

SPLINE BASED NEURAL NETWORKS

A Thesis

Presented to the Institute of Science and Engineering

of

Işık University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science

In

The Department of Computer Engineering

by

Hikmet Dalkılıç

June 2005

 Approval of the Institute of Science and Engineering

 Prof .Dr. Hüsnü Erbay
 Director

 I certify that this thesis satisfies all the requirements as a thesis for the degree
of Master of Science.

 Prof Dr. Ahmet Aksen
 Head of Department

 This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

 Prof. Dr. Selahattin Kuru
 Supervisor

Examining Committee Members

 iii

ABSTRACT

SPLINE BASED NEURAL NETWORKS

Hikmet Dalkılıç

 In this thesis, we applied the Catmull-Rom splines and B-splines to the neural

networks models, which are Multi Layer Perceptrons, Elman Networks, and Locally

Recurrent Neural Networks, as adaptive activation functions. We derived the

learning algorithms for the five new neural network models, which we proposed.

This new models are called “Multi Layer Perceptrons with Adaptive B- Spline

Activation Function”, “Elman Networks with Adaptive Catmull-Rom Spline

Activation Function”, “Elman Networks with Adaptive B- Spline Activation

Function”, “Locally Recurrent Neural Networks with Adaptive Catmull-Rom Spline

Activation Function”, “Locally Recurrent Neural Networks with Adaptive B- Spline

Activation Function”. We measure the performance of these networks on the xor

problem and compare the performance of them for this problem. To simulate the

networks and to compare their performances we developed a web-based neural

network simulator written in PHP 4 called SBNN.

Keywords: Spline networks, spline activation functions, adaptive activation

functions, Adaptive Catmull-Rom spline activation functions, Adoptive B- spline

activation functions, SBNN.

 iv

ÖZET

SPLINE TABANLI YAPAY SİNİR AĞLARI

Hikmet Dalkılıç

Bu tez ile, Catmull-Rom spline fonksiyonları ve B-spline fonksiyonları

uyarlanabilir aktivasyon fonksiyonları olarak, yapay sinir ağı modelleri olan Çok

Katmanlı Ağlara,Elman ağlarına ve Yerel Geri Beslemeli ağlara uygulandı.

Bu uygulamalardan oluşturduğumuz 5 yeni yapay sinir ağı modeli için öğrenme

algoritmalarının çıkarımları yapıldı. Bu yeni modeller sırasıyla “Uyarlanabilir

Catmull-Rom Spline Aktivasyon Fonksiyonlu Çok Katmanlı Ağlar”, “Uyarlanabilir

B-Spline Aktivasyon Fonksiyonlu Çok Katmanlı Ağlar” , “Uyarlanabilir Catmull-

Rom Spline Aktivasyon Fonksiyonlu Elman Ağları”, “Uyarlanabilir B-Spline

Aktivasyon Fonksiyonlu Elman Ağları”, “Uyarlanabilir Catmull-Rom Spline

Aktivasyon Fonksiyonlu Yerel Geri Beslemeli ağlar”, ve son olarak “Uyarlanabilir

B- Spline Aktivasyon Fonksiyonlu Yerel Geri Beslemeli ağlar” diye adlandırılır.

Ağların performansı xor problemi kullanılarak ölçüldü ve sonuçları birbirleriyle

karşılaştırıldı. Yapay sinir ağlarını oluşturulması ve performanslarının ölçülmesi için

SBNN adında PHP 4 programlama dilin ile yazılmış web tabanlı bir yapay sinir ağı

similatörü geliştirildi.

Anahtar Kelimeler: Spline ağları, spline aktivasyon fonksiyonları, Uyarlanabilir

aktivasyon fonksiyonları, Uyarlanabilir Catmull-Rom spline aktivasyon

fonksiyonları, Uyarlanabilir B- spline aktivasyon fonksiyonları, SBNN.

 v

To My parents, Mehmet Ali & Fatma Dalkılıç

 vi

ACKNOWLEDGEMENTS

To people who contributed in different ways to this thesis, for which I would

like to express thanks.

Prof. Dr Selahattin Kuru for his guidance throughout my work and for keeping

me motivated with his great advises when I loose my belief to finish this thesis

before the deadline.

 Dilek , my fiancée, for her understanding of my behaviors under the stress of

the works, especially on the final days of the thesis and her support by making me

feel loved every time when I need.

 vii

TABLE OF CONTENT

PAGE

ABSTRACT …………………………………….. iii

ÖZET………………………………………………………………………............ iv

ACKNOWLEDGEMENTS……………………… …………………………….… vi

TABLE OF CONTENTS…………………………………………………………. vii

LIST OF FIGURES……………………………………………………………….. x

1. INTRODUCTION……………………………………………………………… 1

2. SPLINE FUNCTIONS…………………………………………………….…….3

2.1 Spline Specification…………………………………………………………3

2.2 Spline Function’s Mathematical Description ………………………………3

3. MULTI LAYER PERCEPTRON……………………………………………….7

3.1. Multi Layer Perceptron with Sigmoid Activation Functions......................7

3.1.1 The Structure of Multi Layer Perceptron………………………………7

3.1.2 Delta Learning Rule…………………………………………………..10

3.2. Multi Layer Perceptron with Adaptive Catmull-Rom Spline Activation

Functions……………………………………..12

3.2.1 Gradient-Based Learning for Multi layer Perceptron with Adaptive

Spline Activation Function………………………………………..….…….16

3.3. Multi Layer Perceptron with Adaptive Catmull-Rom Spline Activation

Functions……………………………………………………………................20

4. ELMAN NEURAL NETWORKS……………………………………..………29

4.1. Elman Networks with Sigmoid Activation Function…………...…29

4.2. Elman Networks With Adaptive Catmull-Rom Spline Activation

Functions...31

4.3 Elman Networks With Adaptive B-Spline Activation Functions...............36

5. LOCALLY RECURRENT NEURAL NETWORKS.......................................41

5.1 Locally Recurrent Neural Networks with Sigmoid Activation

Functions...41

5.2 Locally Recurrent Neural Networks with Adaptive Catmull-Rom Spline

Activation Functions...42

 viii

5.3 Locally Recurrent Neural Networks with Adaptive B-Spline

Activation Functions..47

6. PERFORMANS OFTHE NETWORKS……………………………………….52

6.1 Comparison of the Multi Layer Perceptron…………………………….….52

6.1.1. Comparison of the sigmoid activation functions and the B-spline

activation function for MLP………………………………………………...52

6.1.2. Comparison of the Catmull-Rom spline activation functions and

the B-spline activation functions for MLP……………………………..…...53

6.2 Comparison of the Elman Networks……………………………………….54

6.2.1. Comparison of the sigmoid activation functions and the B-spline

activation function for Elman Networks………………………………….…...54

 6.2.2. Comparison of the Catmull-Rom spline activation functions and

the B-spline activation functions for Elman Networks …………….…...…54

 6.2.3. Comparison of the Catmull-Rom spline activation functions and

the sigmoid activation functions for Elman Networks ………………….…57

6.3 Comparison of the Locally Recurrent Neural Networks ………………....58

 6.3.1. Comparison of the sigmoid activation functions and the B-spline

activation function for Locally Recurrent Neural Networks………………59

6.3.2. Comparison of the Catmull-Rom spline activation functions and the

sigmoid activation functions for Locally Recurrent Neural Networks……59

6.4 Comparison of execution time of all model………………………………60

7. SPLINE BASED NEURAL NETWORK SIMULATOR (SBNN)………..….62

7.1 Software Specification of SBNN…………………………………………62

7.2 The aim of this Software……………………………………………….…62

7.3 The Menu of the SBNN………………………………………………..…63

7.4 Training a network……………………………………………………..…64

7.5 Running and deleting a network…………………………………….……66

7.6 Comparing the Network Performance…………………………….………66

7.7 Comparing the Execution time performance ……………….…………….68

9. CONCLUSION AND RECOMMENDATIONS FOR FUTURE WOR……....69

REFERRANCES…………………………………………………………….…...70

APPENDIX: CD containing Thesis text and software code …………………….72

 ix

LIST OF FIGURES

2.1. Parametric point function p(u) for a curve section between control points

 kp ve 1+kp ………………………………………………… ……….……….. 4

3.1. A neuron structure……………………………………………….……..………8

3.2 An example of Multi Layer Perceptron……………………………….………..8

3.3. The graph of Cost Function……………………………………….…………..11

3.4 Catmull-Rom Spline curve span………………………………………………14

3.5. Control points of the Catmull–Rom spline-based activation function………..16

3.6. A neuron with adaptive spline activation function……………………………18

3.7 B-spline curve behaviors at control points……………………………………20

4.1 An example of Elman Networks……………………………………………...29

5.1. Locally Recurrent Neural Networks…………………………………….….…41

6.1. Performances of MLPs with sigmoid and adaptive b-spline activation functions
for xor problem…………………….………………………………….....……53

6.2. Performances of MLPs with adaptive CR spline and adaptive b-spline

activation functions for xor problem……………………………………..…...54

6.3. Performances of MLPs with adaptive CR spline and adaptive b-spline

activation functions for xor problem in more detail …...……………..……....54

6.4. Performances of Elman Networks with sigmoid and adaptive b-spline

activation function for xor problem……...55

6.5. Performances of Elman Networks with adaptive CR spline and adaptive b-

spline activation functions for xor problem……..………………….………....56

6.6 Performances of Elman Networks with adaptive CR spline and adaptive b-

spline activation functions for xor problem in more detail…………...……....56

6.7. Performances of Elman Networks with sigmoid and adaptive CR spline
activation functions for xor problem….….…………………………………...57

6.8. Performances of Elman Networks with sigmoid and adaptive CR spline
activation functions for xor problem in more detail……...…………….…......58

6.9 Performances of LRNNs with sigmoid and adaptive b-spline activation
functions for xor problem …………………………………………………….59

6.10 Performances of LRNNs with sigmoid and adaptive CR spline activation

functions for xor problem ………………………………………………….....60

 x

6.11 Execution time graph for all the models……………………………..………..61

7.1 The main page of SBNN……………………………………………..……….63

7.2 The submenu of “NETWORKS TYPES”………………………………….…63

7.3 The submenu of “COMPARE”………………………………………….........64

7.4 The initial parameter of a network to start training ……………………..……65

7.5. The table which shows the number of epoch to go on training……………….65

7.6. The table of outputs for MLP…………………………………………………66

7.7 Comparison table of network models and The parameters table of the

graphs, shows the graph of cost functions for the number of epoch…….…....67

7.8. An example of comparison graphics…………………………………….........67

7.9 Chosen parameters for the graph, shown in Figure 7.8……………………….68

7.10 An example of Execution Time Comparison and report table……… …….....68

 1

CHAPTER 1. INTRODUCTION

 This thesis aimed to use spline functions for the artificial neural networks as

adaptive activation function [1, 2, and 3]. We used this kind of activation functions

for the networks: “Multi Layer Perceptrons” [4], “Elman Networks” [5], and

“Locally Recurrent Neural Networks” [6].

