a novel customization based method for face mod-

eling. The proposed semi-automatic method is capable of generating realistic 3

dimensional face models using 2 dimensional information. Perspective projection

and ray tracing techniques are exploited in achieving this task. Carefully identi-

fied 32 key traits were utilized in the customization process. These traits, which

are choosen conforming with human facial anatomy are marked manually on the

image and the data cloud.

The input to the customization process is a face image on which 32 feature points

are marked manually. Customization is initially applied on these 32 landmark

vertices, then extended to the entire wireframe to generate a face model for a

given subject. This process is conducted employing a weighted nearest neighbor

approach. Therefore the translation of a non-landmark vertex would be impacted

predominantly by the landmark vertices nearest to the point.

Our approach is substantially different from the existing parameterized and sta-

tistical modeling strategies. In contrast with the parameterized modeling tech-

niques, this method does not require extensive facial anatomical knowledge. Fur-

thermore it does not require a training dataset as in the statistical modeling
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techniques. Unlike the multiple camera approach that requires a complex appa-

ratus our method relies on a single 2 dimensional image to create an acceptable

replica of a subject.

We carried out a comparative analysis of our algorithm with Procrustes Analysis

and Active Shape Model. In this process we utilize 3 dimensional data clouds

embodied in Bosphorous 3D datasets as ground truth. Starting with a marked

image of a subject we applied all three algorithms to obtain customized models.

Since the scale of the models may vary we exploit a relative error measurement

in the evaluation process.

Our algorithm operates in substantially lower time complexity when compared

with many of the other algorithms available in this front. The highlight of our

proposed technique is the use of the nearest neighbor algorithm. This is performed

offline and only once for a generic wireframe model. Ray tracing, positioning

of the landmark vertices and weighted average customization of non-landmark

vertices are performed in linear time. Overall the complexity of our algorithm is

θ(n) where n is the number of vertices in the generic wireframe model.

Our future research plans focus on automating the identification of feature points

on face images. Numerous feature detection algorithms such as Speeded Up

Robust Feature (SURF) may be considered here.

5.2 Future Work

Our method relies on a very careful selection of feature points on the input image.

This is the only stage where direct human interaction is required. Therefore it is

the main vulnerability of the proposed method.

Currently we are conducting research to make this a fully automatic face modeling

system. Numerous feature detection techniques can be applied for identification

of facial feature points. One of our strategies in achieving this task was the ex-

ploitation of Scale Invariant Feature Transform (SIFT) features in the automatic
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feature point extraction. However we obtained mediocre results by applying this

technique. Currently other methods of automatic feature extraction such as the

SURF algorithm are being researched.

In the current stage of our research we are capable of tracking a face in a video

and update the model accordingly. However we have not performed much exper-

imentation in this front. The greatest obstacle here is the difficulty of acquiring

video databases that include 3 dimensional ground truth data. As a future work

our algorithm could be applied on a 3 dimensional video dataset. This would

enable us to observe how the performance improves when varying poses of the

same subject are utilized.
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