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ABSTRACT 

 

SPLINE BASED NEURAL NETWORKS 

 

Hikmet Dalkılıç 

 

 In this thesis, we applied the Catmull-Rom splines and B-splines to the neural 

networks models, which are Multi Layer Perceptrons, Elman Networks, and Locally 

Recurrent Neural Networks, as adaptive activation functions. We derived the 

learning algorithms for the five new neural network models, which we proposed. 

This new models are called  “Multi Layer Perceptrons with Adaptive B- Spline 

Activation Function”, “Elman Networks  with Adaptive Catmull-Rom Spline 

Activation Function”, “Elman Networks with Adaptive B- Spline Activation 

Function”, “Locally Recurrent Neural Networks with Adaptive Catmull-Rom Spline 

Activation Function”, “Locally Recurrent Neural Networks with Adaptive B- Spline 

Activation Function”. We measure the performance of these networks on the xor 

problem and compare the performance of them for this problem. To simulate the 

networks and to compare their performances we developed a web-based neural 

network simulator written in PHP 4 called SBNN.  

 

 

 

Keywords: Spline networks, spline activation functions, adaptive activation 

functions, Adaptive Catmull-Rom spline activation functions, Adoptive B- spline 

activation functions, SBNN. 
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ÖZET 

 

SPLINE TABANLI YAPAY SİNİR AĞLARI  

 

Hikmet Dalkılıç 

 

Bu  tez ile, Catmull-Rom spline fonksiyonları ve B-spline fonksiyonları 

uyarlanabilir aktivasyon fonksiyonları olarak, yapay sinir ağı modelleri olan Çok 

Katmanlı Ağlara,Elman ağlarına ve Yerel Geri Beslemeli ağlara uygulandı. 

Bu uygulamalardan oluşturduğumuz 5 yeni yapay sinir ağı modeli için öğrenme 

algoritmalarının  çıkarımları yapıldı. Bu yeni modeller sırasıyla “Uyarlanabilir 

Catmull-Rom Spline Aktivasyon Fonksiyonlu Çok Katmanlı Ağlar”, “Uyarlanabilir 

B-Spline Aktivasyon Fonksiyonlu Çok Katmanlı Ağlar” , “Uyarlanabilir Catmull-

Rom Spline Aktivasyon Fonksiyonlu Elman Ağları”,  “Uyarlanabilir B-Spline 

Aktivasyon Fonksiyonlu Elman Ağları”,  “Uyarlanabilir Catmull-Rom Spline 

Aktivasyon Fonksiyonlu Yerel Geri Beslemeli ağlar”,  ve son olarak “Uyarlanabilir 

B- Spline Aktivasyon Fonksiyonlu Yerel Geri Beslemeli ağlar” diye adlandırılır. 

Ağların performansı xor problemi kullanılarak ölçüldü ve sonuçları birbirleriyle 

karşılaştırıldı. Yapay sinir ağlarını oluşturulması ve performanslarının ölçülmesi için 

SBNN adında PHP 4 programlama dilin ile yazılmış web tabanlı  bir yapay sinir ağı 

similatörü geliştirildi. 

  

 

Anahtar Kelimeler: Spline ağları, spline aktivasyon fonksiyonları, Uyarlanabilir 

aktivasyon fonksiyonları, Uyarlanabilir Catmull-Rom spline aktivasyon 

fonksiyonları, Uyarlanabilir B- spline aktivasyon fonksiyonları, SBNN.    
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CHAPTER 1. INTRODUCTION 

 This thesis aimed to use spline functions for the artificial neural networks as 

adaptive activation function [1, 2, and 3]. We used this kind of activation functions 

for the networks:  “Multi Layer Perceptrons” [4], “Elman Networks” [5], and 

“Locally Recurrent Neural Networks” [6].   

In chapter 2, we give a brief definition of the splines function and spline 

fitting[7,8] which is an extremely popular form of piecewise approximation using 

various forms of polynomials of degree n, or more general functions, in which they 

are fitted to the function at specified points, known as control points, nodes or knots.

  

In chapter 3, First of al, we explained the model “Multi Layer Perceptrons” 

which is using sigmoid activation function [9]. This is one of the most popular neural 

network types, which are commonly used for engineering problems. Multi Layer 

Perceptrons use the “generalized delta learning rule” [10, 11] as learning algorithm. 

  In the section 3.2, we described the model “Multi Layer Perceptrons with 

Adaptive Catmull-Rom Spline Activation Function” [12, 13, and 14]. This model is 

very similar to the MLP model the only the difference is the activation function. This 

model uses a spline based activation function called “Catmull-Rom Spline [15] 

Activation Function”. In this model not only the weights but also the control points 

of the activation functions are adapted at the learning phase. 

In the section 3.3, we used B-spline as activation function instead of Catmull-

Rom spline. For the model “Multi Layer Perceptron with Adaptive B-Spline 

Activation Function” 

We defined and derived the learning algorithms of this network in a similar 

way, used in the model “Multi Layer Perceptron with Adaptive Catmull-Rom Spline 

Activation Function”. 