In chapter 2, we give a brief definition of the splines function and spline

fitting[7,8] which is an extremely popular form of piecewise approximation using

various forms of polynomials of degree n, or more general functions, in which they

are fitted to the function at specified points, known as control points, nodes or knots.

In chapter 3, First of al, we explained the model “Multi Layer Perceptrons”

which is using sigmoid activation function [9]. This is one of the most popular neural

network types, which are commonly used for engineering problems. Multi Layer

Perceptrons use the “generalized delta learning rule” [10, 11] as learning algorithm.

 In the section 3.2, we described the model “Multi Layer Perceptrons with

Adaptive Catmull-Rom Spline Activation Function” [12, 13, and 14]. This model is

very similar to the MLP model the only the difference is the activation function. This

model uses a spline based activation function called “Catmull-Rom Spline [15]

Activation Function”. In this model not only the weights but also the control points

of the activation functions are adapted at the learning phase.

In the section 3.3, we used B-spline as activation function instead of Catmull-

Rom spline. For the model “Multi Layer Perceptron with Adaptive B-Spline

Activation Function”

We defined and derived the learning algorithms of this network in a similar

way, used in the model “Multi Layer Perceptron with Adaptive Catmull-Rom Spline

Activation Function”.

 In first section of chapter 4, we explained “Elman Networks” which is a

member of “Recurrent Neural Networks” [16], and its learning rule.

 2

 In the section 4.2 we propose a new network type “Elman Networks with

Adaptive Catmull-Rom Spline Activation Function” In this network we apply

“Adaptive Catmull-Rom Spline Activation Function” to the “Elman Networks” and

derive a learning algorithm for this network types.

In the section 4.3 we propose a new network type “Elman Networks with

Adaptive B- Spline Activation Function” and derive a learning algorithm for this

model.

We described the network type “Locally Recurrent Neural Networks” and it’s

learning algorithm in the first section of Chapter 5.

In the section 5.2 we propose a new network type “Locally Recurrent Neural

Networks with Adaptive Catmull-Rom Spline Activation Function” and derived a

learning algorithm for this model.

In the section 5.3 we also proposed a new network type “Locally Recurrent

Neural Networks with Adaptive B-Spline Activation Function” and derived a

learning algorithm for this model.

In chapter 6, we compared the performances of this nine network models with

the famous xor problem by using the software SBNN, developed to simulate these

nine different models.

In chapter 7, we introduced the software SBNN which is developed to simulate

neural networks, we used. SBNN is a web based program written in the

programming language PHP 4 [17]. We used this tool to compare the performance

of the network.

 3

CHAPTER 2. SPLINE FUNSCTIONS

2.1 Spline Specification

 Spline functions are piecewise polynomial functions. Commonly used in

computer graphics. These functions are fascinating properties. By using spline

functions we can easily interpolate or approximate al the control points with a

smooth, continuous curve which has first and second derivatives at every point.

Since the splines use low degree polynomials like cubic polynomials the cost of

calculation are so small comparing with the high degree polynomials. In their most

general form, splines can be considered as a mathematical model that associate a

continuous representation of a curve or surface with a discrete set of points in a given

space. We control the shapes of spline curves by changing the control points which

may also called nodes or knots. One control points effects only the four consecutive

segments of the function. Hence, we can make local changes by changing one or

more control points. In polynomials interpolation we can’t make the local changes.

When you make a change on any parameter of polynomial interpolation, it affects all

the shape of the curve.

2.2 Spline Function’s Mathematical Description

 The control points are described as (1). While the parameter u scan 0 to 1, p(u)

scans the between two intermediate control points of four consequence points used

for spline functions. Figure 2.1 shows these control points.

(1) nkzyxp kkkk ,......,2,1,0),,(==

 4

The expression at (2) is called as coefficient matrix of Catmull-Rom Splines,

and the matrix at (3) called as Catmull-Rom splines characteristic matrix. The

functions as in (4) called Catmull-Rom blending functions.

(2)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+

−

2

1

1

.

0020
0101
1452

1331

.
2
1

k

k

k

k

x

x

x

x

x
x
x

x

d
c
b
a

(3)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−

=

0020
0101
1452

1331

.
2
1

cM

Figure 2.1. Parametric point function p(u) for a curve section
between control points kp ve 1+kp

1+kp kp

))(),(),(()(uzuyuxup =

 5

Catmull-Rom Splines interpolate the end points which are second and third

points of four consecutive points. They span the region between the end points and

create a smooth curve while u spans the distance 0 to 1. We can manipulate a specific

segment of the curve by changing the four consecutive points and it gives the power

of flexibility and locality to our curve.

If there is no need to the interpolation at end points we can use another

technique which doesn’t require interpolation at end points. In this technique Curves

approximate the end points and but the segment at the right hand side and at the left

hand side must have equal derivative at the meeting points (control points). These

kinds of splines are called B-splines (5). The matrix (6) used in this description is

called b-spline characteristic matrix. The functions in (7) called blending functions of

b-spline matrix.

(5)
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+

−

2

1

1

.

0141
0303
0363
1331

.
6
1

k

k

k

k

x

x

x

x

x
x
x

x

d
c
b
a

(6)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

0141
0303
0363
1331

.
6
1

bM

)(
2
1)(

)43(
2
1)(

)253(
2
1)(

)2(
2
1)(

23
3

23
2

23
1

23
0

uuuC

uuuuC

uuuC

uuuuC

−=

++−=

+−=

−+−=

(4)

 6

3
3

23
2

23
1

23
0

6
1)(

)1333(
6
1)(

)463(
6
1)(

)133(
6
1)(

uuC

uuuuC

uuuC

uuuuC

=

+++−=

+−=

+−+−=

(7)

 7

CHAPTER 3. MULTİ LAYER PERCEPTRONS

3.1 Multi Layer Perceptrons with Sigmoid Activation Functions

 Multi Layer Perceptron is one of the most popular and most frequently used

artificial neural network model. When Minsky [18] showed that an older model

Perceptron [19], proposed before the Multi Layer Perceptrons, couldn’t solve the

famous xor problem[20], researcher’s motivation on artificial neural networks are

dramatically decreased and almost all research on this area was ended. Researcher

thought that the problem, which has no linear relations between, inputs and outputs

like xor could not be solved by artificial neural networks .Only a few researchers

continued to work on this area. One of the researchers who insisted on working on

this area was Rumellhart and his friends solved xor problem by using the more than

one layer. Rumellhart and his friends’ solution had a great impact on starting the

researches on this area. Currently, Multi Layer Perceptrons are producing solutions

almost all engineering problems and it is the most commonly used artificial neural

networks model in industry. Especially to solve the classification, generalization and

Identification problems, Multi Layer Perceptrons are frequently used with the

learning rule called “Delta Learning Rule”.

3.1.1 The Structure of Multi Layer Perceptrons

 Like all other artificial neural network, Multi Layer Perceptrons consists of

neurons. A neuron structure showed in Figure 3.1 by details.

 A neuron has inputs, output, sum function and activation function. The inputs

are multiplied by corresponding weights, which are the random number chosen the

range between 0 and 1. The sum of these products is put in an activation function and

the output of this activation function is the output of this neuron.

 8

Figure 3.1 A neuron structure

Figure 3.2 An example of Multi Layer
 Perceptron

 9

 In Multi Layer Perceptron as shown in Figure 3.2, there are three main layers,

which are Input Layer, Hidden Layer, and Output Layer. Now we will explain this

tree layer respectively.

Input layer:

 This layer’s duty is to transform the data coming from the outside world into the

hidden layer. The inputs are not multiplied by any weight and also not passed

throughout any activation functions. Every input layer neuron only one input and

only one output which is exactly same to this input. Input layer has the number of

neuron, equals to the number of inputs. Every output of input layers’ neuron is sent

to the first hidden layer as input.

Hidden layer:

 Hidden layer gets the data from inputs layer, puts them in some processes and

sends the output of this processes to the output layer. Every output of input neuron is

multiplied by a corresponding weight, which is randomly chosen from the range

between 0, and 1.The sum of these weighted inputs is passed through the

corresponding neurons’ activation functions. The output of this activation function is

the output of the corresponding neuron and sent to the output layer as input.

Output layer:

 Output layers' neurons are very similar to hidden layers’ neurons. Every neuron

in this layer gets the every output of last hidden layer as input. These inputs are

multiplied by corresponding weights as in hidden layers. The sum of these weighted

inputs is sent to activation function and the output of activation function of every

neuron in output layer is built the output of output layer also built the output of

network. The number of neuron in this layer is equal to the number of outputs of the

network.

 10

 Multi Layer Perceptron uses supervised learning method. In this method, a

specific amount of inputs and expected outputs are shown to the network. Network

makes some generalization from this example and generates a solution set for the

problem then uses this solution set for new sample to get an output.

 We mentioned about “delta learning rule” which Multi Layer Perceptron

commonly uses as learning rule. Now we will examine “delta learning rule” in

details.

3.1.2 Delta Learning Rule

 The other name of this rule is known as “least mean squares rule”. It is

developed for supervised learning models. The basics of this learning rule are related

to the philosophy of least mean squares rule. By the least mean squares rule we get

the local minimums. In the philosophy of this method, you can find a local minimum

by going to the opposite side of gradient. It may or may not be the global minimum

but it is certainly at least a local minimum.

 Delta Learning Rule use the cost function (1) which is half of the sum of the

square root of difference between network outputs and desired outputs to find weight

vectors.

If we define the difference between network outputs and desired outputs ad Q,

then we get the equation (2).

(1) 2)(

2
1∑ −=

k kk doE

(2) ∑= 2

2
1 QE

 11

The graph of this cost function is shown in Figure 3.3. As we can easily see in

this Figure opposite direction (i.e. negative direction) of derivative take us to the

minimum of this graph. In this manner we can get the following conclusion, to find

the minimum point of E-W graph we should move on the direction of
W
E

∂
∂

− .

 MLP uses the equation (3) to adapt the weights. To find the derivative on the

right hand side we use (4). To find δ, used in (4), we use (5).

