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IŞIK UNIVERSITY

2013

http://www.isikun.edu.tr
http://www.isikun.edu.tr
http://www.isikun.edu.tr
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Assoc. Prof.
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PARTNER SELECTION AND RESOURCE

ALLOCATION IN SINGLE-CELL, MULTI-CELL AND

COGNITIVE COOPERATIVE MULTIPLE ACCESS

CHANNELS

Abstract

Wireless communication has been widely used across the globe for several years.

As the technology advances and gains popularity, more people start using it and

more throughput is needed. For that reason, several techniques are being re-

searched such as MIMO systems and cooperative networks. Wireless coopera-

tive networks make use of the natural property of radiation of electromagnetic

waves. Since the waves emitted by a user in the network can be heard by all

users in the network, one cooperating partner uses this overheard information

to increase throughput. However, to maximize the throughput of a system, co-

operating partners must be selected intelligently. In this dissertation, first, we

will summarize cooperative communication basics, techniques we used in convex

optimization and graph theory. Then, we will show how these concepts can be

used together to optimally maximize system throughput and propose lower com-

plexity yet nearly-optimal partner selection algorithm will be proposed. Under

the light of the results of this work, in the next chapters, we will introduce a

novel fractional frequency reuse scheme which encourages users to cooperate and

allow system to support more users. In the last chapter, a cognitive scenario will

be used for one cell and we will present the optimal partner selection scheme for

system throughput maximization.
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TEK ALICILI, ÇOK ALICILI VE BİLİŞSEL İŞBİRLİKÇİ

ÇOKLU ERİŞİM KANALLARINDA KAYNAK TAHSİSİ

VE İŞBİRLİKÇİ PARTNER SEÇİMİ

Özet

Kablosuz haberleşme tüm dünyada gittikçe yaygınlaşan bir kullanıma sahiptir.

Teknoloji ilerledikçe, artan kullanım doğrultusunda daha yüksek veri hızlarına

çıkma ihtiyacı doğmaktadır. Bu sebeple, işbirlikçi haberleşme, çoklu alıcılı çoklu

vericili sistemler geliştirilmektedir. İşbirlikçi haberleşme, elektromanyetik dal-

gaların yayılım prensibinden faydalanır. Yayılan dalgalar, sistemdeki tüm kul-

lanıcılar tarafından duyulur ve bu durum, veri hızını artırmak amacı ile kul-

lanılmaktadır. Buna rağmen, sistemin toplam veri hızını eniyilemek için, işbirlikçi

partnerlerin seçimi de akıllıca yapılmalıdır. Bu tezde, ilk önce işbirlikçi telsiz

haberleşme temellerini, kullanılan eniyileme ve çizge kuramı tekniklerini özetle-

yeceğiz. Sonrasında, bu tekniklerin sistemin toplam veri hızını eniyilemek için

beraber kullanımını gösterip, düşük karmaşıklığa sahip eniyiye yakın sonuç veren

algoritmalar önereceğiz. Bu çalışmanın ışığında, sonraki bölümlerde işbirliğini

artırıp daha fazla kullanıcı desteklenmesini sağlayan özgün bir parçalı frekans

tekrarı sistemi tanıtacağız. Son bölümde ise, işbirlikçi bilişsel tek hücreli telsiz

sistemlede sistem veri hızını en iyileyen kaynak tahsisi ve partner seçimi algorit-

maları tanıtılacaktır.
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Chapter 1

Introduction

The widespread use of wireless communication technologies in densely populated

environments, brings along the need to revise the traditional frequency reuse and

orthogonal multiple access techniques, and to build new models that accommo-

date more advanced opportunistic approaches. Therefore, the concept of coopera-

tive communication arises naturally in wireless channels, due to their propagative

properties. The users in a wireless network can overhear each other’s signals, and

with clever protocol design, they may aid each other’s transmissions to combat

the challenging channel conditions, in order to achieve better performance.