 In first section of chapter 4, we explained “Elman Networks” which is a 

member of “Recurrent Neural Networks” [16], and its learning rule. 
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  In the section 4.2 we propose a new network type “Elman Networks with 

Adaptive Catmull-Rom Spline Activation Function” In this network we apply 

“Adaptive Catmull-Rom Spline Activation Function” to the “Elman Networks” and 

derive a learning algorithm for this network types. 

In the section 4.3 we propose a new network type “Elman Networks with 

Adaptive B- Spline Activation Function” and derive a learning algorithm for this 

model. 

We described the network type “Locally Recurrent Neural Networks” and it’s 

learning algorithm in the first section of Chapter 5. 

In the section 5.2 we propose a new network type “Locally Recurrent Neural 

Networks with Adaptive Catmull-Rom Spline Activation Function” and derived a 

learning algorithm for this model. 

In the section 5.3 we also proposed a new network type “Locally Recurrent 

Neural Networks with Adaptive B-Spline Activation Function” and derived a 

learning algorithm for this model. 

In chapter 6, we compared the performances of this nine network models with 

the famous xor problem by using the software SBNN, developed to simulate these 

nine different models.   

In chapter 7, we introduced the software SBNN which is developed to simulate 

neural networks, we used. SBNN is a web based program written in the 

programming language   PHP 4 [17]. We used this tool to compare the performance 

of the network. 
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CHAPTER 2. SPLINE FUNSCTIONS   

2.1 Spline Specification 

 Spline functions are piecewise polynomial functions. Commonly used in 

computer graphics. These functions are fascinating properties. By using spline 

functions we can easily interpolate or approximate al the control points with a 

smooth, continuous curve which has first and second derivatives at every point. 

Since the splines use low degree polynomials like cubic polynomials the cost of 

calculation are so small comparing with the high degree polynomials. In their most 

general form, splines can be considered as a mathematical model that associate a 

continuous representation of a curve or surface with a discrete set of points in a given 

space. We control the shapes of spline curves by changing the control points which 

may also called nodes or knots. One control points effects only the four consecutive 

segments of the function. Hence, we can make local changes by changing one or 

more control points. In polynomials interpolation we can’t make the local changes. 

When you make a change on any parameter of polynomial interpolation, it affects all 

the shape of the curve.      

2.2 Spline Function’s Mathematical Description   

  The control points are described as (1). While the parameter u scan 0 to 1, p(u)  

scans the between two intermediate control points of four consequence points used 

for spline functions. Figure 2.1 shows these control points. 

 

 

 

 

 

 

 
(1) nkzyxp kkkk ,......,2,1,0),,( ==
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The expression at (2) is called as coefficient matrix of Catmull-Rom Splines, 

and the matrix at (3) called as Catmull-Rom splines characteristic matrix. The 

functions as in (4) called Catmull-Rom blending functions. 
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Catmull-Rom Splines interpolate the end points which are second and third 

points of four consecutive points. They span the region between the end points and 

create a smooth curve while u spans the distance 0 to 1. We can manipulate a specific 

segment of the curve by changing the four consecutive points and it gives the power 

of flexibility and locality to our curve.       

If there is no need to the interpolation at end points we can use another 

technique which doesn’t require interpolation at end points. In this technique Curves 

approximate the end points and   but the segment at the right hand side and at the left 

hand side must have equal derivative at the meeting points (control points). These 

kinds of splines are called B-splines (5). The matrix (6) used in this description is 

called b-spline characteristic matrix. The functions in (7) called blending functions of 

b-spline matrix.    

 

 

 

 

 

 

(5) 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+

−

2

1

1

.

0141
0303
0363
1331

.
6
1

k

k

k

k

x

x

x

x

x
x
x

x

d
c
b
a

(6) 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−

=

0141
0303
0363
1331

.
6
1

bM

)(
2
1)(

)43(
2
1)(

)253(
2
1)(

)2(
2
1)(

23
3

23
2

23
1

23
0

uuuC

uuuuC

uuuC

uuuuC

−=

++−=

+−=

−+−=

(4) 



 

 6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3
3

23
2

23
1

23
0

6
1)(

)1333(
6
1)(

)463(
6
1)(

)133(
6
1)(

uuC

uuuuC

uuuC

uuuuC

=

+++−=

+−=

+−+−=

(7) 



 

 7

CHAPTER 3.  MULTİ LAYER PERCEPTRONS 

3.1 Multi Layer Perceptrons with Sigmoid Activation   Functions 

 Multi Layer Perceptron is one of the most popular and most frequently used 

artificial neural network model. When Minsky [18] showed that an older model 

Perceptron [19], proposed before the Multi Layer Perceptrons, couldn’t solve the 

famous xor problem[20], researcher’s motivation on artificial neural networks are 

dramatically decreased and almost all research on this area was ended. Researcher 

thought that the problem, which has no linear relations between, inputs and outputs 

like xor could not be solved by artificial neural networks .Only a few researchers 

continued to work on this area. One of the researchers who insisted on working on 

this area was Rumellhart and his friends solved xor problem by using the more than 

one layer. Rumellhart and his friends’ solution had a great impact on starting the 

researches on this area. Currently, Multi Layer Perceptrons are producing solutions 

almost all engineering problems and it is the most commonly used artificial neural 

networks model in industry.  Especially to solve the classification, generalization and 

Identification problems, Multi Layer Perceptrons are frequently used with the 

learning rule called “Delta Learning Rule”.    