(4)

⎪⎩

⎪
⎨
⎧

=

≠′
=

∂
∂

−−−

−−−−

− 0.

0).(.
1

1

rwhereo

rwhereosumf

w
E

rl
j

rl
k

rl
j

rl
k

rl
k

rl
kj δ

δ

Q
E
∂
∂

−
Q
E
∂
∂

−

Figure 3.3 The graph of Cost Function

][
][

][]1[
tw
tE

twtw l
kj

p
w

l
kj

l
kj ∂

∂
−=+ μ (3)

 12

3.2. Multi Layer Perceptrons with Adaptive Catmull-Rom Spline Activation

Functions

 In this section, we will explain the adaptive cubic Catmull-Rom Spline

Activation Functions; used in the Multi Layer Perceptrons, will be introduced. There

are many reasons to use adaptive cubic Splines as activation function. Some of them

are mentioned below.

 On Spline curves you can easily change a small segment of the curve by

changing a few control points. Changing a control point affects only the four

consecutive segments so the changes on the curve are totally local. On a

polynomial curve you can not do this kind of local adaptations. When you

change a parameter on a polynomial curve the whole curve is affected.

 The degree of the polynomial must be so high to interpolate all control points

comparing with a spline function. Hence, the cost is significantly reduced by

using a cubic spline instead of using a high degree polynomial.

Spline functions also have the following properties, which must be had by any

activation function.

 boundedness constraint

 universal approximation property

 flexibility

(5)
⎪⎩

⎪
⎨
⎧

=′−

≠
=

−

+−+−
− ∑

0)()(

0. 11

rwheresumfdo

rwherew
rl

kk
l
k

k
rl

kj
rl

krl
k

δ
δ

 13

A cubic Spline Activation Function is described as (1)

C in the equation (1) is the concatenation operator.)(uFi is ith curve span . U

is the local parameter and takes the value in the range between 0 and 1. The indices

of C are valid only for cubic polynomials. ith curve span function is defined as

)(uFi (2). In this equation,)(uC j represents spline polynomials in another words

spline blending functions. Q represents the control points.

 Every control points consist of two component x and y components.

When the Catmull-Rom splines are used as activation function)(uC j can be written

as (3).

)()]()([)(
3

uFCuFuFuF i

N

oi

T
yx

−

=
== (1)

)()]()([)(
3

0

uCQuFuFuF j
j

ji
T

yixii ∑
=

+== (2)

},.....,{ 0 nQQQ = T
iyixi qqQ][,,=

)(
2
1)(

)43(
2
1)(

)253(
2
1)(

)2(
2
1)(

23
3

23
2

23
1

23
0

uuuC

uuuuC

uuuC

uuuuC

−=

++−=

+−=

−+−=

(3)

 14

Considering the equations (3), the equation (2) can be written as the equation (4).

The derivative of this equation can be computed easily.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−

=

+

+

+

3

2

123

0020
0101
1452

1331

2
1]1[)(

i

i

i

i

i

Q
Q
Q
Q

uuuuF (4)

Qi

Qi+1

Qi+2

Qi+3

Figure 3.4 Catmull-Rom Spline curve span

 15

The derivatives at the end points are taken as below, shown in Figure 3.4.

 While u=0][
2
1)0(

2++−=
∂

∂
ii

i QQ
u

F
.

 While u=1][
2
1)1(

31 ++ +−=
∂

∂
ii

i QQ
u

F

To reduce the cost of the calculation the control points abscissas are chosen

equally spaced on the x-axis and centered at the origin. The abscissas of the control

points are not adapted also. Hence,)(uFxi becomes a linear function instead of a

cubic polynomial function. xΔ shows the equal distances between the abscissas of

the consecutive control points.

Since we choose the abscissa of control point’s equally distanced and centered

at the origin there is no need to store the abscissas of the control points. All we need

to store number of control points and the distance between the control points.

The initial values for control points are derived from the most popular

activation function called sigmoid activation function. Since the activation function

must be a limiting function, last two points and first two points are fixed to satisfy

this property shown in Figure3.5.

 16

3.2.1 Gradient-Based Learning for Multi Layer Perceptrons with Adaptive

Spline Activation Function

Definition of the parameters:

• l
kO Output of the kth neuron in the lth layer;

• l
kjw Weight of the kth neuron in the lth layer with respect to the jth neuron

in the previous layer.(l
kw 0 are the bias terms);

• l
kSum Net output (i.e., linear combiner output)of the kth neuron in the lth

layer;

• 1+N Number of control points for each neuron in the network;

• xΔ Sampling step along the x-axis for each activation function;

• l
ki Curve span index of the activation function for the kth neuron in the lth

layer(0≤ l
ki ≤N-2);

• l
ku Local parameter for the l

ki th curve span of the kth neuron in the lth layer

(0≤ l
ku ≤1);

Figure 3.5 Control points of the Catmull–Rom spline-based activation
function with a fixed step Δx. The extreme points qx;0, qx,1, and qx,N-1,
qx;N-2 are fixed

 17

• l
nkq , Ordinate of the nth control point of the kth neuron in the lth layer

(0≤n≤N). The control point abscissas nxq , do not appear since we assume the x-

axes are uniformly sampled;

• (.)
,
l
ik l
k

F l
ki th Spline patch of the activation function for the kth neuron in the

lth layer;

• (.),
l

mkC mth CR polynomial(blending function) for the kth neuron in the lth

layer(0≤m≤3).

Forward Computation:

The parameters u and i gathered from the equations (5) and sent as inputs to the

equation (6).

 Output of this equation (6) is also the output of the neuron.

⎣ ⎦

⎣ ⎦l
k

l
k

l
k

l
k

l
k

l
k

zzu

zi

N
x

Sum
z

−=

=

−
+

Δ
=

2
2

(5)

(6) ∑
=

+
==

3

0
,)(,,)()(

m

l
k

l
mk

l
mik

l
k

l
ik

l
k uCquFO l

k
l
k

 18

The block, which is defined at (5), called GS1 and the block, defined in (6) called

GS2 shown in Figure 3.6.

 Backward Computation (Learning Phase):

p shows the learning sample, t shows the iteration indices, o shows the output

of the neuron, d shows the desired output, E shows the cost function. wμ and qμ are

learning coefficient for weights and the control points, respectively.

For every neuron an e parameter is defined as in (7)

⎪⎩

⎪
⎨
⎧

−=

=−
=
∑ +

=
++1

1
11 1,,1][

])[][(
][

lN

p
l
pk

l
p

k
l
kl

k Mlwt

Mltdto
te

Lδ
(7)

Figure 3.6 A neuron with adaptive spline activation function

 19

δ parameter is also defined as in(8) for every neuron.

Since we fixed last and first two points, the fixed values are used for the

derivative of these points as in (9).

If we get l
kw 0 weights as offset values, the equations (10) and (11) are used to

adapt weights and control points respectively.

)
][

])[(
]([][,

tSum

tsF
tet l

k

l
k

l
ikl

k
l
k

l
k

∂

∂
=δ (8)

l
Nk

l
k

l
Nk

l
Nk

l
k

l
k

l
ik

l
lk

l
k

l
k

l
k

l
k

l
k

l
ik

qs
x
qq

tsum

tsF

qs
x
qq

tsum

tsF

l
k

l
k

1,
1,,,

,
0,1,,

][

])[(

][

])[(

−
− >

Δ

−
=

∂

∂

<
Δ

−
=

∂

∂

(9)

⎪⎩

⎪
⎨
⎧

=

≠
+=+

−

01

0
][][]1[

1

j

jo
ttwtw

l
jl

kw
l
kj

l
kj δμ (10)

3,,0

])[(][][]1[,)(,)(,

L=

+∂=+
++

m

tuCtetqtq l
k

l
mk

l
kq

l
mik

l
mik l

k
l
k

μ (11)

 20

3.3. Multi Layer Perceptron with Adaptive B-Spline Activation Functions

 In this section we will use the adaptive b-spline activation functions for Multi

layer Perceptron by the same technique used in section 3.2.Actually we only change

the spline types. Hence, the computations are very similar to 3.2. The main

difference between Catmull-Rom splines and B-Splines is their positions at the

control points. While Catmull-Rom spline is interpolating control points, B-spline

approximates the control points as in Figure 3.7 .

B-spline characteristic matrix and blending functions described (1) and (2)

respectively as we mentioned in chapter 2.

Figure 3.7 B-spline curve behaviors at control points

(1)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

0141
0303
0363
1331

6
1

bM

 21

Considering the equation (1), we can define the equation (3) for the ordinate of

the control points as in section 3.2.

The derivative of the equation (3) for u is written as the equation (4).

3
3

32
2

32
1

3
0

6
1)(

)3331(
6
1)(

)364(
6
1)(

)1(
6
1)(

uuC

uuuuC

uuuC

uuC

=

−++=

+−=

−=

(2)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

+

+

+

3

2

123

0141
0303
0363
1331

2
1]1[)(

i

i

i

i

i

Q
Q
Q
Q

uuuuF (3)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−
=

∂
∂

+

+

+

3

2

12

0141
0363
1331

6
1]123[

)(

i

i

i

i

i

Q
Q
Q
Q

uu
u
uF

(4)

 22

The derivatives at the end points are computed as below as computed in section

3.2.

 While u=0][
2
1)0(

2++−=
∂

∂
ii

i QQ
u

F
.

 While u=1][
2
1)1(

31 ++ +−=
∂

∂
ii

i QQ
u

F

If we choose the control points in the same way we used in section 3.2. We

constrain the control points’ abscissas to be equidistant and not adaptable and also

centered at the origin.

When we solve the equation (5) we get the equation (6).

Forward Computation:

The equation (6) can be written as the equation (7).

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Δ+
Δ+
Δ+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

xQ
xQ
xQ

Q

uuuuF

ix

ix

ix

ix

xi

3
2

0141
0303
0363
1331

6
1]1[)(

,

,

,

,

23 (5)

1,,)(++Δ=Δ++Δ= ixixxi qxuxqxuuF (6)

1, ++Δ= ixqxuSum (7)

 23

1, +ixq , in the equation (7) can be expressed as (8).

By putting the equation (8) into the equation (7), we get the equation (9). To

find u and i parameters the equation (9) can be written as the equation (10). Finally

u+i calculated as in (10). If the left hand side of the equation named as z then the

equations at (11) can be written. The block (11) is called as SG1. We get the

necessary parameters u and i in the equations (11) for the block SG2.

xixNq ix Δ++
Δ

−=+).1(
2
.

