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ABSTRACT

SPLINE BASED NEURAL NETWORKS

Hikmet Dalkili¢

In this thesis, we applied the Catmull-Rom splines and B-splines to the neural
networks models, which are Multi Layer Perceptrons, Elman Networks, and Locally
Recurrent Neural Networks, as adaptive activation functions. We derived the
learning algorithms for the five new neural network models, which we proposed.
This new models are called “Multi Layer Perceptrons with Adaptive B- Spline
Activation Function”, “Elman Networks with Adaptive Catmull-Rom Spline
Activation Function”, “Elman Networks with Adaptive B- Spline Activation
Function”, “Locally Recurrent Neural Networks with Adaptive Catmull-Rom Spline
Activation Function”, “Locally Recurrent Neural Networks with Adaptive B- Spline
Activation Function”. We measure the performance of these networks on the xor
problem and compare the performance of them for this problem. To simulate the
networks and to compare their performances we developed a web-based neural

network simulator written in PHP 4 called SBNN.

Keywords: Spline networks, spline activation functions, adaptive activation
functions, Adaptive Catmull-Rom spline activation functions, Adoptive B- spline

activation functions, SBNN.
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OZET

SPLINE TABANLI YAPAY SINiR AGLARI

Hikmet Dalkili¢

Bu tez ile, Catmull-Rom spline fonksiyonlar1 ve B-spline fonksiyonlar
uyarlanabilir aktivasyon fonksiyonlar1 olarak, yapay sinir ag1 modelleri olan Cok
Katmanli Aglara,Elman aglarina ve Yerel Geri Beslemeli aglara uygulandi.

Bu uygulamalardan olusturdugumuz 5 yeni yapay sinir ag1 modeli i¢in 6grenme
algoritmalarinin  ¢ikarimlar1 yapildi. Bu yeni modeller sirasiyla “Uyarlanabilir
Catmull-Rom Spline Aktivasyon Fonksiyonlu Cok Katmanli Aglar”, “Uyarlanabilir
B-Spline Aktivasyon Fonksiyonlu Cok Katmanli Aglar” , “Uyarlanabilir Catmull-
Rom Spline Aktivasyon Fonksiyonlu Elman Aglar1”, “Uyarlanabilir B-Spline
Aktivasyon Fonksiyonlu Elman Aglar1”, “Uyarlanabilir Catmull-Rom Spline
Aktivasyon Fonksiyonlu Yerel Geri Beslemeli aglar”, ve son olarak “Uyarlanabilir
B- Spline Aktivasyon Fonksiyonlu Yerel Geri Beslemeli aglar” diye adlandirilir.
Aglarin performansi xor problemi kullanilarak 6l¢iildii ve sonuglari birbirleriyle
karsilastirildi. Yapay sinir aglarint olusturulmasi ve performanslarinin 6l¢iilmesi igin
SBNN adinda PHP 4 programlama dilin ile yazilmis web tabanli bir yapay sinir ag1

similatorii gelistirildi.

Anahtar Kelimeler: Spline aglari, spline aktivasyon fonksiyonlari, Uyarlanabilir
aktivasyon  fonksiyonlari, Uyarlanabilir = Catmull-Rom  spline aktivasyon

fonksiyonlar1, Uyarlanabilir B- spline aktivasyon fonksiyonlarr, SBNN.
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CHAPTER 1. INTRODUCTION

This thesis aimed to use spline functions for the artificial neural networks as
adaptive activation function [1, 2, and 3]. We used this kind of activation functions
for the networks: “Multi Layer Perceptrons” [4], “Elman Networks” [5], and

“Locally Recurrent Neural Networks” [6].

In chapter 2, we give a brief definition of the splines function and spline
fitting[7,8] which is an extremely popular form of piecewise approximation using
various forms of polynomials of degree n, or more general functions, in which they

are fitted to the function at specified points, known as control points, nodes or knots.

In chapter 3, First of al, we explained the model “Multi Layer Perceptrons”
which is using sigmoid activation function [9]. This is one of the most popular neural
network types, which are commonly used for engineering problems. Multi Layer

Perceptrons use the “generalized delta learning rule” [10, 11] as learning algorithm.

In the section 3.2, we described the model “Multi Layer Perceptrons with
Adaptive Catmull-Rom Spline Activation Function™ [12, 13, and 14]. This model is
very similar to the MLP model the only the difference is the activation function. This
model uses a spline based activation function called “Catmull-Rom Spline [15]
Activation Function”. In this model not only the weights but also the control points

of the activation functions are adapted at the learning phase.

In the section 3.3, we used B-spline as activation function instead of Catmull-
Rom spline. For the model “Multi Layer Perceptron with Adaptive B-Spline

Activation Function”

We defined and derived the learning algorithms of this network in a similar
way, used in the model “Multi Layer Perceptron with Adaptive Catmull-Rom Spline

Activation Function”.

In first section of chapter 4, we explained “Elman Networks” which is a

member of “Recurrent Neural Networks” [16], and its learning rule.



In the section 4.2 we propose a new network type “Elman Networks with
Adaptive Catmull-Rom Spline Activation Function” In this network we apply
“Adaptive Catmull-Rom Spline Activation Function” to the “Elman Networks” and

derive a learning algorithm for this network types.

In the section 4.3 we propose a new network type “Elman Networks with
Adaptive B- Spline Activation Function” and derive a learning algorithm for this

model.

We described the network type “Locally Recurrent Neural Networks” and it’s

learning algorithm in the first section of Chapter 5.

In the section 5.2 we propose a new network type “Locally Recurrent Neural
Networks with Adaptive Catmull-Rom Spline Activation Function” and derived a

learning algorithm for this model.

In the section 5.3 we also proposed a new network type “Locally Recurrent
Neural Networks with Adaptive B-Spline Activation Function” and derived a

learning algorithm for this model.

In chapter 6, we compared the performances of this nine network models with
the famous xor problem by using the software SBNN, developed to simulate these

nine different models.

In chapter 7, we introduced the software SBNN which is developed to simulate
neural networks, we used. SBNN is a web based program written in the
programming language PHP 4 [17]. We used this tool to compare the performance

of the network.



CHAPTER 2. SPLINE FUNSCTIONS
2.1 Spline Specification

Spline functions are piecewise polynomial functions. Commonly used in
computer graphics. These functions are fascinating properties. By using spline
functions we can easily interpolate or approximate al the control points with a
smooth, continuous curve which has first and second derivatives at every point.
Since the splines use low degree polynomials like cubic polynomials the cost of
calculation are so small comparing with the high degree polynomials. In their most
general form, splines can be considered as a mathematical model that associate a
continuous representation of a curve or surface with a discrete set of points in a given
space. We control the shapes of spline curves by changing the control points which
may also called nodes or knots. One control points effects only the four consecutive
segments of the function. Hence, we can make local changes by changing one or
more control points. In polynomials interpolation we can’t make the local changes.
When you make a change on any parameter of polynomial interpolation, it affects all

the shape of the curve.
2.2 Spline Function’s Mathematical Description

The control points are described as (1). While the parameter u scan 0 to 1, p(u)
scans the between two intermediate control points of four consequence points used

for spline functions. Figure 2.1 shows these control points.

P =% Yo Z) k=012,....,n (1)



p(u) = (x(u), y(u), z(u))
J

e

pk pk+1

Figure 2.1. Parametric point function p(u) for a curve section
between control points p, ve p,,

The expression at (2) is called as coefficient matrix of Catmull-Rom Splines,
and the matrix at (3) called as Catmull-Rom splines characteristic matrix. The

functions as in (4) called Catmull-Rom blending functions.

a, 103 -3 1%,
b| 1|2 -5 4 -1 x
c.| 2]-1 0 1 o0 x. @)
d, 0 2 0 0| x.,
13 -3 1
w12 -5 4 -
" 2]-1 0 1 0 3
0 2 0 0



C,(u) :%(—u3 +2u° —u)

C,(u)= %(3u3 —5u%+2)
1 “4)
C,(u)= 5(—3u3 +4u” +Uu)

cg(u>=%<u3—u2)

Catmull-Rom Splines interpolate the end points which are second and third
points of four consecutive points. They span the region between the end points and
create a smooth curve while U spans the distance 0 to 1. We can manipulate a specific
segment of the curve by changing the four consecutive points and it gives the power

of flexibility and locality to our curve.