3.1.1 The Structure of Multi Layer Perceptrons 

   Like all other artificial neural network, Multi Layer Perceptrons consists of 

neurons. A neuron structure showed in Figure 3.1 by details. 

 A neuron has inputs, output, sum function and activation function. The inputs 

are multiplied by corresponding weights, which are the random number chosen the 

range between 0 and 1. The sum of these products is put in an activation function and 

the output of this activation function is the output of this neuron.  
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Figure 3.1 A neuron structure 

Figure 3.2 An example of Multi Layer  
                 Perceptron 
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 In Multi Layer Perceptron as shown in Figure 3.2, there are three main layers, 

which are Input Layer, Hidden Layer, and Output Layer. Now we will explain this 

tree layer respectively.      

Input layer: 

       This layer’s duty is to transform the data coming from the outside world into the 

hidden layer. The inputs are not multiplied by any weight and also not passed 

throughout any activation functions. Every input layer neuron only one input and 

only one output which is exactly same to this input. Input layer has the number of 

neuron, equals to the number of inputs. Every output of input layers’ neuron is sent 

to the first hidden layer as input. 

Hidden layer: 

 Hidden layer gets the data from inputs layer, puts them in some processes and 

sends the output of this processes to the output layer. Every output of input neuron is 

multiplied by a corresponding weight, which is randomly chosen from the range 

between 0, and 1.The sum of these weighted inputs is passed through the 

corresponding neurons’ activation functions. The output of this activation function is 

the output of the corresponding neuron and sent to the output layer as input.  

Output layer:  

 Output layers' neurons are very similar to hidden layers’ neurons. Every neuron 

in this layer gets the every output of last hidden layer as input. These inputs are 

multiplied by corresponding weights as in hidden layers. The sum of these weighted 

inputs is sent to activation function and the output of activation function of every 

neuron in output layer is built the output of output layer also built the output of 

network. The number of neuron in this layer is equal to the number of outputs of the 

network. 
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 Multi Layer Perceptron uses supervised learning method. In this method, a 

specific amount of inputs and expected outputs are shown to the network. Network 

makes some generalization from this example and generates a solution set for the 

problem then uses this solution set for new sample to get an output.    

 We mentioned about “delta learning rule” which Multi Layer Perceptron 

commonly uses as learning rule. Now we will examine   “delta learning rule” in 

details.       

3.1.2 Delta Learning Rule 

 The other name of this rule is known as “least mean squares rule”. It is 

developed for supervised learning models. The basics of this learning rule are related 

to the philosophy of least mean squares rule. By the least mean squares rule we get 

the local minimums. In the philosophy of this method, you can find a local minimum 

by going to the opposite side of gradient. It may or may not be the global minimum 

but it is certainly at least a local minimum.  

 Delta Learning Rule use the cost function (1)  which is half of the sum of the 

square root of difference between network outputs and desired outputs to find weight 

vectors.   

             

 

If we define the difference between network outputs and desired outputs ad Q, 

then we get the equation (2). 

 

 

 

 

 
(1) 2)(

2
1∑ −=
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The graph of this cost function is shown in Figure 3.3.  As we can easily see in 

this Figure opposite direction (i.e. negative direction) of derivative take us to the 

minimum of this graph. In this manner we can get the following conclusion, to find 

the minimum point of E-W graph we should move on the direction of 
W
E

∂
∂

−  .  

 

 

 

 

 

 

 

 

                   

 MLP uses the equation (3) to adapt the weights. To find the derivative on the 

right hand side we use (4). To find δ, used in (4), we use (5).                                                                
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3.2. Multi Layer Perceptrons with Adaptive Catmull-Rom Spline Activation   

Functions 

 In this section, we will explain the adaptive cubic Catmull-Rom Spline 

Activation Functions; used in the Multi Layer Perceptrons, will be introduced. There 

are many reasons to use adaptive cubic Splines as activation function. Some of them 

are mentioned below. 

 On Spline curves you can easily change a small segment of the curve by 

changing a few control points. Changing a control point affects only the four 

consecutive segments so the changes on the curve are totally local. On a 

polynomial curve you can not do this kind of local adaptations. When you 

change a parameter on a polynomial curve the whole curve is affected.  

 The degree of the polynomial must be so high to interpolate all control points 

comparing with a spline function. Hence, the cost is significantly reduced by 

using a cubic spline instead of using a high degree polynomial.    

 

Spline functions also have the following properties, which must be had by any 

activation function.    

 boundedness constraint 

  universal approximation property 

  flexibility 
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A cubic Spline Activation Function is described as (1) 

      

 

C in the equation (1) is the concatenation operator. )(uFi  is ith curve span . U 

is the local parameter and takes the value in the range between 0 and 1. The indices 

of C are valid only for cubic polynomials.  ith curve span function is defined as 

)(uFi  (2). In this equation, )(uC j  represents spline polynomials in another words 

spline blending functions. Q represents the control points. 