1,
(8)

iuN
x

Sum
+=

−
+

Δ 2
2

(10)

⎣ ⎦

⎣ ⎦l
k

l
k

l
k

l
k

l
k

l
k

zzu

zi

N
x

Sum
z

−=

=

−
+

Δ
=

2
2

(11)

(9) xixNxuSum Δ++
Δ

−+Δ=)1(
2

 24

As in the section 3.2, the equation (12) called as SG2 block and use u and i as

inputs. Outputs of SG2 block is also the output of neuron.

 Backward Computation (Learning Phase with adaptive b-spline activation

function)

We will use the same gradient reduction technique, used in MLP with adaptive

CR-spline activation functions. . The cost function is defined at (13). The equation

(14) for the weights and the equation (15) for the control points will be used for

adaptation. wμ and qμ represent the learning parameter for weights and control

points.

(12) ∑
=

+
==

3

0
,)(,,)()(

m

l
k

l
mk

l
mik

l
k

l
ik

l
k uCquFO l

k
l
k

(13)
2)][][(

2
1][∑ −=

k
l
k

l
kp tdtotE

][
][

][]1[
tw
tE

twtw l
kj

p
w

l
kj

l
kj ∂

∂
−=+ μ (14)

3,,0

][
][

][]1[
)(,

)(,)(,

K=

∂

∂
−=+

+
++

mwhere

tq
tE

tqtq l
mik

p
q

l
mik

l
mik

l
k

l
k

l
k

μ
(15)

 25

By using the chain rule, the equation (16) can easily be written. When we

write the derivatives on the right hand side, we get the equation (17)

We can also write the equation (17) in more detail like in (18).Now we will

define the][tl
kδ in the equation (19). Hence, the equation (18) can be written as the

equation (20) shortly. This equation is used for the output layer. For the last hidden

layer we use the equation (21).For the hidden layer we can write the equation (22) as

the equation (24) with the new δ value.

layeroutputrepresentslwhere

tw
tSum

tSum
tu

tu
to

to
tE

tw
tE

l
kj

l
k

l

l
k

l

l
k

l
k

p
l
kj

p

kk][
][

][
][

][
][

][
][

][
][

∂
∂

∂
∂

∂
∂

∂

∂
=

∂

∂
(16)

layeroutputrepresentslwhere

to
x

tuftdto
tw
tE l

j
l
kk

l
kl

kj

p][1])[(])[][(
][
][1−

Δ
′−=

∂

∂
(17)

layeroutputrepresentslwhere

to
x

Q
Q
Q
Q

uutdto
tw
tE l

k

i

i

i

i

l
k

l
kk

l
kl

kj

p][1

0141
0363
1331

6
1]1)(2)(3])[[][(

][
][1

3

2

12 −

+

+

+

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−
−=

∂

∂
(18)

(19)

x
tuftdto

tSum
tE

t l
kk

l
kl

k

pl
k Δ

′−=
∂
∂

=
1])[(])[][(

][
][

][δ

 26

Equation (21) can be written as the equation (22).Now we will define the δ, as

in (23), for the last hidden layer.

When we generalize these results for all hidden layers and output layer we get

the δ value as in (25) and Derivative for the weights as in (26).

(21)

][
][

][
][

][
][

][
][

][
][

1

1

11 tw
to

to
tsum

tsum
u

u
to

to
tE

tw
tE

l
kj

l
k

k l
k

l
k

l
k

l
k

l
k

l
k

l
k

l
kj

−

−

−− ∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=
∂
∂ ∑

][][
][
][1 tot

tw
tE l

j
l
kl

kj

p −=
∂

∂
δ

(20)

(22)][

][][
][

][
1

1

1 tw
towt

tw
tE

l
kj

l
k

k
l
kj

l
kl

kj
−

−

− ∂
∂

=
∂
∂ ∑ δ

l
kj

l
k

l
k wtt][][1 δδ =−

(23)

(24)

211

1

1

1

1

1

1
1

1

1])[(][

][
][

][
][

][
][][

][
][

−−−

−

−

−

−

−

−
−

−

Δ
′=

∂
∂

∂
∂

∂
∂

=
∂
∂

∑

∑

l
j

l
kk

l
k

l
kj

l
k

l
kj

l
k

l
kj

l
k

k
l
kl

kj

o
x

tuft

tw
tSum

tSum
tu

tu
tot

tw
tE

δ

δ

 27

For the control points adaptation of the output layers’ neurons we use the

equation (27). For the control points’ adaptation of the last hidden layer, we use the

equation (28)

(25)
⎪
⎩

⎪
⎨

⎧

=
Δ

′−

≠
=
∑ +−+−

−

01])[(])[][(

0][][
][

11

rwhere
x

tuftdto

rwheretwt
t

l
kk

l
k

k
rl

kj
rl

k
rl

k

δ
δ

3,,0

])[(])[][(
][

])[(
])[][(

][
][

])[][(
][

][
][
][

][
][

,
)(,

)(,

)(,)(,)(,

L=

−=
∂

∂
−=

∂
∂

−=
∂
∂

∂

∂
=

∂

∂

+

+

+++

mfor

tuCtdto
tq

tsF
tdto

tq
to

tdto
tq

to
to
tE

tq
tE

l
k

l
mkk

l
kl

mik

l
k

l
mik

k
l
k

l
mik

l
k

k
l
kl

mik

l
k

l
k

p
l

mik

p

l
k

l
k

l
k

l
k

l
k

(27)

(26)

⎪⎩

⎪
⎨

⎧

=

≠
Δ

′
=

∂
∂

−−−

−−−−

−

0

01])[(.

1

1

rwhereo

rwhereo
x

tuf

w
E

rl
j

rl
k

rl
j

rl
k

rl
k

rl
kj δ

δ

3,,0

])[(][1])[(])[][(

][
][

][
][

][
][

][
][

][
][

][
][

11
,

1
)(,

1

11
)(, 11

L=
Δ

′−∑

∂
∂

∂
∂

∂
∂

∂
∂

∂

∂
∑=

∂

∂

−−

−
+

−

−−
+ −−

mfor

tuCtw
x

tuftdto

tq
to

to
tSum

tSum
tu

tu
to

to
tE

tq
tE

l
k

l
mk

l
kj

l
kk

l
kk

l
mik

l
k

l
k

l
k

l
k

l
k

l
k

l
k

l
k

p
kl

mik

p

l
k

l
k

(28)

 28

To generalize this conclusion to the all hidden layers and output layer, we

define a new parameter e as in (29). Hence, we define the derivative of cost function

for control points as in (30). For the fixed points we use the derivatives in (31).

⎪⎩

⎪
⎨
⎧

≠
Δ

′

=−
=
∑ +−+−+−

−

0][1])[(][

0])[][(
][

111 rwheretw
x

tufte

rwheretdto
te

rl
kj

rl
k

rl
k

k
l
k

rl
k

(29)

3,,0])[(][
][

][
,

)(,

L==
∂

∂ −−−
−

+−

mfortuCte
tq

tE rl
k

rl
mk

rl
krl

mik

p

rl
k (30)

l
Nk

l
k

l
Nk

l
Nk

l
k

l
k

l
ik

l
lk

l
k

l
k

l
k

l
k

l
k

l
ik

qs
x
qq

tsum

tsF

qs
x
qq

tsum

tsF

l
k

l
k

1,
1,,,

,
0,1,,

][

])[(

][

])[(

−
− >

Δ
−

=
∂

∂

<
Δ
−

=
∂

∂

(31)

 29

CHAPTER 4. ELMAN NETWORK

 Elman networks [17] are in the class of recurrent neural networks. These

networks store the hidden layer’s output and give these outputs to the neuron with

the other inputs in the next iteration. These outputs, very similar to other inputs, also

have weights. A neuron can not understand differences of outputs from the other

inputs. Neurons act them as if they are inputs, came from previous layer.

 .

4.1. Elman Networks with Sigmoid Activation

Elman Network has a new Sum function (1) for the hidden layers comparing

with Multi Layer Perceptron. But for the output layer Sum function (2) is the same

with the function used in Multi Layer Perceptron.

Figure 4.1 An example of Elman Networks

∑ ∑
=

+
=

− −+=
j

m

l
mjk

k

m

l
m

l
km

l
m

l
k wtotwtotSum

1
)(,

1

1]1[][][][(1)

 30

Learning Algorithm:

Elman networks also use Generalized Delta Learning Rule like MLP. Cost

function and weight’s adaptation function, described as (3) and (4) respectively.

The δ parameters can be written as in (5) and
w
E
∂
∂ also can be written in (6).

∑
=

−=
j

m

l
km

l
m

l
k twtotSum

1

1][][][(2)

(3) 2)][][(
2
1][∑ −=

k
l
k

l
kp tdtotE

][

][
][]1[

tw

tE
twtw

l
kj

pl
kj

l
kj

∂
+=+ η (4)

(5)
⎪⎩

⎪
⎨
⎧

=′−

≠
=

−

+−+−
− ∑

0])[(])[][(

0][][
][

11

rwheretsumftdto

rwheretwt
t

rl
kk

l
k

k
rl

kj
rl

krl
k

δ
δ

(6)

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−′

′

=
∂

∂

−−−

−
+

−−

−−−−

−

0][][

]1[])[(][

][])[(][

][
][

1

1

rwheretot

layercontextfortotsumft

layerhiddenfortotsumft

tw
tE

rl
j

rl
k

rl
kj

rl
k

rl
k

rl
j

rl
k

rl
k

rl
kj

p

δ

δ

δ

 31

4.2. Elman Networks with Adaptive Catmull-Rom Spline Activation Function

In Standard Elman Networks, sigmoid function is used as activation function.

We will use Catmull-Rom Spline Activation Function, used for Multi Layer

Perceptrons before, for the Elman Networks. Cost function (1) is same as before.

Forward Computation:

We get SG1 block output by the equations (2).

Backward Computation:

We use the equation (3) for the weight adaptation.

(1)
2)][][(

2
1][∑ −=

k
l
k

l
kp tdtotE

][
][

][]1[
tw
tE

twtw l
kj

p
w

l
kj

l
kj ∂

∂
−=+ μ (3)

⎣ ⎦

⎣ ⎦l
k

l
k

l
k

l
k

l
k

l
k

zzu

zi

N
x

Sum
z

−=

=

−
+

Δ
=

2
2

(2)

 32

We used the δ, as in the equation (4), and derivative formula as in the equation

(5) for the Elman Networks with sigmoid activation functions.