If there is no need to the interpolation at end points we can use another
technique which doesn’t require interpolation at end points. In this technique Curves
approximate the end points and but the segment at the right hand side and at the left
hand side must have equal derivative at the meeting points (control points). These
kinds of splines are called B-splines (5). The matrix (6) used in this description is
called b-spline characteristic matrix. The functions in (7) called blending functions of

b-spline matrix.

a, -1 3 =3 1||X
b| 113 -6 0l x
c,| 6/-3 0 0] X, )
d, 1 4 0[] Xesn
-1 3 -3 1
M=t 76 30 (6)
6]-3 0 0
1 4 0



C,(u)= %(—u3 +3u°=3u+1)
C,(u)= %(3u3 —6uU’ +4)
C,(u)= %(—3u3 +3u*+3u+1)

C3(u):éu3

(7)



CHAPTER 3. MULTI LAYER PERCEPTRONS

3.1 Multi Layer Perceptrons with Sigmoid Activation Functions

Multi Layer Perceptron is one of the most popular and most frequently used
artificial neural network model. When Minsky [18] showed that an older model
Perceptron [19], proposed before the Multi Layer Perceptrons, couldn’t solve the
famous xor problem[20], researcher’s motivation on artificial neural networks are
dramatically decreased and almost all research on this area was ended. Researcher
thought that the problem, which has no linear relations between, inputs and outputs
like xor could not be solved by artificial neural networks .Only a few researchers
continued to work on this area. One of the researchers who insisted on working on
this area was Rumellhart and his friends solved xor problem by using the more than
one layer. Rumellhart and his friends’ solution had a great impact on starting the
researches on this area. Currently, Multi Layer Perceptrons are producing solutions
almost all engineering problems and it is the most commonly used artificial neural
networks model in industry. Especially to solve the classification, generalization and
Identification problems, Multi Layer Perceptrons are frequently used with the

learning rule called “Delta Learning Rule”.

3.1.1 The Structure of Multi Layer Perceptrons

Like all other artificial neural network, Multi Layer Perceptrons consists of

neurons. A neuron structure showed in Figure 3.1 by details.

A neuron has inputs, output, sum function and activation function. The inputs
are multiplied by corresponding weights, which are the random number chosen the
range between 0 and 1. The sum of these products is put in an activation function and

the output of this activation function is the output of this neuron.
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In Multi Layer Perceptron as shown in Figure 3.2, there are three main layers,
which are Input Layer, Hidden Layer, and Output Layer. Now we will explain this

tree layer respectively.

Input layer:

This layer’s duty is to transform the data coming from the outside world into the
hidden layer. The inputs are not multiplied by any weight and also not passed
throughout any activation functions. Every input layer neuron only one input and
only one output which is exactly same to this input. Input layer has the number of
neuron, equals to the number of inputs. Every output of input layers’ neuron is sent

to the first hidden layer as input.

Hidden layer:

Hidden layer gets the data from inputs layer, puts them in some processes and
sends the output of this processes to the output layer. Every output of input neuron is
multiplied by a corresponding weight, which is randomly chosen from the range
between 0, and 1.The sum of these weighted inputs is passed through the
corresponding neurons’ activation functions. The output of this activation function is

the output of the corresponding neuron and sent to the output layer as input.

Output layer:

Output layers' neurons are very similar to hidden layers’ neurons. Every neuron
in this layer gets the every output of last hidden layer as input. These inputs are
multiplied by corresponding weights as in hidden layers. The sum of these weighted
inputs is sent to activation function and the output of activation function of every
neuron in output layer is built the output of output layer also built the output of
network. The number of neuron in this layer is equal to the number of outputs of the

network.



Multi Layer Perceptron uses supervised learning method. In this method, a
specific amount of inputs and expected outputs are shown to the network. Network
makes some generalization from this example and generates a solution set for the

problem then uses this solution set for new sample to get an output.

We mentioned about “delta learning rule” which Multi Layer Perceptron
commonly uses as learning rule. Now we will examine “delta learning rule” in

details.
3.1.2 Delta Learning Rule

The other name of this rule is known as “least mean squares rule”. It is
developed for supervised learning models. The basics of this learning rule are related
to the philosophy of least mean squares rule. By the least mean squares rule we get
the local minimums. In the philosophy of this method, you can find a local minimum
by going to the opposite side of gradient. It may or may not be the global minimum

but it is certainly at least a local minimum.

Delta Learning Rule use the cost function (1) which is half of the sum of the
square root of difference between network outputs and desired outputs to find weight

vectors.

1 )
E=Zk§(ok ~dy) (1)

If we define the difference between network outputs and desired outputs ad Q,

then we get the equation (2).

Lo
E=2. 5Q 2)
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The graph of this cost function is shown in Figure 3.3. As we can easily see in
this Figure opposite direction (i.e. negative direction) of derivative take us to the
minimum of this graph. In this manner we can get the following conclusion, to find

the minimum point of E-W graph we should move on the direction of — s_Vlfl .

! E=(1/2)Q°

aE o
oQ oQ

Figure 3.3 The graph of Cost Function

MLP uses the equation (3) to adapt the weights. To find the derivative on the
right hand side we use (4). To find 9, used in (4), we use (5).

OE [t] (3)
owj[t]

W[t +1] = Wy [t] - 44,

OE Sy f'(sum").0 " where r=0
- “4)

j
l-r — _ —r—
owg' |5 o where =0
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O i where r #0
5I—r ={Zk k kj (5)

(0, —d, ) f'(sum™) where r =0

3.2. Multi Layer Perceptrons with Adaptive Catmull-Rom Spline Activation

Functions

In this section, we will explain the adaptive cubic Catmull-Rom Spline
Activation Functions; used in the Multi Layer Perceptrons, will be introduced. There
are many reasons to use adaptive cubic Splines as activation function. Some of them

are mentioned below.

* On Spline curves you can easily change a small segment of the curve by
changing a few control points. Changing a control point affects only the four
consecutive segments so the changes on the curve are totally local. On a
polynomial curve you can not do this kind of local adaptations. When you
change a parameter on a polynomial curve the whole curve is affected.

= The degree of the polynomial must be so high to interpolate all control points
comparing with a spline function. Hence, the cost is significantly reduced by

using a cubic spline instead of using a high degree polynomial.

Spline functions also have the following properties, which must be had by any

activation function.

» boundedness constraint
* universal approximation property

= flexibility

12



A cubic Spline Activation Function is described as (1)

F(u)=[F,@) F,u)] = C R M

C in the equation (1) is the concatenation operator. F,(u) is ith curve span . U

is the local parameter and takes the value in the range between 0 and 1. The indices
of C are valid only for cubic polynomials. ith curve span function is defined as

F.(u) (2). In this equation, C;(u) represents spline polynomials in another words

spline blending functions. Q represents the control points.

FW=[F;W FWl" =2 Q.,Ciw (2)

Every control points consist of two component x and y components.

Q = {Q07 """ > Qn} Qi = [qx,i qy,i ]T

When the Catmull-Rom splines are used as activation function C;(u) can be written

as (3).

C,(u) :%(—u3 +2u° —u)

C,(u)= l(3u3 —5u+2)
2

) 3)

C,(u)= 5(—3u3 +4u% +u)

Ca(u>=§<u3—u2>

13



Considering the equations (3), the equation (2) can be written as the equation (4).

The derivative of this equation can be computed easily.

2 -5 4 -1]|Q
F.(u)=[u’u’u 1]l Qu “)
20-1 0 1 0[Q.,
0 2 0 0]Q

Figure 3.4 Catmull-Rom Spline curve span
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The derivatives at the end points are taken as below, shown in Figure 3.4.