 

 

 Every control points consist of two component x and y components. 

 

 

When the Catmull-Rom splines are used as activation function )(uC j  can be written 

as (3). 
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Considering the equations (3), the equation (2) can be written as the equation (4). 

The derivative of this equation can be computed easily.   
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The derivatives at the end points are taken as below, shown in Figure 3.4. 

          

                   While u=0                ][
2
1)0(

2++−=
∂

∂
ii

i QQ
u

F
. 

                  While u=1                ][
2
1)1(

31 ++ +−=
∂

∂
ii

i QQ
u

F
   

   

To reduce the cost of the calculation the control points abscissas are chosen 

equally spaced on the x-axis and centered at the origin. The abscissas of the control 

points are not adapted also. Hence, )(uFxi  becomes a linear function instead of a 

cubic polynomial function. xΔ  shows the equal distances between the abscissas of 

the consecutive control points. 

Since we choose the abscissa of control point’s equally distanced and centered 

at the origin there is no need to store the abscissas of the control points. All we need 

to store number of control points and the distance between the control points.  

The initial values for control points are derived from the most popular 

activation function called sigmoid activation function. Since the activation function 

must be a limiting function, last two points and first two points are fixed to satisfy 

this property shown in Figure3.5.  
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3.2.1 Gradient-Based Learning for Multi Layer Perceptrons with Adaptive 

Spline Activation Function 

Definition of the parameters:     

• l
kO    Output of the kth  neuron in the lth layer; 

• l
kjw   Weight of the kth neuron in the lth layer with respect  to the jth neuron 

in the previous layer.( l
kw 0  are the bias terms); 

• l
kSum  Net output (i.e., linear combiner output)of the kth neuron in the lth 

layer; 

• 1+N  Number of control points for each neuron in the network; 

• xΔ   Sampling step along the x-axis for each activation function; 

• l
ki    Curve span index of the activation function for the kth neuron in the lth 

layer(0≤ l
ki ≤N-2); 

• l
ku  Local parameter for the l

ki th curve span of the kth neuron in the lth layer 

(0≤ l
ku ≤1); 

Figure 3.5 Control points of the Catmull–Rom spline-based activation 
function with a fixed step Δx. The extreme points qx;0, qx,1, and qx,N-1, 
qx;N-2  are fixed 
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• l
nkq ,  Ordinate of the nth control point of the kth neuron in the lth layer 

(0≤n≤N). The control point abscissas nxq , do not appear since we assume the x-

axes are uniformly sampled; 

• (.)
,
l
ik l
k

F  l
ki  th Spline patch of the activation function for the kth neuron in the 

lth layer; 

• (.),
l

mkC  mth CR polynomial(blending function) for the kth neuron in the lth 

layer(0≤m≤3). 

Forward Computation: 

The parameters u and i gathered from the equations (5) and sent as inputs to the 

equation (6).  

 

 

 

 

 

 Output of this equation (6) is also the output of the neuron. 
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The block, which is defined at (5), called GS1 and the block, defined in (6) called 

GS2 shown in Figure 3.6. 

 Backward Computation (Learning Phase): 

p shows the learning sample, t shows the iteration indices, o shows the output 

of the neuron, d shows the desired output, E shows the cost function. wμ  and qμ are 

learning coefficient for weights and the control points, respectively. 

For every neuron an e parameter is defined as in (7) 
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Figure 3.6 A neuron with adaptive spline activation function 
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δ parameter is also defined as in(8) for every neuron. 

 

 

 

Since we fixed last and first two points, the fixed values are used for the 

derivative of these points as in (9). 

 

 

 

 

 

If we get l
kw 0 weights as offset values, the equations (10) and (11) are used to 

adapt weights and control points respectively.  
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3.3. Multi Layer Perceptron with Adaptive B-Spline Activation   Functions 

 In this section we will use the adaptive b-spline activation functions for Multi 

layer Perceptron by the same technique used in section 3.2.Actually we only change 

the spline types. Hence, the computations are very similar to 3.2. The main 

difference between Catmull-Rom splines and B-Splines is their positions at the 

control points. While Catmull-Rom spline is interpolating control points, B-spline  

approximates the control points as in Figure 3.7 . 

 

 

 

 

 

 

B-spline characteristic matrix and blending functions described (1) and (2) 

respectively as we mentioned in chapter 2.  

 

 

 

 

 

 

Figure 3.7 B-spline curve behaviors at control points 
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Considering the equation (1), we can define the equation (3) for the ordinate of 

the control points as in section 3.2.  

 

 

 

 

 

The derivative of the equation (3) for u is written as the equation (4). 
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The derivatives at the end points are computed as below as computed in section 

3.2. 

                             While u=0                ][
2
1)0(

2++−=
∂

∂
ii

i QQ
u

F
. 

                            While u=1                ][
2
1)1(

31 ++ +−=
∂

∂
ii

i QQ
u

F
   

If we choose the control points in the same way we used in section 3.2. We 

constrain the control points’ abscissas to be equidistant and not adaptable and also 

centered at the origin. 

 

 

 

 

 

When we solve the equation (5) we get the equation (6).  