(4)
⎪⎩

⎪
⎨
⎧

=′−

≠
=

−

+−+−
− ∑

0])[(])[][(

0][][
][

11

rwheretsumftdto

rwheretwt
t

rl
kk

l
k

k
rl

kj
rl

krl
k

δ
δ

(5)

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−′

′

=
∂

∂

−−−

−
+

−−

−−−−

−

0][][

]1[])[(][

][])[(][

][
][

1

1

rwheretot

layercontextfortotsumft

layerhiddenfortotsumft

tw
tE

rl
j

rl
k

rl
kj

rl
k

rl
k

rl
j

rl
k

rl
k

rl
kj

p

δ

δ

δ

x
Q
Q
Q
Q

tutu

x
tuf

tSum
tu

tu
to

tSum
to

tsumf

i

i

i

i

ll

l
kl

l
k

l

l
k

l
k

l
kl

k

kk

kk

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−
=

Δ
′=

∂
∂

∂
∂

=
∂
∂

=′

+

+

+ 1

0101
1452

1331

2
1]1])[(2])[(3[

1])[(
][

][
][
][

][
][

])[(

3

2

12

(6)

 33

If we apply (6) to (4) and (5) we derive the equations (7) and (8).

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=
Δ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

≠

=

⎪
⎩

⎪
⎨

⎧

=
Δ

′−

≠
=

+

+

+−−

+−+−

−

+−+−

−

∑

∑

01

0101
1452

1331

2
1]1])[(2])[(3])[[][(

0][][

01])[(])[][(

0][][
][

3

2

12

11

11

rwhere
x

Q
Q
Q
Q

tututdto

rwheretwt

rwhere
x

tuftdto

rwheretwt
t

i

i

i

i

rlrl
k

l
k

k
rl

kj
rl

k

rl
kk

l
k

k
rl

kj
rl

k
rl

k

kk

δ

δ
δ

(7)

(8) ⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

−
Δ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−

=
∂

∂

−−−

−
+

+

+

+−−−

−−

+

+

+−−−

−

0][][

]1[1

0101
1452

1331

2
1]1])[(2])[(3][[

][1

0101
1452

1331

2
1]1])[(2])[(3][[

][
][

1

3

2

12

1

3

2

12

rwheretot

layercontextfor

to
x

Q
Q
Q
Q

tutut

layerhiddenfor

to
x

Q
Q
Q
Q

tutut

tw
tE

rl
j

rl
k

rl
kj

i

i

i

i

rlrlrl
k

rl
j

i

i

i

i

rlrlrl
k

rl
kj

p
kk

kk

δ

δ

δ

 34

For the control points adaptation we use the equation (9). The difference

between Elman Networks with adaptive Catmull-Rom spline activation function and

Multi Layer Perceptron with adaptive Catmull-Rom spline activation function is Sum

function. Hence, there is no difference adapting the control points. For the output

layers, the equation (10) is used.

For the last hidden layer,

3,,0

][
][

][]1[
)(,

)(,)(,

K=

∂

∂
−=+

+
++

mwhere

tq
tE

tqtq l
mik

p
q

l
mik

l
mik

l
k

l
k

l
k

μ
(9)

3,,0

])[(])[][(
][

])[(
])[][(

][
][

])[][(
][

][
][
][

][
][

,
)(,

)(,

)(,)(,)(,

L=

−=
∂

∂
−=

∂
∂

−=
∂
∂

∂

∂
=

∂

∂

+

+

+++

mfor

tuCtdto
tq

tsF
tdto

tq
to

tdto
tq

to
to
tE

tq
tE

l
k

l
mkk

l
kl

mik

l
k

l
mik

k
l
k

l
mik

l
k

k
l
kl

mik

l
k

l
k

p
l

mik

p

l
k

l
k

l
k

l
k

l
k

(10)

3,,0

])[(][1])[(])[][(

][
][

][
][

][
][

][
][

][
][

][
][

11
,

1
)(,

1

11
)(, 11

L=
Δ

′−∑

∂
∂

∂
∂

∂
∂

∂
∂

∂

∂
∑=

∂

∂

−−

−
+

−

−−
+ −−

mfor

tuCtw
x

tuftdto

tq
to

to
tSum

tSum
tu

tu
to

to
tE

tq
tE

l
k

l
mk

l
kj

l
kk

l
kk

l
mik

l
k

l
k

l
k

l
k

l
k

l
k

l
k

l
k

p
kl

mik

p

l
k

l
k

(11)

 35

When we generalize these results we get the equation (12) and (13)

We use the derivatives (14) for the fixed control paints.

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≠

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−

=−

=

⎪⎩

⎪
⎨
⎧

≠
Δ

′

=−
=

∑

∑

+−

+

+

++−+−+−

+−+−+−
−

0

][1

0101
1452

1331

2
1]1])[(2])[(3][[

0])[][(

0][1])[(][

0])[][(
][

1

3

2

11211

111

rwhere

tw
x

Q
Q
Q
Q

tutute

rwheretdto

rwheretw
x

tufte

rwheretdto
te

rl
kj

i

i

i

i

rlrlrl
k

k
l
k

rl
kj

rl
k

rl
k

k
l
k

rl
k

kk

(12)

3,,0])[(][
][

][
,

)(,

L==
∂

∂ −−−
−

+−

mfortuCte
tq

tE rl
k

rl
mk

rl
krl

mik

p

rl
k

(13)

l
Nk

l
k

l
Nk

l
Nk

l
k

l
k

l
ik

l
lk

l
k

l
k

l
k

l
k

l
k

l
ik

qs
x
qq

tsum

tsF

qs
x
qq

tsum

tsF

l
k

l
k

1,
1,,,

,
0,1,,

][

])[(

][

])[(

−
− >

Δ
−

=
∂

∂

<
Δ
−

=
∂

∂

(14)

 36

4.3 Elman Networks With Adaptive B-Spline Activation Functions

In this section we will apply adaptive b-spline activation function to the Elman

Networks. The cost functions is described as in (1)

Forward Computation:

We will use the same forward computation as we use for the CR spline

activation functions. The block in (2) is called SG1.

Backward Computation:

We will use the equation (3) to adapt the weights as in CR splines.

(1)
2)][][(

2
1][∑ −=

k
l
k

l
kp tdtotE

][
][

][]1[
tw
tE

twtw l
kj

p
w

l
kj

l
kj ∂

∂
−=+ μ (3)

⎣ ⎦

⎣ ⎦l
k

l
k

l
k

l
k

l
k

l
k

zzu

zi

N
x

Sumz

−=

=

−
+

Δ
=

2
2

(2)

 37

The δ and the derivative
w
E
∂
∂ are described as in (4) and (5) respectively for the

standard Elman Networks, which use sigmoid function as activation function. We

can easily adapt these two equations for the b-spline activation function.

The only change is])[(tsumf l
k′ which can be derived as in (6).

(4)
⎪⎩

⎪
⎨
⎧

=′−

≠
=

−

+−+−
− ∑

0])[(])[][(

0][][
][

11

rwheretsumftdto

rwheretwt
t

rl
kk

l
k

k
rl

kj
rl

krl
k

δ
δ

(5)

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−′

′

=
∂

∂

−−−

−
+

−−

−−−−

−

0][][

]1[])[(][

][])[(][

][
][

1

1

rwheretot

layercontextfortotsumft

layerhiddenfortotsumft

tw
tE

rl
j

rl
k

rl
kj

rl
k

rl
k

rl
j

rl
k

rl
k

rl
kj

p

δ

δ

δ

x
Q
Q
Q
Q

uu

x
tuf

tSum
tu

tu
to

tSum
totsumf

i

i

i

i

l
k

l
k

l
kl

l
k

l

l
k

l
k

l
kl

k
kk

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=

Δ
′=

∂
∂

∂
∂

=
∂
∂

=′

+

+

+ 1

0303
0363
1331

6
1]1)(2)(3[

1])[(
][

][
][
][

][
][])[(

3

2

12 (6)

 38

Now we can write the δ and the derivative
w
E
∂
∂ as in (7) and (8).

(7)

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
−

≠

=

⎪
⎩

⎪
⎨

⎧

=
Δ

′−

≠
=

+

+

+−−

+−+−

−

+−+−

−

∑

∑

0

1

0303
0363
1331

6
1]1])[(2])[(3])[[][(

0][][

01])[(])[][(

0][][
][

3

2

12

11

11

rwhere

x
Q
Q
Q
Q

tututdto

rwheretwt

rwhere
x

tuftdto

rwheretwt
t

i

i

i

i

rlrl
k

l
k

k
rl

kj
rl

k

rl
kk

l
k

k
rl

kj
rl

k
rl

k

kk

δ

δ
δ

(8)

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

−
Δ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

=
∂

∂

−−−

−
+

+

+

+−−−

−−

+

+

+−−−

−

0][][

]1[1

0303
0363
1331

6
1]1])[(2])[(3][[

][1

0303
0363
1331

6
1]1])[(2])[(3][[

][
][

1

3

2

12

1

3

2

12

rwheretot

layercontextfor

to
x

Q
Q
Q
Q

tutut

layerhiddenfor

to
x

Q
Q
Q
Q

tutut

tw
tE

rl
j

rl
k

rl
kj

i

i

i

i

rlrlrl
k

rl
j

i

i

i

i

rlrlrl
k

rl
kj

p

kk

kk

δ

δ

δ

 39

We will use the equation (9) to adapt the control points. Since the only

difference between Elman Networks and MLP is the Sum function, there is no

difference between Elman Networks and MLP for the adaptation of control points.

For output layer, (10) is used.

For last hidden layer, (11) is used

3,,0

][
][

][]1[
)(,

)(,)(,

K=

∂

∂
−=+

+
++

mwhere

tq
tE

tqtq l
mik

p
q

l
mik

l
mik

l
k

l
k

l
k

μ
(9)

3,,0

])[(])[][(
][

])[(
])[][(

][
][

])[][(
][

][
][
][

][
][

,
)(,

)(,

)(,)(,)(,

L=

−=
∂

∂
−=

∂
∂

−=
∂
∂

∂

∂
=

∂

∂

+

+

+++

mfor

tuCtdto
tq

tsF
tdto

tq
to

tdto
tq

to
to
tE

tq
tE

l
k

l
mkk

l
kl

mik

l
k

l
mik

k
l
k

l
mik

l
k

k
l
kl

mik

l
k

l
k

p
l

mik

p

l
k

l
k

l
k

l
k

l
k

(10)

3,,0

])[(][1])[(])[][(

][
][

][
][

][
][

][
][

][
][

][
][

11
,

1
)(,

1

11
)(, 11

L=
Δ

′−∑

∂
∂

∂
∂

∂
∂

∂
∂

∂

∂
∑=

∂

∂

−−

−
+

−

−−
+ −−

mfor

tuCtw
x

tuftdto

tq
to

to
tSum

tSum
tu

tu
to

to
tE

tq
tE

l
k

l
mk

l
kj

l
kk

l
kk

l
mik

l
k

l
k

l
k

l
k

l
k

l
k

l
k

l
k

p
kl

mik

p

l
k

l
k

(11)

 40

By generalizing these results, we get the (12) and (13).