. OF.(0) 1
While u=0 T -Q +Q.,].
1 6U 2[ Q| Q|+2]
. oF.() 1
While u=1 T Q. +Q,
11C au 2[ Q|+1 Q|+3]

To reduce the cost of the calculation the control points abscissas are chosen
equally spaced on the x-axis and centered at the origin. The abscissas of the control

points are not adapted also. Hence, F,(U) becomes a linear function instead of a

cubic polynomial function. Ax shows the equal distances between the abscissas of

the consecutive control points.

Since we choose the abscissa of control point’s equally distanced and centered
at the origin there is no need to store the abscissas of the control points. All we need

to store number of control points and the distance between the control points.

The initial values for control points are derived from the most popular
activation function called sigmoid activation function. Since the activation function
must be a limiting function, last two points and first two points are fixed to satisfy

this property shown in Figure3.5.

15
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?'%0_%\1/,_4- ............................... Tt ez
i=1 \—\/’—’/
=1 i=N-4

Figure 3.5 Control points of the Catmull-Rom spline-based activation
function with a fixed step Ax. The extreme points Qx;o0, Ox 1, and Qx N-1,
Ox;N-2 are fixed

3.2.1 Gradient-Based Learning for Multi Layer Perceptrons with Adaptive

Spline Activation Function

Definition of the parameters:

e O, Output of the kth neuron in the Ith layer;
o Wl'q- Weight of the kth neuron in the Ith layer with respect to the jth neuron
in the previous layer.( w,, are the bias terms);

e Sum, Net output (i.e., linear combiner output)of the kth neuron in the Ith
layer;

e N +1 Number of control points for each neuron in the network;

e Ax Sampling step along the x-axis for each activation function;

i, Curve span index of the activation function for the kth neuron in the Ith
layer(0<i, <N-2);

e U, Local parameter for the i, th curve span of the kth neuron in the Ith layer

(0<u, <1);

16



o qL,n Ordinate of the nth control point of the kth neuron in the Ith layer
(0<n=N). The control point abscissas @, ,do not appear since we assume the x-

axes are uniformly sampled;

. Fk' a () i, th Spline patch of the activation function for the kth neuron in the

Ith layer;
o C,'Qm (.) mth CR polynomial(blending function) for the kth neuron in the Ith

layer(0<m<3).
Forward Computation:

The parameters U and i gathered from the equations (5) and sent as inputs to the

equation (6).

)

Output of this equation (6) is also the output of the neuron.

3
Oli = Fkl’il (ull() = Zq:(,(il'(_,_m)cll(,m (ull() (6)
m=0

17



Figure 3.6 A neuron with adaptive spline activation function

The block, which is defined at (5), called GS1 and the block, defined in (6) called
GS2 shown in Figure 3.6.

Backward Computation (Learning Phase):

p shows the learning sample, t shows the iteration indices, 0 shows the output

of the neuron, d shows the desired output, E shows the cost function. s, and u, are

learning coefficient for weights and the control points, respectively.

For every neuron an e parameter is defined as in (7)

ol (7
k[ ] ZNM&:;][,[]WIJ(I =M _1,...,1

p=1

. {(oL[t]—dkm) =M
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o parameter is also defined as in(8) for every neuron.

OF, , (SL[1)

Selt] = ey[t]( S
k

Since we fixed last and first two points, the fixed values are used for the

derivative of these points as in (9).

OF,  (8,[tD) _ G~ %o

s, <q
asum, [t] AX = G

)

OFw D) gy -y
osum, [t] AX

| |
Sk > Oi.n-

If we get W,, weights as offset values, the equations (10) and (11) are used to

adapt weights and control points respectively.

| | | o;_l J * 0
Wi [t +1] = Wi [t]+ 4,6, [1] 1 B (10)
Oy oy [EF11=80, 1 [1]+ 2148 [IC, (U ED) (11)
m= 0’...,3
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3.3. Multi Layer Perceptron with Adaptive B-Spline Activation Functions

In this section we will use the adaptive b-spline activation functions for Multi
layer Perceptron by the same technique used in section 3.2.Actually we only change
the spline types. Hence, the computations are very similar to 3.2. The main
difference between Catmull-Rom splines and B-Splines is their positions at the
control points. While Catmull-Rom spline is interpolating control points, B-spline

approximates the control points as in Figure 3.7 .

Figure 3.7 B-spline curve behaviors at control points

B-spline characteristic matrix and blending functions described (1) and (2)

respectively as we mentioned in chapter 2.

-1 3 -3 1
3 -6 0
Moo L (1)
6/-3 0 0
1 4 0
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Co<u)=é<l—u>3

Cl(u):%(4—6u2 +3u?)
1 (2)
Cz(u)=g(l+3u+3u2—3u3)

C3(U) :%lﬁ

Considering the equation (1), we can define the equation (3) for the ordinate of

the control points as in section 3.2.

-1 3 -3 1T0Q
3 -6 3 0|Q
Fu=[u’u’u 1]l Qi 3)
21-3 0 3 0]Q.,,
14 1 0]Qy,

The derivative of the equation (3) for U is written as the equation (4).

- 1—1 3 -3 1 5‘
ﬂ:puz w3 =6 3 0 QM (4)

1 4 1 of 2

Qi+3
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The derivatives at the end points are computed as below as computed in section

3.2.
) oF(0) 1
While u=0 ——==—0]-Q.+Q.,].
11€ au 2[ Q| Q|+2]
. oF () 1
While u=1 T _2 g, +0
11 ou 2[ Q|+1 Q|+3]

If we choose the control points in the same way we used in section 3.2. We

constrain the control points’ abscissas to be equidistant and not adaptable and also

centered at the origin.

-1 3 -3 17 Q,
1 -6 3 0] Q. +Ax (5)
F.(u)=[u’u*ul]= -
>(|( ) [ ]6 -3 0 30 Qx,i +2AX
1 4 1 0]Q;+3A

When we solve the equation (5) we get the equation (6).

in (U) = UAX + qx,i + AX = UAX + qx,i+l (6)

Forward Computation:

The equation (6) can be written as the equation (7).

SUM=UAX+0;., (7
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0. - in the equation (7) can be expressed as (8).

qx,i+1 =_NTAX+(i +1)AX (8)

By putting the equation (8) into the equation (7), we get the equation (9). To
find u and i parameters the equation (9) can be written as the equation (10). Finally
u+i calculated as in (10). If the left hand side of the equation named as z then the
equations at (11) can be written. The block (11) is called as SG1. We get the

necessary parameters U and i in the equations (11) for the block SG2.

Sum=qu+—N2AX+(i+1)Ax )
Sin_FE—u_{_i
AX , (10)
, Sum N-2
Z, =— +
AX 2
11
it =Lzt "
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As in the section 3.2, the equation (12) called as SG2 block and use U and i as
inputs. Outputs of SG2 block is also the output of neuron.

3
Oy = Fly (W)= 220 g Chon () (12)
m=0

Backward Computation (Learning Phase with adaptive b-spline activation

function)

We will use the same gradient reduction technique, used in MLP with adaptive
CR-spline activation functions. . The cost function is defined at (13). The equation
(14) for the weights and the equation (15) for the control points will be used for

adaptation. x, and g, represent the learning parameter for weights and control

points.

Ep[t]=Zk%(0'k[t]—oli[t])2 (13)
| | OE, [t] (14)
L+ 1] = W [t]— s, ——

W[t +17 = wy [t] - oW [t

O, [t]

Qe (1= O [0 = g =
e A g 1 (15)

where m=0,...,3
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By using the chain rule, the equation (16) can easily be written. When we

write the derivatives on the right hand side, we get the equation (17)

OE,[t] OE,[t] do,[t] ou,[t] oSum,[t]
ow[t]  00,[t] ou, [t] Sum; [t] owlt]
where | represents output layer

(16)

OE ,[t]
oW []

where | represents output layer

— (A _ 1! L 1-1
= (0 [t]—-d,[t])f (Uk[t])AXO, [t1 17)

We can also write the equation (17) in more detail like in (18).Now we will
define the 5; [t] in the equation (19). Hence, the equation (18) can be written as the
equation (20) shortly. This equation is used for the output layer. For the last hidden

layer we use the equation (21).For the hidden layer we can write the equation (22) as

the equation (24) with the new o value.