The term “user cooperation” is best suited for systems with mutually cooperating

encoders, where all cooperating parties have their own messages to be transmit-

ted. One of the pioneering works, which demonstrated the potential gains from

user cooperation is [1], which deals with a two user fading Gaussian MAC with

overheard information. It was shown in [1] that the users may increase their

transmission rates considerably if they cooperate, and that the improvement in

rates depends highly on the channel conditions in the system. In [2], the achiev-

able rate region introduced in [1] was extended to include channel adaptive power

allocation, and the optimum power control strategy was derived. In [2], authors

have studied cooperation between two users yet, in practical wireless communi-

cation systems, more users are generally supported. Since in the network the
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channel conditions for different user groups are highly variable, in order to max-

imize the benefit from user cooperation, cooperating partners should be selected

efficiently. This leads to the problem named “partner selection” in the literature.

To this end, several strategies for partner selection in wireless networks have been

developed in the literature. An SNR threshold based partner selection algorithm

was proposed in [3] to reduce the error probability, or to increase the system

throughput. A user location information based partner selection algorithm using

maximum weighted matching for an amplify-and-forward relaying scheme was

studied in [4] with the aim of minimizing total system transmission power.

The models used while dealing with the partnering problem usually involve some

form of orthogonality across the user pairs, so that the pairs can cooperate without

causing interference to each other. OFDMA, which has gained a lot of popularity

in the recent years because of its several desirable properties, is a good candidate

for realizing practical cooperation, due to its orthogonal structure. There is quite

an extensive amount of work on power and subchannel allocation schemes for

OFDMA, some examples of which are [5], [6], [7] and [8]. Yet, encoding tech-

niques, and resource allocation for mutually cooperative OFDMA systems, have

not been investigated much until rather recently. For cooperative OFDMA sys-

tems containing only two users, achievable rates based on mutual cooperation

across subchannels were characterized in [9], and for such systems, optimal power

allocation algorithms was developed in [10].

Partner selection in OFDMA has also been considered recently by several works

in the literature. A related work [11] deals with a system which uses amplify-

and-forward relaying scheme for OFDMA with only half-duplex user cooperation,

where the benefit of partner selection is observed in the form of a significant

reduction of total transmission power. The partner selection algorithm proposed

in [12] applies a game theoretical approach on selecting partners for OFDMA

systems.
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In this dissertation, the work presented in Chapter 3 is focused on partner selec-

tion in cooperative wireless networks with power controlled OFDMA. The part-

ner selection and resource allocation problems affecting each other and should

be solved jointly. With the help the orthogonality provided by OFDMA, the

power control policy can be applied to each cooperating pair independently of

other pairs. Therefore, optimal partner selection algorithms can be applied after

power control. These two steps of power control and partner selection algorithms

are applied optimally. With the knowledge gained, some near-optimal practical

heuristic algorithms are presented in order to decrease computational complex-

ity. In this part of the study, one cell is considered and inter-cell interference is

omitted.

As wireless communication usage increases across the globe, more users are needed

to be supported, which leads engineers to focus on improving traditional frequency

reuse methods. As a solution to this problem, fractional frequency reuse (FFR) is

gaining popularity in the literature. FFR systems increases number of supported

users with a cost of increased inter-cell interference, hence FFR systems becomes

interference limited systems. The most common FFR scheme, “Strict FFR”,

divides users into two sets according to their distances to the receiver, and assigns

different frequency bands to each sets. There are several studies such as [13] on

finding the optimal distance rule to divide users according to inter-cell interference

and throughput. However, “Strict FFR” is not designed with cooperation in

mind, therefore cannot encourage the users to use cooperation for higher gains.

In Chapter 4, we propose a novel FFR scheme called “Complementary FFR”

which mainly focuses to encourage cell-edge users to cooperate with each other

despite being in different cells. “Complementary FFR” with optimal partner

selection, increases the total throughput of the system and provides improved

fairness in comparison to the one-cell setup studied in Chapter 3. The work is

presented in details in Chapter 4.

Through years, many frequency bands are licensed and actively in use. However,

these limited usable frequencies start to fail to serve to high demand in wireless
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communications. Thus, several overcomings of this problem are studied such as

cognitive radio. In cognitive radio, an additional user (secondary user) starts to

send its own signals in the same frequency band of primary user, the owner of the

communication channel. The main constraint that distinguishes cognitive radio

from traditional systems is primary user must not be affected by the secondary

users involvement to the communication channel. In Chapter 5, one-cell cognitive

cooperative setup with optimal partner selection is studied thoroughly. Primary

users communication is guarantied not to be affected negatively and possible

transmission rate gain opportunities by cooperation are investigated. Selection of

optimal partners consisting of primary and secondary users to maximize system

total transmission rate is found.
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Chapter 2

Background Theory

In this dissertation, we have solved various complex problems by using various

techniques from multiple disciplines such as information theory, communication

theory, convex optimization and graph theory. Each of the problems contain

various concepts and it is useful to summarize the underlying theory briefly.