We use the derivatives (14) for the fixed control paints.

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≠

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

=−

=

⎪⎩

⎪
⎨
⎧

≠
Δ

′

=−
=

∑

∑

+−

+

+

++−+−+−

+−+−+−
−

0

][1

0303
0363
1331

6
1]1])[(2])[(3][[

0])[][(

0][1])[(][

0])[][(
][

1

3

2

11211

111

rwhere

tw
x

Q
Q
Q
Q

tutute

rwheretdto

rwheretw
x

tufte

rwheretdto
te

rl
kj

i

i

i

i

rlrlrl
k

k
l
k

rl
kj

rl
k

rl
k

k
l
k

rl
k

kk

(12)

3,,0])[(][
][

][
,

)(,

L==
∂

∂ −−−
−

+−

mfortuCte
tq

tE rl
k

rl
mk

rl
krl

mik

p

rl
k

(13)

l
Nk

l
k

l
Nk

l
Nk

l
k

l
k

l
ik

l
lk

l
k

l
k

l
k

l
k

l
k

l
ik

qs
x
qq

tsum

tsF

qs
x
qq

tsum

tsF

l
k

l
k

1,
1,,,

,
0,1,,

][

])[(

][

])[(

−
− >

Δ
−

=
∂

∂

<
Δ
−

=
∂

∂

(14)

 41

CHAPTER 5. LOCALLY RECURRENT NEURAL NETWORKS

5.1 Locally Recurrent Neural Networks with Sigmoid Activation Function

LRNN is a member of recurrent networks. The only difference from the MLP

is the Sum function of the hidden layers’ neuron. A hidden layer’s neuron stores the

output of itself and sent to the Sum function of itself as weighted input.

The Sum function for hidden Layer’s neuron which is the only difference of

LRNN from the MLP, shown in (1). The Sum function (2) for output layer is the

same with the MLP.

∑
=

+
− −+=

j

m

l
jk

l
k

l
km

l
m

l
k wtotwtotSum

1
)1(,

1]1[][][][(1)

∑
=

−=
j

m

l
km

l
m

l
k twtotSum

1

1][][][(2)

 Figure 5.1 Locally Recurrent Neural Networks

 42

Learning Algorithm:

LRNN networks use Generalized Delta Learning rule. It uses (3), (4), and (5)

for the adaptation of the weights.

5.2 Locally Recurrent Neural Networks with Adaptive Catmull-Rom Spline

Activation Function

Standard LRNN networks use the sigmoid activation function. We will apply

the CR-Splines activation function to the LRNN. The cost function is the same as

before as in (1).

][

][
][]1[

tw

tE
twtw

l
kj

pl
kj

l
kj

∂
+=+ η (3)

(4)
⎪⎩

⎪
⎨
⎧

=′−

≠
=

−

+−+−
− ∑

0])[(])[][(

0][][
][

11

rwheretsumftdto

rwheretwt
t

rl
kk

l
k

k
rl

kj
rl

krl
k

δ
δ

(5)

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−′

′

=
∂

∂

−−−

−
+

−−

−−−−

−

0][][

]1[]).[(][

][]).[(][

][
][

1

1

1

rwheretot

weightfeedbackfortotsumft

layerhiddenfortotsumft

tw
tE

rl
j

rl
k

rl
j

rl
k

rl
k

rl
j

rl
k

rl
k

rl
kj

p

δ

δ

δ

(1)
2)][][(

2
1][∑ −=

k
l
k

l
kp tdtotE

 43

Forward Computation:

We use the block SG1 without changing as in (2)

Backward Computation:

 We use (3) to adapt weights. Standard LRNN has the δ and the

derivative
w
E
∂
∂ as in (4) and (5) respectively

(4)
⎪⎩

⎪
⎨
⎧

=′−

≠
=

−

+−+−
− ∑

0])[(])[][(

0][][
][

11

rwheretsumftdto

rwheretwt
t

rl
kk

l
k

k
rl

kj
rl

krl
k

δ
δ

][
][

][]1[
tw
tE

twtw l
kj

p
w

l
kj

l
kj ∂

∂
−=+ μ (3)

⎣ ⎦

⎣ ⎦l
k

l
k

l
k

l
k

l
k

l
k

zzu

zi

N
x

Sumz

−=

=

−
+

Δ
=

2
2

(2)

 44

We can write])[(tsumf l
k′ for LRNN with CR Spline functions as in (6).

We can write (4) and (5) for the LRNN as (7) and (8) considering the (6).

(5)

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−′

′

=
∂

∂

−−−

−
+

−−

−−−−

−

0][][

]1[])[(][

][])[(][

][
][

1

1

1

rwheretot

weightfeedbackfortotsumft

layerhiddenfortotsumft

tw
tE

rl
j

rl
k

rl
j

rl
k

rl
k

rl
j

rl
k

rl
k

rl
kj

p

δ

δ

δ

x
Q
Q
Q
Q

tutu

x
tuf

tSum
tu

tu
to

tSum
to

tsumf

i

i

i

i

ll

l
kl

l
k

l

l
k

l
k

l
kl

k

kk

kk

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−
=

Δ
′=

∂
∂

∂
∂

=
∂
∂

=′

+

+

+ 1

0101
1452

1331

2
1]1])[(2])[(3[

1])[(
][

][
][
][

][
][

])[(

3

2

12

(6)

(7)

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

≠

=

⎪
⎩

⎪
⎨

⎧

=
Δ

′−

≠
=

+

+

+−−

+−+−

−

+−+−

−

∑

∑

0

1

0101
1452

1331

2
1]1])[(2])[(3])[[][(

0][][

01])[(])[][(

0][][
][

3

2

12

11

11

rwhere

x
Q
Q
Q
Q

tututdto

rwheretwt

rwhere
x

tuftdto

rwheretwt
t

i

i

i

i

rlrl
k

l
k

k
rl

kj
rl

k

rl
kk

l
k

k
rl

kj
rl

k
rl

k

kk

δ

δ
δ

 45

There is no change in the way of adapting the control points.

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

−
Δ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−

=
∂

∂

−−−

−
+

+

+

+−−−

−−

+

+

+−−−

−

0][][

]1[1

0101
1452

1331

2
1]1])[(2])[(3][[

][1

0101
1452

1331

2
1]1])[(2])[(3][[

][
][

1

1

3

2

12

1

3

2

12

rwheretot

layercontextfor

to
x

Q
Q
Q
Q

tutut

layerhiddenfor

to
x

Q
Q
Q
Q

tutut

tw
tE

rl
j

rl
k

rl
j

i

i

i

i

rlrlrl
k

rl
j

i

i

i

i

rlrlrl
k

rl
kj

p
kk

kk

δ

δ

δ

(8)

3,,0

][
][

][]1[
)(,

)(,)(,

K=

∂

∂
−=+

+
++

mwhere

tq
tE

tqtq l
mik

p
q

l
mik

l
mik

l
k

l
k

l
k

μ
(8)

 46

For output layer, we use (9). For last hidden layer, we use (10). When we

generalize the results, we got before, we can write the equations (11) and (12) for

LRNN.

We use the derivatives (11) for the fixed control paints.

3,,0

])[(])[][(
][

])[(
])[][(

][
][

])[][(
][

][
][
][

][
][

,

)(,

)(,

)(,)(,)(,

L=

−=
∂

∂
−=

∂
∂

−=
∂
∂

∂

∂
=

∂

∂

+

+

+++

mfor

tuCtdto
tq

tsF
tdto

tq
to

tdto
tq

to
to
tE

tq
tE

l
k

l
mkk

l
kl

mik

l
k

l
mik

k
l
k

l
mik

l
k

k
l
kl

mik

l
k

l
k

p
l

mik

p

l
k

l
k

l
k

l
k

l
k

(9)

3,,0

])[(][1])[(])[][(

][
][

][
][

][
][

][
][

][
][

][
][

11
,

1
)(,

1

11
)(, 11

L=
Δ

′−∑

∂
∂

∂
∂

∂
∂

∂
∂

∂

∂
∑=

∂

∂

−−

−
+

−

−−
+ −−

mfor

tuCtw
x

tuftdto

tq
to

to
tSum

tSum
tu

tu
to

to
tE

tq
tE

l
k

l
mk

l
kj

l
kk

l
kk

l
mik

l
k

l
k

l
k

l
k

l
k

l
k

l
k

l
k

p
kl

mik

p

l
k

l
k

(10)

l
Nk

l
k

l
Nk

l
Nk

l
k

l
k

l
ik

l
lk

l
k

l
k

l
k

l
k

l
k

l
ik

qs
x
qq

tsum

tsF

qs
x
qq

tsum

tsF

l
k

l
k

1,
1,,,

,
0,1,,

][

])[(

][

])[(

−
− >

Δ
−

=
∂

∂

<
Δ
−

=
∂

∂

(11)

 47

5.3 Locally Recurrent Neural Networks with Adaptive B-Spline Activation

Function

In this section, we will apply adaptive b-spline activation function to the

LRNN. The cost function as in (1)

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≠

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−

=−

=

⎪⎩

⎪
⎨
⎧

≠
Δ

′

=−
=

∑

∑

+−

+

+

++−+−+−

+−+−+−
−

0

][1

0101
1452

1331

2
1]1])[(2])[(3][[

0])[][(

0][1])[(][

0])[][(
][

1

3

2

11211

111

rwhere

tw
x

Q
Q
Q
Q

tutute

rwheretdto

rwheretw
x

tufte

rwheretdto
te

rl
kj

i

i

i

i

rlrlrl
k

k
l
k

rl
kj

rl
k

rl
k

k
l
k

rl
k

kk

(12)

3,,0])[(][
][

][
,

)(,

L==
∂

∂ −−−
−

+−

mfortuCte
tq

tE rl
k

rl
mk

rl
krl

mik

p

rl
k

(13)

(1)
2)][][(

2
1][∑ −=

k
l
k

l
kp tdtotE

 48

Forward Computation:

We use the same SG1 block, we used before as in (2).

Backward Computation:

To change the weights we will use the equation (3).The δ and the

derivative
w
E
∂
∂ for the standard LRNN are as in (4) and (5) respectively.