OE. [t] ot QQi |

ol i IN2 Arly 171 3 i | 1

a1 = U BIDRE 20 1 ? 46 o a1 4
Qi+3

where | represents output layer

OE, [t]

adt]= aSumi[t]

=<oL[t]—dk[t])f'(uL[t]>§ (19)
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OE  [t]
owy[t]

= &[]0} [t] (20)

Equation (21) can be written as the equation (22).Now we will define the 9, as

in (23), for the last hidden layer.

OE[t] -y JE[t] 6o, [t] ou, osum[t] do, '[t]

- (21)
ow, '[t] “00,[t] ou, osum[t] do,'[t] owg'[t]

OE[t] | o0, 'Tt]

— o= D Sty —

owj;'[t] 2,40 " owl;[t] (22)
S, '[t] = S [tIw (23)

E[t] _ < w00 ] Qu'[t] oSumi'[t]
205 asum 1 o

owg 'Tt]
-1 1,11 1 1-2
= 6 Tf ' "t —o]

24)

When we generalize these results for all hidden layers and output layer we get

the o value as in (25) and Derivative for the weights as in (26).
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D S It wy ] where r =0
si=l T | (25)
(oL[t]—dk[t])f'(u;[t])H where r =0

1
I—r.fr I-r t I_—r—l h
OE o, (u, [D_Axo’ where r=0 (26)

I-r
Wy S o where r=0

For the control points adaptation of the output layers’ neurons we use the
equation (27). For the control points’ adaptation of the last hidden layer, we use the

equation (28)

CGE,[t]  OE,[t] ool[t]
Oy (L] OOIL] 80, i, (]
OF, 1 m (S¢IED)

anI(,(iLer)[ ]

00, [t]
= (o, [t]-d,[t]) ————
(0, [t]—d,[tD) 5ql,(i;+m>[t] o7

= (0, [t]—d,[t]) = (04 [t] - d [t])Cy (Ui [t])

for m=0,---3

OB [t] o OE,[tldo,[t] ouy[t] oSumy[t] do, '[t]

Oy iy [t] " G0L[t] Quy[t] ESumi[t] 6o, '[t] aay ., [t]

| I 1 I 1-1 7 1-1 (28)
2y (o [t]—d, [thf (Uk[t])Eij[t]Ck,m(uk [t])

for m=0,---,3
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To generalize this conclusion to the all hidden layers and output layer, we
define a new parameter € as in (29). Hence, we define the derivative of cost function

for control points as in (30). For the fixed points we use the derivatives in (31).

o'ft]—d, [t where r=0
S (04[] - d, [t]) 1 29)
> e Mt '(uL‘”l[t])Ew'k;”l[t] where r 0
T U e "[tIC T (u [t for m=0,--3
I-r — ¥k k,m k — Y, )
aqk,(iL"+m)[t] (30)
8Fkl,i; (SL[t]) _ Q|I<,1 _qll<,0 SI < q|
| - k k.l
Gslumkl[t] | AX | 31)
aFk,il[ (Sk[t]) _ qk,N _qk,N—l | |
1 = Sk > O not
osum,[t] AX
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CHAPTER 4. ELMAN NETWORK

Elman networks [17] are in the class of recurrent neural networks. These
networks store the hidden layer’s output and give these outputs to the neuron with
the other inputs in the next iteration. These outputs, very similar to other inputs, also
have weights. A neuron can not understand differences of outputs from the other

inputs. Neurons act them as if they are inputs, came from previous layer.

* @ *‘*‘;>\.<, <,
= 2o,

H J/J E =
L oY | P
............................ H
Context Layer
Input Layer Hidden Layer Output Layer

Figure 4.1 An example of Elman Networks

4.1. EIman Networks with Sigmoid Activation

Elman Network has a new Sum function (1) for the hidden layers comparing
with Multi Layer Perceptron. But for the output layer Sum function (2) is the same

with the function used in Multi Layer Perceptron.

j k
Sumg [t]=>" o [tIWe, [t]+ D" on [t = 1IW, (o m) (1)
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sum!t1= Y ol [t t] @)

m=1

Learning Algorithm:

Elman networks also use Generalized Delta Learning Rule like MLP. Cost

function and weight’s adaptation function, described as (3) and (4) respectively.

HEE ICIURHUSNC)

OE ,[t]
Wy [t]

w'kj [t+1]=wi'<j [t]+7

. . E . .
The & parameters can be written as in (5) and % also can be written in (6).

5I—r+1 I_—r+1 h 0
5k"r[t]:{z" W Tt where r = )

(0, [t]—d  [t]) f "(sum,"[t]) where r =0

& "[t1f'(sum, "[tho; " '[t] for hidden layer
=18, "[t1f'(sum,"[tho' L [t—1] for context layer  (6)

j+k

S "[t]o} " [t] where r=0

OE , [t]
ow,; "[t]
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4.2. Elman Networks with Adaptive Catmull-Rom Spline Activation Function

In Standard Elman Networks, sigmoid function is used as activation function.
We will use Catmull-Rom Spline Activation Function, used for Multi Layer

Perceptrons before, for the Elman Networks. Cost function (1) is same as before.

Ep[t]=Z“k%(0'k[t]—oll[t])2 (1)

Forward Computation:

We get SG1 block output by the equations (2).

, Sum N-2
Z, =—+——

AX 2
=l @

Backward Computation:

We use the equation (3) for the weight adaptation.

OE, [t]

— - 3
ow[t] &

Wy [t +1] = wy[t] - s,

31



We used the 9, as in the equation (4), and derivative formula as in the equation

(5) for the Elman Networks with sigmoid activation functions.

4)

- DOt where r #0
‘ (0 [t]—d, [t f "(sum."[t]) wherer =0

S [t /(sum, "[tho " '[t] for hidden layer

=16, "[t1f'(sum; "[t]o| ([t —1] for context layer (5)

OE ,[t]
ow,g"[t]

S [t]o} " t] where r=0

| | |
fsumi 1) = dol[t]  aol[t] aullt] _ ) i

asumi[t]  ul[t] aSumi[t] 6)
Q

Qi+1 L

Qi+2 AX

Qi+3

-1 3 -3 1

— 3L 1) 2(u'k[t]>1]% 2 -5 4 -1
-1 0 1 0
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If we apply (6) to (4) and (5) we derive the equations (7) and (8).

DOt ] wherer =0
& '[tl= 1
(O [t]—d, [t '(u" [t])& wherer =0 (7)
DO W ] wherer =0
_ -1 3 -3 1 5‘
(0, [t]—d, [tDHBu ]’ 2(u'[r[t])1]% 2 =5 4 —1| 2|1 wherer=0
-1 0 1 0 Q‘”

- AX
-1 0 1 0 Qi
Qi+3

for hidden layer

-1 3 -3 1 5' |
OB 2 T 2 -5 4 —1) oy

OE.[1] | -1 3 -3 1 QQ' |
=16 S 2l D= 2 -5 4 —1f | —ol [t -1
oW t] O [HIBU[tD” 2(u " [t]) ]2 co Q. AXO, k[t —1]
Qi+3
for context layer
8 "Ttloj "[t] where r=0
(8)
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For the control points adaptation we use the equation (9). The difference
between Elman Networks with adaptive Catmull-Rom spline activation function and
Multi Layer Perceptron with adaptive Catmull-Rom spline activation function is Sum
function. Hence, there is no difference adapting the control points. For the output

layers, the equation (10) is used.

q| [t+1]=ql [t]_,u ﬂ
k,(i||<+m) kﬁ(ili +m) g aqll(,(ill(er) [t] (9)
where m=0,...,3
GE[t]  GE[t] oot 0o, [t
I . = |p | 1] =(0||<[t]—dk[t])+[]
aqk,(i&+m)[t] 00, [t] aqk,(i'k+m>[t] aqk,(ihrn) [t] (10)

aFkI’(i:(er) (SII< [t])