 

 

Forward Computation: 

The equation (6) can be written as the equation (7).  
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1, +ixq  , in the equation (7) can be expressed as (8). 

                      

 

By putting the equation (8) into the equation (7), we get the equation (9).  To 

find u and i parameters the equation (9) can be written as the equation (10). Finally 

u+i calculated as in (10). If the left hand side of the equation named as z then the 

equations at (11) can be written. The block (11) is called as SG1. We get the 

necessary parameters u and i in the equations (11) for the block SG2.   
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As in the section 3.2, the equation (12) called as SG2 block and use u and i as 

inputs. Outputs of SG2 block is also the output of neuron. 

 

 

 

 Backward Computation (Learning Phase with adaptive b-spline activation 

function) 

We will use the same gradient reduction technique, used in MLP with adaptive 

CR-spline activation functions. . The cost function is defined at (13). The equation 

(14) for the weights and the equation (15) for the control points will be used for 

adaptation. wμ  and qμ  represent the learning parameter for weights and control 

points. 
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By using the chain rule, the equation (16) can easily be written.  When we 

write the derivatives on the right hand side, we get the equation (17) 

 

 

 

 

 

 

 

We can also write the equation (17) in more detail like in (18).Now we will 

define the ][tl
kδ  in the equation (19). Hence, the equation (18) can be written as the 

equation (20) shortly. This equation is used for the output layer. For the last hidden 

layer we use the equation (21).For the hidden layer we can write the equation (22) as 

the equation (24) with the new δ value.  
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Equation (21) can be written as the equation (22).Now we will define the δ, as 

in (23), for the last hidden layer. 

 

 

 

 

  

 

 

 

 

 

 

When we generalize these results for all hidden layers and output layer we get 

the δ value as in (25) and Derivative for the weights as in (26).  
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For the control points adaptation of the output layers’ neurons we use the 

equation (27). For the control points’ adaptation of the last hidden layer, we use the 

equation (28)   
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To generalize this conclusion to the all hidden layers and output layer, we 

define a new parameter e as in (29). Hence, we define the derivative of cost function 

for control points as in (30). For the fixed points we use the derivatives in (31). 
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CHAPTER 4. ELMAN NETWORK 

 Elman networks [17] are in the class of recurrent neural networks. These 

networks store the hidden layer’s output and give these outputs to the neuron with 

the other inputs in the next iteration. These outputs, very similar to other inputs, also 

have weights. A neuron can not understand differences of outputs from the other 

inputs. Neurons act them as if they are inputs, came from previous layer.     

 

       .  

 

 

 

 

 

 

 

4.1. Elman Networks with Sigmoid Activation 

Elman Network has a new Sum function (1) for the hidden layers comparing 

with Multi Layer Perceptron. But for the output layer Sum function (2) is the same 

with the function used in Multi Layer Perceptron. 

 

 

 

Figure 4.1 An example of Elman Networks 

∑ ∑
=

+
=

− −+=
j

m

l
mjk

k

m

l
m

l
km

l
m

l
k wtotwtotSum

1
)(,

1

1 ]1[][][][ (1) 
 



 

 30

 

 

Learning Algorithm:  

Elman networks also use Generalized Delta Learning Rule like MLP. Cost 

function and weight’s adaptation function, described as (3) and (4) respectively.  

 

 

 

 

 

The δ parameters can be written as in (5) and 
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4.2. Elman Networks with Adaptive Catmull-Rom Spline Activation Function 

In Standard Elman Networks, sigmoid function is used as activation function. 

We will use Catmull-Rom Spline Activation Function, used for Multi Layer 

Perceptrons before, for the Elman Networks. Cost function (1) is same as before. 

          

 

 

Forward Computation:  

We get SG1 block output by the equations (2). 

 

 

 

 

 

Backward Computation: 

We use the equation (3) for the weight adaptation. 
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We used the δ, as in the equation (4), and derivative formula as in the equation 

(5) for the Elman Networks with sigmoid activation functions. 
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If we apply (6) to (4) and (5) we derive the equations (7) and (8). 
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For the control points adaptation we use the equation (9). The difference 

between Elman Networks with adaptive Catmull-Rom spline activation function and 

Multi Layer Perceptron with adaptive Catmull-Rom spline activation function is Sum 

function. Hence, there is no difference adapting the control points. For the output 

layers, the equation (10) is used. 
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When we generalize these results we get the equation (12) and (13) 

 

 

 

 

 

 

 

 

 

 

  

We use the derivatives (14) for the fixed control paints.  
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4.3 Elman Networks With Adaptive B-Spline Activation Functions 

In this section we will apply adaptive b-spline activation function to the Elman 

Networks. The cost functions is described as in (1) 

 

       

 

Forward Computation: 

We will use the same forward computation as we use for the CR spline 

activation functions. The block in (2) is called SG1.  

 

 

 

 

 

Backward Computation: 

We will use the equation (3) to adapt the weights as in CR splines. 
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The δ and the derivative
w
E
∂
∂  are described as in (4) and (5) respectively for the 

standard Elman Networks, which use sigmoid function as activation function. We 

can easily adapt these two equations for the b-spline activation function.   
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Now we can write the δ and the derivative
w
E
∂
∂   as in (7) and (8). 
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We will use the equation (9) to adapt the control points. Since the only 

difference between Elman Networks and MLP is the Sum function, there is no 

difference between Elman Networks and MLP for the adaptation of control points. 