(4)
⎪⎩

⎪
⎨
⎧

=′−

≠
=

−

+−+−
− ∑

0])[(])[][(

0][][
][

11

rwheretsumftdto

rwheretwt
t

rl
kk

l
k

k
rl

kj
rl

krl
k

δ
δ

][
][

][]1[
tw
tE

twtw l
kj

p
w

l
kj

l
kj ∂

∂
−=+ μ (3)

⎣ ⎦

⎣ ⎦l
k

l
k

l
k

l
k

l
k

l
k

zzu

zi

N
x

Sumz

−=

=

−
+

Δ
=

2
2

(2)

 49

We can write the])[(tsumf l
k′ as in (6). The equation (4) and (5) can be adapt

for LRNN with adaptive b-spline activation function as in (7) and (8) respecting the

equation (5).

(5)

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

−′

′

=
∂

∂

−−−

−
+

−−

−−−−

−

0][][

]1[])[(][

][])[(][

][
][

1

1

1

rwheretot

weightfeedbackfortotsumft

layerhiddenfortotsumft

tw
tE

rl
j

rl
k

rl
j

rl
k

rl
k

rl
j

rl
k

rl
k

rl
kj

p

δ

δ

δ

x
Q
Q
Q
Q

uu

x
tuf

tSum
tu

tu
to

tSum
to

tsumf

i

i

i

i

l
k

l
k

l
kl

l
k

l

l
k

l
k

l
kl

k
kk

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=

Δ
′=

∂
∂

∂
∂

=
∂
∂

=′

+

+

+ 1

0303
0363
1331

6
1]1)(2)(3[

1])[(
][

][
][
][

][
][

])[(

3

2

12

(6)

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

=

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
−

≠

=

⎪
⎩

⎪
⎨

⎧

=
Δ

′−

≠
=

+

+

+−−

+−+−

−

+−+−

−

∑

∑

0

1

0303
0363
1331

6
1]1])[(2])[(3])[[][(

0][][

01])[(])[][(

0][][
][

3

2

12

11

11

rwhere

x
Q
Q
Q
Q

tututdto

rwheretwt

rwhere
x

tuftdto

rwheretwt
t

i

i

i

i

rlrl
k

l
k

k
rl

kj
rl

k

rl
kk

l
k

k
rl

kj
rl

k
rl

k

kk

δ

δ
δ

(7)

 50

The way we use to adapt control points exactly the same, we used before for

previous network models. (9) is used to adapt control points. For output layer, we

use the equation (10).

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

=

−
Δ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

=
∂

∂

−−−

−
+

+

+

+−−−

−−

+

+

+−−−

−

0][][

]1[1

0303
0363
1331

6
1]1])[(2])[(3][[

][1

0303
0363
1331

6
1]1])[(2])[(3][[

][
][

1

1

3

2

12

1

3

2

12

rwheretot
layercontextfor

to
x

Q
Q
Q
Q

tutut

layerhiddenfor

to
x

Q
Q
Q
Q

tutut

tw
tE

rl
j

rl
k

rl
j

i

i

i

i

rlrlrl
k

rl
j

i

i

i

i

rlrlrl
k

rl
kj

p
kk

kk

δ

δ

δ

(8)

3,,0

][
][

][]1[
)(,

)(,)(,

K=

∂

∂
−=+

+
++

mwhere

tq
tE

tqtq l
mik

p
q

l
mik

l
mik

l
k

l
k

l
k

μ
(9)

3,,0

])[(])[][(
][

])[(
])[][(

][
][

])[][(
][

][
][
][

][
][

,

)(,

)(,

)(,)(,)(,

L=

−=
∂

∂
−=

∂
∂

−=
∂
∂

∂

∂
=

∂

∂

+

+

+++

mfor

tuCtdto
tq

tsF
tdto

tq
to

tdto
tq

to
to
tE

tq
tE

l
k

l
mkk

l
kl

mik

l
k

l
mik

k
l
k

l
mik

l
k

k
l
kl

mik

l
k

l
k

p
l

mik

p

l
k

l
k

l
k

l
k

l
k

(10)

 51

For the last hidden layer, we use the equation (11). If we generalize the results,

we got, we can write (12) and (13) for the LRNN. We use the derivatives (14) for

the fixed control paints.

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≠

Δ
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−

=−

=

⎪⎩

⎪
⎨
⎧

≠
Δ

′

=−
=

∑

∑

+−

+

+

++−+−+−

+−+−+−
−

0

][1

0303
0363
1331

6
1]1])[(2])[(3][[

0])[][(

0][1])[(][

0])[][(
][

1

3

2

11211

111

rwhere

tw
x

Q
Q
Q
Q

tutute

rwheretdto

rwheretw
x

tufte

rwheretdto
te

rl
kj

i

i

i

i

rlrlrl
k

k
l
k

rl
kj

rl
k

rl
k

k
l
k

rl
k

kk

(12)

3,,0])[(][
][

][
,

)(,

L==
∂

∂ −−−
−

+−

mfortuCte
tq

tE rl
k

rl
mk

rl
krl

mik

p

rl
k

(13)

3,,0

])[(][1])[(])[][(

][
][

][
][

][
][

][
][

][
][

][
][

11
,

1
)(,

1

11
)(, 11

L=
Δ

′−∑

∂
∂

∂
∂

∂
∂

∂
∂

∂

∂
∑=

∂

∂

−−

−
+

−

−−
+ −−

mfor

tuCtw
x

tuftdto

tq
to

to
tSum

tSum
tu

tu
to

to
tE

tq
tE

l
k

l
mk

l
kj

l
kk

l
kk

l
mik

l
k

l
k

l
k

l
k

l
k

l
k

l
k

l
k

p
kl

mik

p

l
k

l
k

(11)

l
Nk

l
k

l
Nk

l
Nk

l
k

l
k

l
ik

l
lk

l
k

l
k

l
k

l
k

l
k

l
ik

qs
x
qq

tsum

tsF

qs
x
qq

tsum

tsF

l
k

l
k

1,
1,,,

,
0,1,,

][

])[(

][

])[(

−
− >

Δ
−

=
∂

∂

<
Δ
−

=
∂

∂

(14)

 52

CHAPTER 6. PERFORMANCE OFTHE NETWORKS

In this chapter, we will compare the performance of the network on the famous

xor problem, which is commonly used as criteria to measure the performance of the

artificial neural networks. We use the artificial neural network simulator SBNN

which is explained in Appendix. On all the comparison we used following values

• Number of hidden layers :1

• Number of neuron per hidden layers :10

• Initial weights :randomly

• Number of epoch :100,000

• Learning rate for weight :0.5

• MSE period :100

• Number of control points for spline activation functions :80

• Distance between the control points :1

While we compare the networks we use a computer which has Intel Celeron

1.7 GHz cpu, 256 ddr ram with operating system Ms. windows xp.

6.1 Comparison of the Multi Layer Perceptron

 In this section, we will compare the performance of Multi Layer Perceptron

with three different kinds of activation function, sigmoid activation functions,

adaptive Catmull-Rom spline activation functions, and adaptive b-spline activation

functions with the values, written on the above.

6.1.1. Comparison of the sigmoid activation functions and the B-spline

activation function for MLP

When we look at the graph on the Figure 6.1 we see that under the 1900 epoch

sigmoid function has a better performance but after the 1900 epoch adaptive b-spline

activation function has significantly better performance. The performance of sigmoid

 53

activation function is getting worse while the iteration number is increasing

comparing with the b-spline activation functions.

6.1.2. Comparison of the Catmull-Rom spline activation functions and the B-

spline activation functions for MLP

Catmull-Rom spline activation function has a great performance at the

beginning of the epochs. As we can see at the Figure, 6.2 b-spline functions are

learning very slowly comparing with the CR spline functions. But after a certain

amount of epoch nearly 6800 epoch the performance of the B-spline functions are

increasing on the other hand the performance of CR spline functions are dramatically

decreasing we can easily see it in the Figure 6.3

Figure 6.1 Performances of MLPs with sigmoid and adaptive b-spline
activation functions for xor problem

 54

Figure 6.2 Performances of MLPs with adaptive CR spline and adaptive b-
spline activation functions for xor problem

Figure 6.3 Performances of MLPs with adaptive CR spline and adaptive b-
spline activation functions for xor problem in more detail

 55

6.2 Comparison of the Elman Networks

In this section, we will compare the performance of Multi Layer Perceptron

with three different kinds of activation function, sigmoid activation functions,

adaptive Catmull-Rom spline activation functions, and adaptive b-spline activation

functions for Elman Network.

6.2.1. Comparison of the sigmoid activation functions and the B-spline

activation function for Elman Networks

As we can easily see at the Figure 6.4, b-spline activation function has

significantly better performance than the sigmoid function.

6.2.2. Comparison of the Catmull-Rom spline activation functions and the B-

spline activation functions for Elman Networks

If we look at the graphs at Figure 6.5 and Figure 6.6 we see that this two

functions effects the performance of Elman Network in the same way as they effects

the performance in MLP. CR spline functions effects the performance very fast but

while the number of epochs are increasing the positive effect of CR spline function

on the performance are decreased. On the other hand, b-spline activation functions

show its effect a bit later.

 Figure 6.4 Performances of Elman Networks with sigmoid and
adaptive b-spline activation function for xor problem

 56

Figure 6.5 Performances of Elman Networks with adaptive CR spline and
adaptive b-spline activation functions for xor problem

Figure 6.6 Performances of Elman Networks with adaptive CR spline and
adaptive b-spline activation functions for xor problem in more detail

 57

6.2.3. Comparison of the Catmull-Rom spline activation functions and the

sigmoid activation functions for Elman Networks

When we look at the Figure 6.7 CR splines has a quick performance but after a

while sigmoid function is reaching the performance of the CR splines. To understand

whether the sigmoid function will catch or pass the CR spline we should look in

more detail like the Figure 6.8

Figure 6.7 Performances of Elman Networks with sigmoid and
adaptive CR spline activation functions for xor problem

 58

6.3 Comparison of the Locally Recurrent Neural Networks

In this section we will compare the performance of Multi Layer Perceptron

with three different kinds of activation function, sigmoid activation functions,

adaptive Catmull-Rom spline activation functions, and adaptive b-spline activation

functions for Locally Recurrent Neural Networks.