=(o.[t]—d, [t
(O [t]—d,[t]D mamﬁ]

= (04 [t]— d, [tDCy , (Ui [t])

for m=0,---3

For the last hidden layer,

OE,[t] . OE,[t]oo,[t] ouy[t] oSum,[t] oo, '[t]

oy [t B0L[t] Quy[t] aSumy[t] o, '[t] oqy ., [t]

2k<oL[t]—dk[t]>f'(uL[t])éwL,— [tC! ! t]) (1)

for m=0,---3
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When we generalize these results we get the equation (12) and (13)

(0, [t]—d,[t]) where r=0
e '[t]= 1
> e'k*”l[t]f’(ul'{”‘[t])A—Wl'(;r“[t] where r #0
X
(12)
(0, [t]—d,[t]) where r=0
| -1 3 -3 gi
— el|(7I‘+1 [t] [3(“ L*I’Jrl [t])2 2(u Lfl’+1 [t]) 1]_ 2 _ 5 4 _1 i+l LWL;I'+1 [t]
2 221 0 1 o | Qe |
Qi+3
where r=0
aEp[t] I-r I-r I-r
— = =¢ [tIC, n(u"[t]) for m=0,---,3
6qk,(i,‘(“+m) [t] (13)
We use the derivatives (14) for the fixed control paints.
| |
al;k,i& (Slk[tt]) _ qlk,lA— qll<,0 SII< < Q|I<,|
slumkl[ ] | X | (14)
GFk,i& (Slk[t]) _ Oun —Oinas SL N q:( -
osum,[t] AX ’
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4.3 Elman Networks With Adaptive B-Spline Activation Functions

In this section we will apply adaptive b-spline activation function to the Elman

Networks. The cost functions is described as in (1)
1
Eolt]=2, - (Oult]-dyt)’ ()

Forward Computation:

We will use the same forward computation as we use for the CR spline

activation functions. The block in (2) is called SGI.

;. Sum N-2
L =——+—
AX 2
. 2
el ?

Backward Computation:

We will use the equation (3) to adapt the weights as in CR splines.

OE, [t]

— - 3
" owy[t] ®

W[t + 1] = Wiy [t]— 4
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The & and the derivative% are described as in (4) and (5) respectively for the

standard Elman Networks, which use sigmoid function as activation function. We

can easily adapt these two equations for the b-spline activation function.

§I—r+l t I_—r+1 t h O
54‘“[t]:{2k o e 4)

(0, [t]—d, [t]) f "(sum;"[t]) wherer =0

& "[t1f'(sum, "[tho " '[t] for hidden layer
=<5, "[t1f'(sum,"[t])o' [t —1] for context layer  (5)

j+k

S, [tlo It where r=0

i

OE , [t]
ow,; "[t]

The only change is f’(sum, [t]) which can be derived as in (6).

' | _00i[t]  00,t] oultl ., 0
f'(sum [t]) = asum I [t] ~ 2u' [t] 35um [[1] f'(u,[t]) ~
Qi
_1 3 _3
= [3(uy)’ 2(uL)1]l 3 -6 Q| I (6)
6 Qi+2 AX
-3 0
Qi+3
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Now we can write the ¢ and the derivative% as in (7) and (8).

DS Ttwg wherer =0
5 =1 | o
(O [t]—d, [tDf'(uy r[t])g wherer =0 (7)
2 O Ttwg T It wherer 0
BEERNERTN
| I-r 2 I-r 1 Qi+1 |
=1 (0 [t] = d, [tDBU [t 2(u, [t])l]{3 -6 3 o} —
6 Qi+2 AX
-3 0 3 0
Qi+3
wherer =0
-1 3 -3 1 QQ'
SR 2 L 3 —6 3 0 o | ot
6 Qi+2 AX
-3 0 3 0
_Qi+3_
for hidden layer
;vlzlpr[t]z 1—1 3 -3 1 5‘ |
i W s et 20 s 3 -6 3 of o — o\ [t—1]
6 Qi+2 AX
-3 0 3 0
_Qi+3_
for context layer
5" [tlo} "] where r=0
(8)
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We will use the equation (9) to adapt the control points. Since the only
difference between Elman Networks and MLP is the Sum function, there is no

difference between Elman Networks and MLP for the adaptation of control points.

TN L TN L
K, (if +m) K, (i} +m) q aqu(,(iL+m)[t] (9)
where m=0,...,3
For output layer, (10) is used.
OE [t]  OE [t] oot 00
Byl oMt _ g gy 00ulU
aqk,(ihm)[t] aok [t] aqk,(i,Ler)[t] aqk(lwm) [t] (10)

8Fk' em (s, [t])

= (0, [t]-d,[t]) g
‘ ‘ k (| er)[t:I

= (04 [t]— d, [tDCy , (Ui [t])

for m=0,---3

For last hidden layer, (11) is used

GE,[t] . OE,[t]ooj[t] auit] asuml[t] ool [t]
[0 GOl cull e[ G0l 10 aaL (]
(0L [1]- 4, [ED F (U} )W [ICLA (U ] .

for m=0,---.3
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By generalizing these results, we get the (12) and (13).

(0 [t] - d,[t]) where r=0
e‘l(ir[t]: I-r+1 l-r+1 1 l—r+1
D e HDEWK; *1t] where r#0 (12)
(0 [t]— d, [t]) where r=0
{ -1 3 -3 QQI |
= ey BT 2T D= 3 =6 3 0 S |—w "t
Z 6 _3 0 3 0 Qi+2 AX
Qi+3
where r =0
aEp[t] - e
———=¢, [tIC,, (u[t] for m=0,--3
OV v oy L] k om0 11D (13)

We use the derivatives (14) for the fixed control paints.

OF ., ([tD gl -,

= s, <
asum[t] AX = G (14)
oF (s[th g, -q
K, iy I — k,N k,N-1 SL > qu(’Nil
osum, [t] AX
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CHAPTER 5. LOCALLY RECURRENT NEURAL NETWORKS

5.1 Locally Recurrent Neural Networks with Sigmoid Activation Function

LRNN is a member of recurrent networks. The only difference from the MLP
is the Sum function of the hidden layers’ neuron. A hidden layer’s neuron stores the

output of itself and sent to the Sum function of itself as weighted input.

Input Layer Hidden Layer Output Layer

Figure 5.1 Locally Recurrent Neural Networks

The Sum function for hidden Layer’s neuron which is the only difference of
LRNN from the MLP, shown in (1). The Sum function (2) for output layer is the
same with the MLP.

j
sum[t]= " o) [tIwy, [t]+ 0, [t — 1w, .., (1)
| j | |
Sum; [t]= > oy [tTW,[t] (2)
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Learning Algorithm:

LRNN networks use Generalized Delta Learning rule. It uses (3), (4), and (5)
for the adaptation of the weights.

w, [t +1]=w, [t]+ %, 1] 3
kj Kj n W.L,— [t] (3)
5t = D O Ttw ] where r 0 "
(0, [t]—-d  [t]) f "(sum, "[t]) wherer =0

S [t '(sum "[th.o'[t] for hidden layer
=15, "[t]f'(sum. "[t)o' [t —1] for feedback weight )

j+l

S [tloj [t] where r=0

O 1]
ow,; " [t]

5.2 Locally Recurrent Neural Networks with Adaptive Catmull-Rom Spline

Activation Function

Standard LRNN networks use the sigmoid activation function. We will apply
the CR-Splines activation function to the LRNN. The cost function is the same as

before as in (1).