 

 

 

 

For output layer, (10) is used. 

 

 

 

 

 

For last hidden layer, (11) is used 
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By generalizing these results, we get the (12) and (13). 

 

 

 

 

 

 

 

 

 

 

 

 

We use the derivatives (14) for the fixed control paints.  
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CHAPTER 5.  LOCALLY RECURRENT NEURAL NETWORKS 

5.1 Locally Recurrent Neural Networks with Sigmoid Activation   Function 

LRNN is a member of recurrent networks. The only difference from the MLP 

is the Sum function of the hidden layers’ neuron. A hidden layer’s neuron stores the 

output of itself and sent to the Sum function of itself as weighted input.  

 

        

 

 

 

 

 

 

 

The Sum function for hidden Layer’s neuron which is the only difference of 

LRNN from the MLP, shown in (1). The Sum function (2) for output layer is the 

same with the MLP.  
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        Figure 5.1 Locally Recurrent Neural Networks 
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Learning Algorithm:  

LRNN networks use Generalized Delta Learning rule. It uses (3), (4), and (5) 

for the adaptation of the weights.   

 

 

 

 

 

 

 

 

 

 

 

5.2 Locally Recurrent Neural Networks with Adaptive Catmull-Rom Spline 

Activation   Function 

Standard LRNN networks use the sigmoid activation function. We will apply 

the CR-Splines activation function to the LRNN. The cost function is the same as 

before as in (1). 
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Forward Computation: 

We use the block SG1 without changing as in (2) 

 

 

 

 

 

Backward Computation: 

   We use (3) to adapt weights. Standard LRNN has the δ and the 

derivative
w
E
∂
∂   as in (4) and (5) respectively 
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We can write ])[( tsumf l
k′  for LRNN with CR Spline functions as in (6). 

 

 

 

 

 

 

 

We can write (4) and (5) for the LRNN as (7) and (8) considering the (6). 
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There is no change in the way of adapting the control points. 
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For output layer, we use (9). For last hidden layer, we use (10). When we 

generalize the results, we got before, we can write the equations (11) and (12) for 

LRNN. 

 

 

 

 

 

 

 

 

 

 

We use the derivatives (11) for the fixed control paints.  
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5.3 Locally Recurrent Neural Networks with Adaptive B-Spline Activation   

Function 

In this section, we will apply adaptive b-spline activation function to the 

LRNN. The cost function as in (1) 
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Forward Computation: 

We use the same SG1 block, we used before as in (2). 

 

 

 

 

 

Backward Computation: 

To change the weights we will use the equation (3).The δ and the 

derivative
w
E
∂
∂    for the standard LRNN are as in (4) and (5) respectively. 
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We can write the ])[( tsumf l
k′  as in (6). The equation (4) and (5) can be adapt 

for LRNN with adaptive b-spline activation function as in (7) and (8) respecting the 

equation (5). 
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The way we use to adapt control points exactly the same, we used before for 

previous network models.  (9) is used to adapt control points. For output layer, we 

use the equation (10). 
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For the last hidden layer, we use the equation (11). If we generalize the results, 

we got, we can write (12) and (13) for the LRNN.  We use the derivatives (14) for 

the fixed control paints.  
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CHAPTER 6. PERFORMANCE OFTHE NETWORKS 

In this chapter, we will compare the performance of the network on the famous 

xor problem, which is commonly used as criteria to measure the performance of the 

artificial neural networks.  We use the artificial neural network simulator SBNN 

which is explained in Appendix. On all the comparison we used following values 

• Number of hidden layers                                                  :1 

• Number of neuron per hidden layers                                :10 

• Initial weights                                                                   :randomly 

• Number of epoch                                                              :100,000 

• Learning rate for weight                                                   :0.5 

• MSE period                                                                      :100 

• Number of control points for spline activation functions :80 

• Distance between the control points                                 :1 

 

While we compare the networks we use a computer which has Intel Celeron 

1.7 GHz cpu, 256 ddr ram with operating system Ms. windows xp.  

6.1 Comparison of the Multi Layer Perceptron 

 In this section, we will compare the performance of Multi Layer Perceptron 

with three different kinds of activation function, sigmoid activation functions, 

adaptive Catmull-Rom spline activation functions, and adaptive b-spline activation 

functions with the values, written on the above. 

6.1.1. Comparison of the sigmoid activation functions and the B-spline 

activation function for MLP 

When we look at the graph on the Figure 6.1 we see that under the 1900 epoch 

sigmoid function has a better performance but after the 1900 epoch adaptive b-spline 

activation function has significantly better performance. The performance of sigmoid 
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activation function is getting worse while the iteration number is increasing 

comparing with the b-spline activation functions. 