 6.3.1. Comparison of the sigmoid activation functions and the B-spline

activation function for Locally Recurrent Neural Networks

As we can see at the Figure 6.9 the B-spline activation function for Locally

Recurrent Neural Networks couldn’t be learned any information. It is oscillating in a

Figure 6.8 Performances of Elman Networks with sigmoid and adaptive CR spline
activation functions for xor problem in more detail

 59

range and no proper direction. Since that, we will not compare b-spline with any

activation function.

6.3.2. Comparison of the Catmull-Rom spline activation functions and the

sigmoid activation functions for Locally Recurrent Neural Networks

As we can see in the Figure 6.10, the CR function is better performance than

the sigmoid function. This performance CR function is not decreasing while the

number of epoch is increasing.

Figure 6.9 Performances of LRNNs with sigmoid and adaptive
b-spline activation functions for xor problem

 60

6.4 Comparison of execution time of all model

All the models that we compare here are different impact to performance. But

we also should the execution time to evaluate these models. We can easily compare

all the models by looking the graph at Figure 6.11

Figure 6.10 Performances of LRNNs with sigmoid and adaptive CR
spline activation functions for xor problem

 61

Figure 6.11 Execution time graph for all the models

 62

CHAPTER 7.SPLINE BASED NEURAL NETWORK SIMULATOR (SBNN)

7.1 Software Specification of SBNN

 The software, we used to simulate artificial neural networks, is written in the

PHP 4 web-based programming language. To use this software stand-alone, a web

server and at least PHP 4 must be installed and graphic extension of the PHP 4

“gd.dll” must also be installed to see the graphs properly. We recommend Apache as

a web server. If you don’t want to spend time by installation and adjustment of this

software there is an alternative software “PHPTriad” which install and adjust all the

software you need. You should do one more thing; open the php.ini file and remove

the semicolon from the front of the “gd.dll” row. Hence, you activate the graphic

extension of PHP 4. Now you can start using the program.

7.2 The aim of this Software

 The main reason we developed this software is to simulate the neural networks

model that we used and compare the performance of this networks. There are nine

different neural network models, we simulated by this software, which are MLP with

sigmoid activation function, MLP with adaptive CR spline activation function, MLP

with adaptive b-spline activation function, ELMAN NETWORK with sigmoid

activation function, ELMAN NETWORK with adaptive CR spline activation

function, ELMAN NETWORK with adaptive b-spline activation function,

LOCALLY RECURRENT NEURAL NETWORKS with sigmoid activation

function, LOCALLY RECURRENT NEURAL NETWORKS with adaptive CR

spline activation function, and LOCALLY RECURRENT NEURAL NETWORKS

with adaptive b-spline activation function. We used xor problem to measure

performance of this nine models. But the software can easily be adapt to manipulate

the other real world problems.

7.3 The Menu of the SBNN

As we can see Figure 7.1, there are two main menu “NETWORKS TYPES”

and “COMPARE”. There is also and “Exit” button. There are nine submenus of

 63

“NETWORKS TYPES”, each one represents a kind of neural networks “MLP”,

“MPL-CR Spline”, “MLP-BSpline”, “ELMAN”, “ELMAN -CR Spline”, “ELMAN-

BSpline”, “LRNN”, “LRNN -CR Spline”, and “LRNN -BSpline”. Each submenu of

“NETWORKS TYPES” is also three sub menu which are Train, Run and Delete. We

can see them in the Figure 7.2.

 Figure 7.1 The main page of SBNN

Figure 7.2 The submenu of “NETWORKS TYPES”

 64

There two sub menu of “COMPARE”, “MSE” and “Execution Time” as shown

in Figure 7.3.There is also one more button “Exit” on the menu frame. As it is

guessed it closes the program.

7.4 Training a network

When you want train a network for xor problem, First of all you should choose

a network model ,in the submenu of “NETWORK TYPES”, then choose the “Train”

button in the sub menu of the network model, you choose. You will see the table in

Figure 7.4.

This table contains essential values to start training. You can change these

values as your need you can also select the random button to select weights or you

can define a constant value to the all weights as initial value. After the selection

push, the train button then Network will be trained and saved automatically. I t gets a

certain amount of time related to the values you choose. You can also go on training

later by doing it in the same way but you will not be able to change the values except

the “Number of Epoch”. As in shown Figure 7.5

Figure 7.3 The submenu of “COMPARE”

 65

Figure 7.4 The initial parameter of a network to start training

Figure 7.5 The table which shows the number of epoch to go on training

 66

7.5. Running and deleting a network

To see the outputs of this trained network for the xor problem you should run

this network. To run this network just pushes the “run” button. You will see the

result like in Figure 7.6. If you want to delete the network, you created and trained,

just push the delete button.

7.6. Comparing the Network Performance

To compare the network performance, choose “MSE, submenu of

“COMPARE” and you will se the view at Figure 7.7. You can choose the networks

you want to compare and the size of graph that shows cost functions together on one

graph. You can also chance accuracy of the graph. If you want to see the graphs in

detail, you can zoom in the graphs by changing maximums and minimums for X and

Y-axes. An example of comparison is shown in Figure 7.8. For this graphics,

Figure 7.6 The table of outputs for MLP

 67

parameters are chosen as in Figure 7.9. We can also take the comparison as table

by choosing the “Add MSE report table”.

Figure 7.7 Comparison table of network models and The parameters table of the
graphs, shows the graph of cost functions for the number of epoch.

Figure 7.8 an example of comparison graphics

 68

7.7 Comparing the Execution Time Performance

If we want to compare the execution you should choose the “Execution Time”

button, submenu of “COMPARE”, and choose which network types you want to

compare than you will get a bar graph as in Figure 7.10. You can also get this

comparison as table if you chose the “Add Execution Time report table”.

Figure 7.9 Chosen parameters for the graph, shown in Figure 7.8

Figure 7.10 An example of Execution Time Comparison and report table

 69

CHAPTER 9.CONCLUSION AND RECOMMENDATIONS FOR FUTURE

WORK

In this thesis, five new neural network models are proposed: MLP with B-

spline activation function, ELMAN NETWORKS with CR-spline activation function,

ELMAN NETWORKS with B-spline activation function, LRNN with CR-spline

activation function, and LRNN with B-spline activation function,

We derived mathematical explanations of these models. Then we developed

web-based software SBNN, written in the programming language PHP 4 to simulate

these five models and four other models: MLP, ELMAN NETWORKS, and LRNN.

We use this artificial neural network simulator to compare the performance of this

nine artificial neural network models on the famous xor problem.

As a future work, artificial neural network simulator, SBNN, can be developed

for educational purposes. Since SBNN is a web-based program, it can be adapted for

e-learning. Students can use it on the internet as an online tool.

On the other hand, these new neural networks models can be applied different

kinds of real world problems and can be tested the performance of these networks.

SBNN can be used for this purpose by a little bit developing.

 70

REFERANCES

[1] Helmut A. Mayer, Roland Schwaiger, “Evolution of Cubic Spline

Activation Functions for Artificial Neural”, 10th Portuguese Conference

on Artificial Intelligence, 2001

[2] Helmut A. Mayer, Marc Strapetz, Roman Fuchs, “Simultaneous

Evolution of Structure and Activation Function Types in Generalized

Multi-Layer Perceptrons”, WSES International Conference on Neural

Networks and Applications, 2001

[3] Helmut A. Mayer, Roland Schwaiger, “Differentiation of Neuron Types

by Evolving Activation Function Templates for Artificial Neural

Networks”, World Congress on Computational Intelligence,

International Joint Conference on Neural Networks, 2002.

[4] Rumellhart D.E, Hinton G.E, Williams R.J, “Learning representations by

backpropogation errors” Nature, vol. 323, (533-536), 1986.

[5] Elman J.L., “Finding the structure in time”, Cognitive Science, Vol. 14,

(179-211), 1990.

[6] A. D. Back and A.C. Tsoi “Locally Recurrent Globally Feedforward

Networks, a Critical Review of Architectures”. IEEE Trans Pattern

Analysis and Machine Intelligence, Vol 5, No 2, (229-239), 1994.

[7] Hearn D. ,Baker M., “Computer Graphics Second Edition ”, Prentice

Hall Press (305-335), 1994.

[8] Angel E., “Interactive Computer Graphics Third edition”, Addison

Wesley press (477-526), 2003

[9] Cybenko G., “Approximation by superposition a sigmoidal Function”,

Mathematics of CONTROL, signals, and Systems 2(930-944) , 1989.

[10] Öztemel E., “Yapay Sinir ağları”, Papatya yayıncılık (75-114), and(165-

170) , 2003

 71

[11] “Delta Learning Rule Derivation”,

http://www.eeng.dcu.ie/~ee490/ANNs/ann_delta_deriv.htm, 2005.

[12] Guarnieri S., Piazza F., “Multilayer Feedforward Networks with

Adaptive Spline Activation Function”, IEEE Trans. Neural Networks,

Vol. 10, no: 3,1999.

[13] Solazzi, M. Piazza, F. Uncini, A. “Nonlinear blind source separation

by spline neural Networks.” IEEE International Conference, Acoustics,

Speech, and Signal Processing, 2001.

[14] Mirko Solazzi and Aurelio Uncini, “Spline Neural Networks for Blind

Separation of Post-Nonlinear-Linear Mixtures”, IEEE Transactions on

Circuits and Systems I Fundamental Theory and Applications, Vol. 51 ,

No. 4, pp 817 – 829, 2004.

[15] Catmull E. and Rom R., “A class of local interpolating splines”

Computer-Aided Geometric Design, R. E. Barnhill and R. F. Riesenfeld,

Eds. New York: Academic, (317–326), 1974.

[16] Horne B.G. and Giles C.L. “An Experimental Comparison of Recurrent

Neural Networks.” Advances in Neural Information Processing

Systems, volume 7, (697-704), Cambridge, MA,MIT Press, 1995.

[17] “PHP programming language”, http://www.php.net/ ,2005.

[18] Minsky, M.L. , Papert, S.A. “Perceptrons”, MIT Press , 1969.

[19] Rosenblatt, F. “The Perceptron: A probabilistic model for information

storage and organization in the brain”, Psychoanalytic Review, 65, (386-

408), 1958.

[20] Widrow B. Ve Lehr M.A. ,“ 30 years of adaptive neural networks:

Perceptron, Madaline, Backpropogation”, proceeding of the IEEE, vol

78, No 9, 1990.

[21] Vecci, L., Piazza, F., “Learning and approximation capabilities of

adaptive spline activation function neural networks.” Neural Networks

(259-270,) 1998.

[22] Elman, J.L , “Distributed representations, simple recurrent networks,

and grammatical structure.”, Machine Learning”, 1991.

 72

APPENDIX: CD containing Thesis text and software code of the SBNN.