Eylt= %, 0Lt~} 1)° ()

42



Forward Computation:

We use the block SG1 without changing as in (2)

, Sum N-2
7, =+ —=
AX 2
2
=y @

Backward Computation:

We use (3) to adapt weights. Standard LRNN has the o and the

derivative% as in (4) and (5) respectively

OE, [t]

[+ 1= W [t]— 2, — (3)

W[t +1] = wy[t]— ol 1]

St :{Zﬁk [tiw, " [t] wherer =0 @
(0, [t]—d, [t] f "(sum"[t]) wherer=0
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S "[t1'(sum"[tho; '[t] for hidden layer
GE [t]

P — I-r ' I-r I-rre _ . 5
aw'k;r[t] o [tIf'(sum "[tho [t —1] for feedback weight (5)
Sy [tlot ] where r=0

]

We can write f '(SumL[t]) for LRNN with CR Spline functions as in (6).

et Ol G0 [t] oult] g1
F(sumy[t]) = asumi[t]  oul[t] aSuml[t] Pt AX ©)
-1 3 -3 1 Q
=[3(u}[t])’ 2(u'k[t])1]l 2 -5 4 -1 Qui | L
2 Qi+2 AX
-1 0 1 0 o

We can write (4) and (5) for the LRNN as (7) and (8) considering the (6).

DS WG] wherer % 0
& 't]=
‘ (@ [t]-d, [t f ’(u,'(‘r[t])i wherer =0

(7
DO W] wherer =0

13 -3 119
=1 (O [t]-d, [t B Tt])’ 2(u'kr[t])1]{ 2 _5 4 1] Qu| 1
2 QHZ AX

-1 0 1 0 N

wherer =0
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-1 3 =3 1 5‘
SR T 2(u'k"[t])1]% 2 Zs5 4 1|

_1 0 1 0 Qi+2
Qi+3

for hidden layer

1 I-r-1
—0. t
v [t]

-1 3 =3 1 Q
8Ep[t] I-r 1-r 2 I-r 1 Qi+1 1 I-r
o= [BUD 2w thl- 2 -5 4 -1 —0,[t-1]
oW, [t] 2 10 . 0 Qi.z | AX
Qi+3

for context layer

S "[tloy ' t] where r=0

®)

There is no change in the way of adapting the control points.

OE, [t]

O sy (01T =y g [ = g
k(i +m) K. (i-+m) ! aq:(,(ill&m)[t] (8)

where m=0,...,3
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For output layer, we use (9). For last hidden layer, we use (10). When we
generalize the results, we got before, we can write the equations (11) and (12) for

LRNN.

OE [t]  OE.[t] oo'ft oo, [t

LR RN
aqk,(iILer)[t] aOk [t] aqk,(i:(er)[t] aqk,(iILer)[t] (9)

I aF|<I(i'+m>(8‘|<[t]) | | |
= (o, [t]-d, [th—— = (04 [t]-d, [tDCy ,, (U [tD

0 k,(ihm)[t]
for m=0,---3

OE,It] . OE,[t]co[t] ou,ft] oSum,[t] oo, '[t]
Oy 0y 1 [t] T B0y [t] Quy[t] aSumy[t] 60, [t] éay ., [t]
Zk(o'k[t]—dk[t])f'(u'k[t])iw'kj[t]CL}L(uL'l[tD (10)

for m=0,---,3

We use the derivatives (11) for the fixed control paints.

OF, ([tD gl —aqk,

= s <q
asum,[t] AX =< G an
oF , (sIth g, -q
kil | _ kN K,N-1 SII<>qu<,N—1
osum, [t] AX
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(0 [t]—d,[t]) where r=0

et - 12
k [] z el|<—r+1[t]fr(ull<—r+l[t])ALWl|<j—r+l[t] where r 20 ( )
X
(0[] - d[tD) where r=0
. -1 3 -3 1 QQi |
= zeL”l[t]B(uL”‘[t])z 2D 2 -5 4 - le S
_1 0 1 0 i+2
Qi+3
where r =0
OE [t
#Zei’r[t]ci}(uf[t]) for m=0,---,3
aqk’(ill(frer) [t] (13)

5.3 Locally Recurrent Neural Networks with Adaptive B-Spline Activation

Function

In this section, we will apply adaptive b-spline activation function to the

LRNN. The cost function as in (1)

Ep[t]=Z‘,k%(0'k[t]—0|i[t])2 (1)
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Forward Computation:

We use the same SG1 block, we used before as in (2).

;. Sum N-2
L, =——+—
A2
i =2 | 2)

Backward Computation:

To change the weights we will use the equation (3).The o6 and the

derivative% for the standard LRNN are as in (4) and (5) respectively.

I I OE,[t] 3
wkj[t+1]=wkj[t]—ywm 3)
S :{Zk O [twy T [t] wherer #0 @
(0 [t]—d, [t]) f '(sum"[t]) wherer=0
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S Tt1f'(sum[t]ho! "'[t] for hidden layer

=46, "[t]1f(sum, "[tDo ([t —1] for feedback weight (s
S "[tlo; " t] where r=0

OE,[t]
owyg"[t]

We can write the f'(sum,[t]) as in (6). The equation (4) and (5) can be adapt

for LRNN with adaptive b-spline activation function as in (7) and (8) respecting the
equation (5).

f'(sum,[t]) =

oo lt] _oolt] AWl _ iy b
aSumi[t]  oul[t] aSum,[t] A

(6)
_ _ Q
=[3(u,)’ 2(UL)1]% 3 -6 Q. Al
-3 0 3 0 Qi+2 X
Qi+3
2 0T wherer =0
&= o
O [tI-d[thf' U Tth— wherer =0 (7)
AX
PR LITAR wherer =0
-1 3 -3 1 QI
@ - BTy 20 L] 3 <6 3 of O |-
6 Q+2 AX
-3 0 3 0
Q.
wherer =0
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3 31 Q]
& "THIBUL )’ 2(u'kr[t])1]é 3 —6 3 0 gm iolj”[t]
-3 0 3 0 i+2
_Qi+3J
for hidden layer
OE [t] -1 3 -3 1 Q
LPr = 5¢‘f[t][3(ulk_f[t])2 2(u'k—r[t])1]l 3 -6 3 0 Qi+l LOIJ-:['[—I]
ow,; " [t] 6 0 3o Q.. |ax
_Qi+3_
for context layer
5 "t} " t] where r=0
(8)

The way we use to adapt control points exactly the same, we used before for
previous network models. (9) is used to adapt control points. For output layer, we

use the equation (10).

q| [t+1]=ql [t]_ﬂ ﬂ
K. (ix-+m) ki(i+m) ! aqll<,(ii+m)[t] (9)

where m=0,...,3

OE,[t]  CGE,It] oo,[t] (ol Tt]—d. [t]) a0, [t]
k k |

oy o[t G0L[t] ol I1] o 1 oy 1] (10)
OF, 4 (SKID)

= (O [t]=d, [th——

q k,(il'( +m) [t]

= (04 [t]—d[tDCy , (Uy [t])

for m=0,---3
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For the last hidden layer, we use the equation (11). If we generalize the results,
we got, we can write (12) and (13) for the LRNN. We use the derivatives (14) for

the fixed control paints.

OB,[t] . OE,[t] 20, [t] ou,[t] oSum,[t] do, '[t]
0y o It] kﬁdﬁ]&J[M%wnH]8%1H]6%“umﬂ]

Zmﬁ]dMHwﬁD mmdywmn
for m=0,---,3

(In

(0, [t]—d,[t]) where r=0

& '[t]= (12)

> e (U r+l[t]) w'kj "1t] where r=0

(0, [t]—-d,[t] where r=0

-1 3 =31

— Z Ir+1[t][3(ul r+1[t]) 2(UI r+1[t])l]% 3 -6 3 0 —WI-Hl[t]
-3 0 3 of "

where r=0

OE [t] _ el|(_r [t]Cli_r; (ull(—r[t]) for m= O’...’3
0,y e [1] ’ (13)

OF, ([tD b, —aqk,
asuml [t] AX

aFkl,ill (SL[t]) _ q||<,N _ql|<,N—1
asumi [t] AX

s:( < QLJ
(14)

| |
Sk > O n-
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CHAPTER 6. PERFORMANCE OFTHE NETWORKS

In this chapter, we will compare the performance of the network on the famous
xor problem, which is commonly used as criteria to measure the performance of the
artificial neural networks. We use the artificial neural network simulator SBNN

which is explained in Appendix. On all the comparison we used following values

e Number of hidden layers :1

e Number of neuron per hidden layers :10

o [nitial weights :randomly
e Number of epoch 100,000
e [ earning rate for weight :0.5

e MSE period :100

e Number of control points for spline activation functions :80

¢ Distance between the control points :1

While we compare the networks we use a computer which has Intel Celeron

1.7 GHz cpu, 256 ddr ram with operating system Ms. windows xp.
6.1 Comparison of the Multi Layer Perceptron

In this section, we will compare the performance of Multi Layer Perceptron
with three different kinds of activation function, sigmoid activation functions,
adaptive Catmull-Rom spline activation functions, and adaptive b-spline activation

functions with the values, written on the above.