2.1 Gaussian Channel Capacity

Gaussian channel is the basis of modern communication theory introduced by

Shannon. Gaussian channel is a time-discrete, continuous alphabet channel with

independent identically distributed (i.i.d.) additive white noise at output.

Yi = Xi + Zi where Z ∼ N (0, N). (2.1)

where Xi and Yi are the input and output signals respectively and Zi is the

additive noise. The limit on mutual information between input and output is the

+

Z

X Y

Figure 2.1: Gaussian channel model
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information capacity of the Gaussian channel. The information capacity for a

Gaussian channel with power constraint is defined as

C , max
E[X2]≤P̄

I(X ; Y ) (2.2)

where P̄ is the power constraint and and E[X2] is expectation of the power of

input signal X . We can calculate the information capacity by expanding mutual

information between X and Y ,

I(X ; Y ) = h(Y )− h(Y |X) (2.3)

= h(Y )− h(X + Z|X) (2.4)

= h(Y )− h(Z|X) (2.5)

= h(Y )− h(Z) (2.6)

since Z is independent of X. Since h(Z) = 1
2
log 2πeN is known, we can calculate

E[Y 2] = E[(X + Z)2] = E[X2] + 2E[X ]E[Z] + E[Z2] = P +N. (2.7)

By using this equality in equation (2.6), we get

I(X ; Y ) = h(Y )− h(Z) (2.8)

≤ 1

2
log
(

2πe(P +N)
)

− 1

2
log(2πeN) (2.9)

=
1

2
log
(

1 +
P

N

)

(2.10)

Therefore, the capacity is found as

C , max
E[X2]≤P

I(X ; Y ) =
1

2
log
(

1 +
P

N

)

(2.11)

since the maximum is achieved when X ∼ N (0, P ).

6



+

Z

X1

Y

X2

Figure 2.2: A simple two-user multiple access channel model.

2.2 Gaussian Multiple Access Channels

Multiple access channels (MAC) can be defined as a Gaussian channel, where

more than one users are transmitting their own signals to be decoded by one

receiver. Since the transmission channel is the same, the signals are received as

sum of all signals at the receiver. The receiver can decode the signals one by

one, treating other signals as noise. For a multiple access channel with two users

transmitting to a common receiver, the received signal at time instant i is

Yi = X1i +X2i + Zi (2.12)

where Zi is i.i.d. random variable

Z ∼ N (0, N). (2.13)

All the users in the channel has power constraints,

E[X2
1 ] ≤ P̄1 (2.14)

E[X2
2 ] ≤ P̄2 (2.15)
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the capacity regions of users in Gaussian MAC is the convex hull of rates satisfying

the constraints,

R1 ≤ I(X1; Y |X2) (2.16)

R2 ≤ I(X2; Y |X1) (2.17)

R1 +R2 ≤ I(X1, X2; Y ) (2.18)

for inputs Xi ∼ N (0, Pi), i ∈ {1, 2}.

The derivation of the rate regions is straightforward extension to equations (2.8)-

(2.10).

I(X1; Y |X2) = h(Y )− h(Y |X1, X2) (2.19)

= h(X1 +X2 + Z|X2)− h(X1 +X2 + Z|X1, X2) (2.20)

= h(X1 + Z|X2)− h(Z|X1, X2) (2.21)

= h(X1 + Z|X2)− h(Z) (2.22)

= h(X1 + Z)− h(Z) (2.23)

= h(X1 + Z)− 1

2
log(2πeN) (2.24)

=
1

2
log
(

2πe(P1 +N)
)

− 1

2
log(2πeN) (2.25)

≤ 1

2
log(1 +

P1

N
) (2.26)

similarly;

R2 =
1

2
log(1 +

P2

N
). (2.27)
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For sum rate constraint,

R1 +R2 ≤ I(X1, X2; Y ) (2.28)

= h(Y )− h(Y |X1, X2) (2.29)

= h(X1 +X2 + Z)− h(X1 +X2 + Z|X1, X2) (2.30)

= h(X1 +X2 + Z)− h(Z|X1, X2) (2.31)

= h(X1 +X2 + Z)− h(Z) (2.32)

=
1

2
log
(

2πe(P1 + P2 +N)
)

− 1

2
log(2πeN) (2.33)

≤ 1

2
log(1 +

P1 + P2

N
) (2.34)

can be found.