6.1.2. Comparison of the Catmull-Rom spline activation functions and the B-

spline activation functions for MLP 

Catmull-Rom spline activation function has a great performance at the 

beginning of the epochs.  As we can see at the Figure, 6.2 b-spline functions are 

learning very slowly comparing with the CR spline functions. But after a certain 

amount of epoch nearly 6800 epoch the performance of the B-spline functions are 

increasing on the other hand the performance of CR spline functions are dramatically 

decreasing we can easily  see it in the Figure 6.3  

 

 

 

 

 

 

 

 

 
  

 

 

Figure 6.1 Performances of MLPs with sigmoid and adaptive b-spline 
activation functions for xor problem 
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Figure 6.2 Performances of MLPs with adaptive CR spline and adaptive b-
spline activation functions for xor problem 

Figure 6.3 Performances of MLPs with adaptive CR spline and adaptive b-
spline activation functions for xor problem in more detail 
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6.2 Comparison of the Elman Networks 

In this section, we will compare the performance of Multi Layer Perceptron 

with three different kinds of activation function, sigmoid activation functions, 

adaptive Catmull-Rom spline activation functions, and adaptive b-spline activation 

functions for Elman Network. 

6.2.1. Comparison of the sigmoid activation functions and the B-spline 

activation function for Elman Networks 

As we can easily see at the Figure 6.4, b-spline activation function has 

significantly better performance than the sigmoid function. 

6.2.2. Comparison of the Catmull-Rom spline activation functions and the B-

spline activation functions for Elman Networks  

If we look at the graphs at Figure 6.5 and  Figure 6.6 we see that this two 

functions effects the performance of Elman Network in the same way as they effects 

the performance in MLP. CR spline functions effects the performance very fast but 

while the number of epochs are increasing the positive effect of CR spline function 

on the performance are decreased. On the other hand, b-spline activation functions 

show its effect a bit later. 

 

 

 

 

 

 

 Figure 6.4 Performances of Elman Networks with sigmoid and 
adaptive b-spline activation function for xor problem 
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Figure 6.5 Performances of Elman Networks with adaptive CR spline and 
adaptive b-spline activation functions for xor problem 

Figure 6.6 Performances of Elman Networks with adaptive CR spline and 
adaptive b-spline activation functions for xor problem in more detail 
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6.2.3. Comparison of the Catmull-Rom spline activation functions and the 

sigmoid activation functions for Elman Networks    

When we look at the Figure 6.7 CR splines has a quick performance but after a 

while sigmoid function is reaching the performance of the CR splines. To understand 

whether the sigmoid function will catch or pass the CR spline we should look in 

more detail like the Figure 6.8             

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Performances of Elman Networks with sigmoid and 
adaptive CR spline activation functions for xor problem 
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6.3 Comparison of the Locally Recurrent Neural Networks 

In this section we will compare the performance of Multi Layer Perceptron 

with three different kinds of activation function, sigmoid activation functions, 

adaptive Catmull-Rom spline activation functions, and adaptive b-spline activation 

functions for Locally Recurrent Neural Networks. 

 6.3.1. Comparison of the sigmoid activation functions and the B-spline 

activation function for Locally Recurrent Neural Networks 

As we can see at the Figure 6.9 the B-spline activation function for Locally 

Recurrent Neural Networks couldn’t be learned any information. It is oscillating in a 

Figure 6.8 Performances of Elman Networks with sigmoid and adaptive CR spline 
activation functions for xor problem in more detail 
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range and no proper direction. Since that, we will not compare b-spline with any 

activation function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3.2. Comparison of the Catmull-Rom spline activation functions and the 

sigmoid activation functions for Locally Recurrent Neural Networks 

As we can see in the Figure 6.10, the CR function is better performance than 

the sigmoid function.  This performance CR function is not decreasing while the 

number of epoch is increasing.  

 

Figure 6.9 Performances of LRNNs with sigmoid and adaptive 
b-spline activation functions for xor problem 
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6.4 Comparison of execution time of all model 

All the models that we compare here are different impact to performance. But 

we also should the execution time to evaluate these models. We can easily compare 

all the models by looking the graph at Figure 6.11 

 

Figure 6.10 Performances of LRNNs with sigmoid and adaptive CR 
spline activation functions for xor problem 
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Figure 6.11 Execution time graph for all the models 
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CHAPTER 7.SPLINE BASED NEURAL NETWORK SIMULATOR (SBNN) 

7.1 Software Specification of SBNN 

 The software, we used to simulate artificial neural networks, is written in the 

PHP 4 web-based programming language. To use this software stand-alone, a web 

server and at least PHP 4 must be installed and graphic extension of the PHP 4 

“gd.dll” must also be installed to see the graphs properly. We recommend Apache as 

a web server. If you don’t want to spend time by installation and adjustment of this 

software there is an alternative software “PHPTriad” which install and adjust all the 

software you need. You should do one more thing; open the php.ini file and remove 

the semicolon from the front of the “gd.dll” row. Hence, you activate the graphic 

extension of PHP 4. Now you can start using the program. 