6.1.1. Comparison of the sigmoid activation functions and the B-spline

activation function for MLP

When we look at the graph on the Figure 6.1 we see that under the 1900 epoch
sigmoid function has a better performance but after the 1900 epoch adaptive b-spline

activation function has significantly better performance. The performance of sigmoid
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activation function is getting worse while the iteration number is increasing

comparing with the b-spline activation functions.

6.1.2. Comparison of the Catmull-Rom spline activation functions and the B-

spline activation functions for MLP

Catmull-Rom spline activation function has a great performance at the
beginning of the epochs. As we can see at the Figure, 6.2 b-spline functions are
learning very slowly comparing with the CR spline functions. But after a certain
amount of epoch nearly 6800 epoch the performance of the B-spline functions are
increasing on the other hand the performance of CR spline functions are dramatically

decreasing we can easily see it in the Figure 6.3

= mlp_hz

8.395

8.38

8.25

8.28

20688 4868680 GOBB §60668 16606060 12660 146808 16600 156088

Figure 6.1 Performances of MLPs with sigmoid and adaptive b-spline
activation functions for xor problem
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8.38

8.25

2808 4688 6868 o)

Figure 6.2 Performances of MLPs with adaptive CR spline and adaptive b-
spline activation functions for xor problem

8.86000845 -

- mlp_cr
8.88068048 |-
mlp_bz

8.8808835 -

8.86888830

8.86808825 -

8.868888208 -

8.86808015 -

8.86888818

8.86000800%5 -

D868 16606886 15868 2600608 25060 360068 356000

Figure 6.3 Performances of MLPs with adaptive CR spline and adaptive b-
spline activation functions for xor problem in more detail
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6.2 Comparison of the ElIman Networks

In this section, we will compare the performance of Multi Layer Perceptron
with three different kinds of activation function, sigmoid activation functions,
adaptive Catmull-Rom spline activation functions, and adaptive b-spline activation

functions for Elman Network.

6.2.1. Comparison of the sigmoid activation functions and the B-spline

activation function for Elman Networks

As we can easily see at the Figure 6.4, b-spline activation function has

significantly better performance than the sigmoid function.

6.2.2. Comparison of the Catmull-Rom spline activation functions and the B-

spline activation functions for EIman Networks

If we look at the graphs at Figure 6.5 and Figure 6.6 we see that this two
functions effects the performance of Elman Network in the same way as they effects
the performance in MLP. CR spline functions effects the performance very fast but
while the number of epochs are increasing the positive effect of CR spline function
on the performance are decreased. On the other hand, b-spline activation functions

show its effect a bit later.

a.188

e.a0a8 | —  elman

= elman_kb=

a.a88 -

a.a78

a.a68

a.a58 -

a.a48 -

a.a38

a.az28 -

a.ai18

PR NS S S SR S S U N SR S S N S S S S [ S ST S S T S S T S S S
patslcls] 18888 15888 288808 258808 Ioaaa FISaa8

Figure 6.4 Performances of Elman Networks with sigmoid and
adaptive b-spline activation function for xor problem
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Figure 6.5 Performances of Elman Networks with adaptive CR spline and
adaptive b-spline activation functions for xor problem
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0.6600608 |-

8.6880808508 |

6.686806040 |

8.888030 |
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8.888018 |

Figure 6.6 Performances of Elman Networks with adaptive CR spline and
adaptive b-spline activation functions for xor problem in more detail
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6.2.3. Comparison of the Catmull-Rom spline activation functions and the

sigmoid activation functions for Elman Networks

When we look at the Figure 6.7 CR splines has a quick performance but after a
while sigmoid function is reaching the performance of the CR splines. To understand
whether the sigmoid function will catch or pass the CR spline we should look in

more detail like the Figure 6.8

8.98

= elman
a.8a
elman_cr

a.78
8.68
8.58
8.48 |
8.38
8.28

8.18
1 1 L 1 1 1 1 1 1
28088 4888 6808 80608 I

Figure 6.7 Performances of Elman Networks with sigmoid and
adaptive CR spline activation functions for xor problem
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Figure 6.8 Performances of Elman Networks with sigmoid and adaptive CR spline
activation functions for xor problem in more detail

6.3 Comparison of the Locally Recurrent Neural Networks

In this section we will compare the performance of Multi Layer Perceptron
with three different kinds of activation function, sigmoid activation functions,
adaptive Catmull-Rom spline activation functions, and adaptive b-spline activation

functions for Locally Recurrent Neural Networks.

6.3.1. Comparison of the sigmoid activation functions and the B-spline

activation function for Locally Recurrent Neural Networks

As we can see at the Figure 6.9 the B-spline activation function for Locally

Recurrent Neural Networks couldn’t be learned any information. It is oscillating in a
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range and no proper direction. Since that, we will not compare b-spline with any

activation function.

lrhn

lrhn_ks

2800808 48868 Goaaa foe08

Figure 6.9 Performances of LRNNs with sigmoid and adaptive
b-spline activation functions for xor problem

6.3.2. Comparison of the Catmull-Rom spline activation functions and the

sigmoid activation functions for Locally Recurrent Neural Networks

As we can see in the Figure 6.10, the CR function is better performance than
the sigmoid function. This performance CR function is not decreasing while the

number of epoch is increasing.
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Figure 6.10 Performances of LRNNs with sigmoid and adaptive CR
spline activation functions for xor problem

6.4 Comparison of execution time of all model

All the models that we compare here are different impact to performance. But
we also should the execution time to evaluate these models. We can easily compare

all the models by looking the graph at Figure 6.11
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Figure 6.11 Execution time graph for all the models
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CHAPTER 7.SPLINE BASED NEURAL NETWORK SIMULATOR (SBNN)

7.1 Software Specification of SBNN

The software, we used to simulate artificial neural networks, is written in the
PHP 4 web-based programming language. To use this software stand-alone, a web
server and at least PHP 4 must be installed and graphic extension of the PHP 4
“gd.dIl” must also be installed to see the graphs properly. We recommend Apache as
a web server. If you don’t want to spend time by installation and adjustment of this
software there is an alternative software “PHPTriad” which install and adjust all the
software you need. You should do one more thing; open the php.ini file and remove
the semicolon from the front of the “gd.dll” row. Hence, you activate the graphic

extension of PHP 4. Now you can start using the program.

7.2 The aim of this Software

The main reason we developed this software 1s to simulate the neural networks
model that we used and compare the performance of this networks. There are nine
different neural network models, we simulated by this software, which are MLP with
sigmoid activation function, MLP with adaptive CR spline activation function, MLP
with adaptive b-spline activation function, ELMAN NETWORK with sigmoid
activation function, ELMAN NETWORK with adaptive CR spline activation
function, ELMAN NETWORK with adaptive b-spline activation function,
LOCALLY RECURRENT NEURAL NETWORKS with sigmoid activation
function, LOCALLY RECURRENT NEURAL NETWORKS with adaptive CR
spline activation function, and LOCALLY RECURRENT NEURAL NETWORKS
with adaptive b-spline activation function. We used xor problem to measure
performance of this nine models. But the software can easily be adapt to manipulate

the other real world problems.