User one and two generate codebooks of gaussian random codewords and send

transmit them in the channel simultaneously. Since the transmitters send code-

words from their private codebook arbitrarily, the receiver starts to decode one

users signal treating other user’s signal as noise.

R1 ≤
1

2
log(1 +

P1

P2 +N
) (2.35)

After decoding the signal of user 1, the receiver subtracts first user’s signal and

decodes second users signal at the rate

R2 ≤
1

2
log(1 +

P2

N
) (2.36)

One of the most important concept about MAC is, if we generalize this channel

to m users, the total rate will be

R1 +R2 + . . .+Rm ≤ 1

2
log(1 +

mP

N
), (2.37)

9



therefore, as m → ∞, the sum rate also goes infinity, yet individual rates on the

average will be

Ri ≤
1

2m
log(1 +

mP

N
), i ∈ {1, 2, . . . , m}. (2.38)

2.3 Parallel Gaussian Channels

In wireless communication systems, some techniques divide the communication

channel into subchannels and transmitter is assigned to multiple subchannels for

communication. Thus, transmitter needs to distribute powers according to a com-

mon power constraint. This approach is extremely important against nonwhite

Gaussian noise since all subchannel components will represent different frequen-

cies and be affected by noises at different levels. The capacity of the system can

be found by optimal distribution of power to subchannels. The system can be

represented as,

Yj = Xj + Zj, j = 1, 2, . . . , k, (2.39)

where Zj is i.i.d. as

Zj ∼ N (o,Nj). (2.40)

for channel j. The capacity of the system can be represented as,

C = max
k∑

1

E[X2

i ]≤P̄

I(X1, X2, . . . , Xk; Y1, Y2, . . . , Yk). (2.41)

10



Similar to the capacity derivation of gaussian channel in equations (2.3)-(2.6),

capacity of parallel Gaussian channels can be derived as,

I(X1,X2, . . . , Xk; Y1, Y2, . . . , Yk) (2.42)

= h(Y1, Y2, . . . , Yk)− h(Y1, Y2, . . . , Yk|X1, X2, . . . , Xk) (2.43)

= h(Y1, Y2, . . . , Yk)− h(Z1, Z2, . . . , Zk|X1, X2, . . . , Xk) (2.44)

= h(Y1, Y2, . . . , Yk)− h(Z1, Z2, . . . , Zk) (2.45)

=
∑

i

h(Yi)−
∑

i

h(Zi) (2.46)

≤
∑

i

h(Yi)− h(Zi) (2.47)

≤
∑

i

1

2
log
(

1 +
Pi

Ni

)

(2.48)

and maximum is achieved when X is i.i.d and Xi ∼ N (0, Pi).

The optimal power allocation scheme that maximizes capacity subject to common

power constraint in parallel Gaussian channels can be found by using Lagrange

multipliers. Lagrangian can be expressed as

L(P1, . . . , Pk) =
∑

i

1

2
log
(

1 +
Pi

Ni

)

+ λ
(

∑

i

Pi

)

, (2.49)

and differentiating with respect to Pi, we get

1

2

1

Pi +Ni

+ λ = 0 (2.50)

which can be turned into

Pi = (v −Ni) (2.51)

where, v = − 1
2λ
. Since Pi cannot be negative, the equation becomes

Pi = (v −Ni)
+, (2.52)
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P

Ch1 Ch2 Ch3 Ch4 Ch5 Ch6

P1 P2 P4 P5P3

N1 N2 N3 N4 N5 N6

Figure 2.3: Waterfilling in parallel Gaussian channels. The dashed line represents
the optimum power level and gray area under it is the powers used for each
channel.

therefore we can choose v such that

∑

1

(v −Ni)
+ = P̄ . (2.53)

The result of this derivation can be interpreted as, if there are multiple channels

with different noise levels, the available power must be distributed such that, sum

of noise and transmission powers in channels must be equal to each other, just

like filling a pool with water. Therefore, this solution is referred as waterfilling

in the literature.