7.2 The aim of this Software 

 The main reason we developed this software is to simulate the neural networks 

model that we used and compare the performance of this networks. There are nine 

different neural network models, we simulated by this software, which are MLP with 

sigmoid activation function, MLP with adaptive CR spline  activation function, MLP 

with adaptive b-spline activation function, ELMAN NETWORK with sigmoid 

activation function, ELMAN NETWORK with adaptive CR spline activation 

function, ELMAN NETWORK with adaptive b-spline activation function, 

LOCALLY RECURRENT NEURAL NETWORKS with sigmoid activation 

function, LOCALLY RECURRENT NEURAL NETWORKS with adaptive CR 

spline  activation function, and LOCALLY RECURRENT NEURAL NETWORKS 

with adaptive b-spline  activation function. We used xor problem to measure 

performance of this nine models. But the software can easily be adapt to manipulate 

the other real world problems. 

7.3 The Menu of the SBNN 

As we can see Figure 7.1, there are two main menu “NETWORKS TYPES” 

and “COMPARE”. There is also and “Exit” button. There are nine submenus of 
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“NETWORKS TYPES”, each one represents a kind of neural networks  “MLP”, 

“MPL-CR Spline”, “MLP-BSpline”, “ELMAN”, “ELMAN -CR Spline”, “ELMAN-

BSpline”, “LRNN”, “LRNN -CR Spline”, and “LRNN -BSpline”. Each submenu of 

“NETWORKS TYPES” is also three sub menu which are Train, Run and Delete. We 

can see them in the Figure 7.2. 

 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

           Figure 7.1 The main page of SBNN 

Figure 7.2 The submenu of “NETWORKS TYPES” 
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There two sub menu of “COMPARE”, “MSE” and “Execution Time” as shown 

in Figure 7.3.There is also one more button “Exit” on the menu frame. As it is 

guessed it closes the program.      

7.4 Training a network 

When you want train a network for xor problem, First of all you should choose 

a network model ,in the submenu of “NETWORK TYPES”, then choose the “Train” 

button in the sub menu of the network model, you choose. You will see the table in 

Figure 7.4.  

 

 

 

 

 

 

 

 

This table contains essential values to start training. You can change these 

values as your need you can also select the random button to select weights or you 

can define a constant value to the all weights as initial value. After the selection 

push, the train button then Network will be trained and saved automatically. I t gets a 

certain amount of time related to the values you choose. You can also go on training 

later by doing it in the same way but you will not be able to change the values except 

the “Number of Epoch”. As in shown Figure 7.5 

 

Figure 7.3 The submenu of “COMPARE” 
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Figure 7.4 The initial parameter of a network to start training 

Figure 7.5 The table which shows the number of epoch to go on training 
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7.5. Running and deleting a network 

To see the outputs of this trained network for the xor problem you should run 

this network. To run this network just pushes the “run” button. You will see the 

result like in Figure 7.6. If you want to delete the network, you created and trained, 

just push the delete button. 

 

 

 

 

 

 

 

 

 

 

7.6. Comparing the Network Performance 

To compare the network performance, choose “MSE, submenu of 

“COMPARE” and you will se the view at Figure 7.7. You can choose the networks 

you want to compare and the size of graph that shows cost functions together on one 

graph. You can also chance accuracy of the graph. If you want to see the graphs in 

detail, you can zoom in the graphs by changing maximums and minimums for X and 

Y-axes. An example of comparison is shown in Figure 7.8.  For this graphics, 

Figure 7.6   The table of  outputs for MLP 
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parameters are chosen as in    Figure 7.9.  We can also take the comparison as table 

by choosing the “Add MSE report table”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Comparison table of network models and The parameters table of the             
graphs, shows the graph of cost functions for the number of epoch. 

Figure 7.8 an example of comparison graphics 
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7.7 Comparing the Execution Time Performance 

If we want to compare the execution you should choose the “Execution Time” 

button, submenu of “COMPARE”, and choose which network types you want to 

compare than you will get a bar graph as in Figure 7.10. You can also get this 

comparison as table if you chose the “Add Execution Time report table”.  

 

 

 

 

 

 

 

 

 

Figure 7.9 Chosen parameters for the graph, shown in Figure 7.8 

 
Figure 7.10 An example of Execution Time Comparison and report table 



 

 69

CHAPTER 9.CONCLUSION AND RECOMMENDATIONS FOR FUTURE 

WORK 

In this thesis, five new neural network models are proposed:  MLP with B-

spline activation function, ELMAN NETWORKS  with CR-spline activation function, 

ELMAN NETWORKS  with B-spline activation function, LRNN  with CR-spline 

activation function, and LRNN  with B-spline activation function,     

We derived mathematical explanations of these models. Then we developed 

web-based software SBNN, written in the programming language PHP 4 to simulate 

these five models and four other models: MLP, ELMAN NETWORKS, and LRNN. 

We use this artificial neural   network simulator to compare the performance of this 

nine artificial neural   network models on the famous xor problem.  

As a future work, artificial neural network simulator, SBNN, can be developed 

for educational purposes. Since SBNN is a web-based program, it can be adapted for 

e-learning. Students can use it on the internet as an online tool.   

On the other hand, these new neural networks models can be applied different 

kinds of real world problems and can be tested the performance of these networks. 

SBNN can be used for this purpose by a little bit developing. 
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APPENDIX: CD containing Thesis text and software code of the SBNN. 

 

 

 

 

 

 

 

 

 

 

 