7.3 The Menu of the SBNN

As we can see Figure 7.1, there are two main menu “NETWORKS TYPES”
and “COMPARE”. There is also and “Exit” button. There are nine submenus of
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“NETWORKS TYPES”, each one represents a kind of neural networks “MLP”,
“MPL-CR Spline”, “MLP-BSpline”, “ELMAN”, “ELMAN -CR Spline”, “ELMAN-
BSpline”, “LRNN”, “LRNN -CR Spline”, and “LRNN -BSpline”. Each submenu of
“NETWORKS TYPES” is also three sub menu which are Train, Run and Delete. We

can see them in the Figure 7.2.

_INETWORK TYPES
_|COMPARE
—|Exit

WELCOME TO SBNN

Spline Based Neural Networks Simulater.

Figure 7.1 The main page of SBNN

—|NETWORK TYPES
—MLP
Y Train
S WELCOME TO SBNN
_|MLP-CR Spline
| LP-Bspline Spline Based Neural Networks Simulater.
CELMAN
_|ELMAN-CR spline
_|ELMAN-B=pline
_LRRMN
_JLRNMN-CR spline
_JLRMNM-Espline
_|COMPARE
—JExit

Figure 7.2 The submenu of “NETWORKS TYPES”
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There two sub menu of “COMPARE”, “MSE” and “Execution Time” as shown
in Figure 7.3.There is also one more button “Exit” on the menu frame. As it is

guessed it closes the program.
7.4 Training a network

When you want train a network for xor problem, First of all you should choose
a network model ,in the submenu of “NETWORK TYPES”, then choose the “Train”
button in the sub menu of the network model, you choose. You will see the table in

Figure 7.4.

_INETWORK TYPES
—COMPARE
|MSE

e To WELCOME TO SBNN

—JExit

Spline Based Neural Networks Simulater.

Figure 7.3 The submenu of “COMPARE”

This table contains essential values to start training. You can change these
values as your need you can also select the random button to select weights or you
can define a constant value to the all weights as initial value. After the selection
push, the train button then Network will be trained and saved automatically. I t gets a
certain amount of time related to the values you choose. You can also go on training
later by doing it in the same way but you will not be able to change the values except

the “Number of Epoch”. As in shown Figure 7.5
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MNetwork not found. Create a new network.

Murmber F Epach 1000 Mumber of Hiden Layers
Turnby f I L.
WWeight Learning Rate 05 Sl s
MSE Period
Spline Contral Paint Learning Rate 0.05
Initial Weights : [ Randam
Murmber of Contral Paints a0 -
MNetwork Type: Multi Layer Perceptron
{Backpropogation) with Sigmoid Activation
Diztance Between Control Points 1 Bt

Figure 7.4 The initial parameter of a network to start training

Network found.

Mumber of Epoch 1000 ‘l Mumber of Hidden Layers

Mumber of MNeurons per Layer

Weight Learning Rate

Spline Contral Point Learning Rate

Metwork Type:dulti Layer Perceptron
Mumber OF Control Points {Backpropogation) with Sigmoid Activation

Funetion

Distance Between Control Points

L —

Figure 7.5 The table which shows the number of epoch to go on training
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7.5. Running and deleting a network

To see the outputs of this trained network for the xor problem you should run
this network. To run this network just pushes the “run” button. You will see the
result like in Figure 7.6. If you want to delete the network, you created and trained,

just push the delete button.

Input 1){Input Z)(Cutput

0 0 0.0067418068883725
o | ||0.99243619582349 |
[ o ]o.sszraovesesazs |

—|NETWORK TYPES
MLP
—Y Train
Y Run
Y Delete
T 1MLP-CR Spline
_|MLP-E=pline
_|ELAkARN
T IEL#AN-CR spline
T |EL#kAN- Bspline
ILRMM
_JLRMN-CR spline
_|LRMMN-Espline
_|COMPARE
—JExit

L ||0.0081008180744096 |

Figure 7.6 The table of outputs for MLP

7.6. Comparing the Network Performance

To compare the network performance, choose “MSE, submenu of
“COMPARE” and you will se the view at Figure 7.7. You can choose the networks
you want to compare and the size of graph that shows cost functions together on one
graph. You can also chance accuracy of the graph. If you want to see the graphs in
detail, you can zoom in the graphs by changing maximums and minimums for X and

Y-axes. An example of comparison is shown in Figure 7.8. For this graphics,
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parameters are chosen as in  Figure 7.9. We can also take the comparison as table

by choosing the “Add MSE report table".

[
=
=}
=}
e}
@
=
[
5
=
=
E
=
5

@

LRMMN

w0
ihLP_CR (O]
" |NETWORK TYPES iWLP_BS [0 | [[Jforephic iz 400 [ {400 Jpiel |
COMPARE
- ELMAM El Mhinimurn and maximum far H d ‘
| MSE
_YExecution Time ELMAN_CR @ Minimum and mazximum for X d
_JERit ELMAN_BS @ |Add MSE report table Il

— |[—
= || =
Z| £
Z | =
qu Iﬁ
in || =

Dranw

Figure 7.7 Comparison table of network models and The parameters table of the
graphs, shows the graph of cost functions for the number of epoch.

LEEL]
0,00800098 |
elnan_cr
. 0,0800088 |-
_ |NETWORK TYPES = elmar_bs
_{COMPARE 0.0800070 |-
_JMSE
_yExecution Time 0,06680068 |
_JExit
0,08080058 |-
0.08680048 |-
0.68680038 |-
0.08680028 |
0.68680018 |
I T R (I T T [T T T T [ T [ T T S [ T S B}
L] 1a668 15068 28068 25008 36068 35000

Figure 7.8 an example of comparison graphics
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Choose Metwark Type
MLP_CR

| JNETWORK TYPES ‘MLP BS Graphic Size: H BOD |40 | pisel
ag’h’:’;:“ [ELmaAN D ‘Minimum e J0.00001 ‘
aExecuTion Titne ELMAN_CR ‘Minimum and mazxitmum for X - 40000 ‘
it [ ISE repart table 0 ‘
‘LRNN n
‘LRNN eR W
s |0

Draw

Figure 7.9 Chosen parameters for the graph, shown in Figure 7.8

7.7 Comparing the Execution Time Performance

29

If we want to compare the execution you should choose the “Execution Time
button, submenu of “COMPARE”, and choose which network types you want to
compare than you will get a bar graph as in Figure 7.10. You can also get this

comparison as table if you chose the “Add Execution Time report table”.

sso |

" 500 F
[ JNETWORK TYPES E
Y COMPARE 480
Y MSE 400 ;—
aExecufion Tirme 350 E_
S Exit E
zo0 F

250 |

200

150

100 f

so f

o E 1 1
& «‘95} 33?

Metwork Type||Execution Time

mlp 337.00367307663
mlp_cr bE2.4196209907 8
mlp_bs BEO.BESG127009d44

Figure 7.10 An example of Execution Time Comparison and report table
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CHAPTER 9.CONCLUSION AND RECOMMENDATIONS FOR FUTURE
WORK

In this thesis, five new neural network models are proposed: MLP with B-
spline activation function, ELMAN NETWORKS with CR-spline activation function,
ELMAN NETWORKS with B-spline activation function, LRNN with CR-spline

activation function, and LRNN with B-spline activation function,

We derived mathematical explanations of these models. Then we developed
web-based software SBNN, written in the programming language PHP 4 to simulate
these five models and four other models: MLP, ELMAN NETWORKS, and LRNN.
We use this artificial neural network simulator to compare the performance of this

nine artificial neural network models on the famous xor problem.

As a future work, artificial neural network simulator, SBNN, can be developed
for educational purposes. Since SBNN is a web-based program, it can be adapted for

e-learning. Students can use it on the internet as an online tool.

On the other hand, these new neural networks models can be applied different
kinds of real world problems and can be tested the performance of these networks.

SBNN can be used for this purpose by a little bit developing.
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APPENDIX: CD containing Thesis text and software code of the SBNN.
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