2.4 Orthogonal Frequency Division Multiple Access

Wireless networks employ several techniques to assign channels to users in a

multiple user scenario, for example, GSM systems use time division multiple

access (TDMA), 3G networks use code division multiple access (CDMA) and 4G

networks use Frequency division multiple access (FDMA). Each techniques have

several advantages, yet FDMA is gaining popularity in recent years.

FDMA is mainly used to overcome problems caused by non-white noise in chan-

nels. In a system with frequency selective noise, optimizing the power distribution

12



is a complicated task. To simplify this problem, we can divide the channel into

subchannels with sufficiently small bandwidths so that the noise in each subchan-

nel can be considered as white. Orthogonal frequency division multiple access

(OFDMA) is a special case of OFDMA, where all the channels are orthogonal

to each other and each user is assigned a subcarrier. This orthogonality isolates

transmissions from each other and removes interference.

2.5 User Cooperation

Wireless communication is based on transmission of electromagnetic waves as

information. If there are multiple transmitters are in the system, the transmitted

signals overlap on each other and creates interference at the receiver. Although

the interference seems to damage the performance of the system, by intelligent

design using user diversity, the overlap of transmitted signals can be converted

into an advantage. This groundbreaking cooperation system was proposed in [1].

The received signals at can be formulated as,

Y0(t) = h10X1(t) + h20X2(t) + Z0(t) (2.54)

Y1(t) = h21X1(t) + Z1(t) (2.55)

Y2(t) = h12X1(t) + Z2(t) (2.56)

where Y0(t), Y1(t), Y2(t) are the baseband models of the received signals at re-

ceiver, user 1 and user 2 respectively. Xi(t) is the signal transmitted by user i for

i = 1, 2 and Zj(t) are the additive channel noise terms at receiver, user 1 and user

2 for j = 0, 1, 2 respectively. The noise terms are distributed as Zj ∼ N (0, σ2
j ),

where in general we can assume σ2
0 = σ2

1 = σ2
2 . The fading coefficients hij are

assumed to be constant over a symbol period, and perfectly known. The coopera-

tion strategy is based on superposition block Markov [14] encoding and backward

decoding [15, 16].

13



Each user in the system divides own message into three parts, for first user, X10 is

transmitted to receiver directly, X12 is transmitted to the cooperating user to be

sent to receiver and U1 is the cooperation signal. The sent signal can be expressed

as,

X1 = X10 +X12 + U1 (2.57)

and respective powers,

P1 = P10 + P12 + PU1. (2.58)

It should be noted that, the signal X12 must be perfectly decoded at second user

since this transmission is basis for cooperation. Therefore, P12 must be selected

according to that rule. As the number of transmitted blocks goes to infinity,

under the light of findings in [17] and [18], the achievable rates can be calculated

as

R12≤E
[1

2
log(1+

h12P12

h12P10 + σ2
2

)
]

(2.59)

R21≤E
[1

2
log(1+

h21P21

h21P20 + σ2
1

)
]

(2.60)

R10≤E
[1

2
log(1+

h10P10

σ2
0

)
]

(2.61)

R20≤E
[1

2
log(1+

h20P20

σ2
0

)
]

(2.62)

R10+R20≤E
[1

2
log(1+

h10P10 + h20P20

σ2
0

)
]

(2.63)

R10+R20+R12+R21≤E
[1

2
log(1+

h10P1 + h20P2 + 2h10h20

√
PU1PU2

σ2
0

)
]

(2.64)

where P1 = P10 + P12 + PU1 and P2 = P20 + P21 + PU2.
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2.6 Maximum Weighted Matching

In graph theory, matching is defined as a set of independent edges without com-

mon vertices in a graph. On weighted graphs, each matching gets the weight of

the vertice. Therefore, maximum weighted matching can be defined as the match-

ing with maximum total weights of vertices. For maximum weighted matching,

Jack Edmonds has found an algorithm presented in [19] and Harold Gabow has

implemented the algorithm efficiently in [20]. There are several works in the

literature, yet Gabow’s implementation is the most popular one.

The powerful idea behind maximum weighted matching is, it searches for aug-

menting paths in the graph, then finds maximum weighted matching. Yet, to

find augmenting paths, Edmond’s algorithm searches for blossoms first, where

a blossom is defined as a graph with n vertices in which every subgraph of n1

vertices has a perfect matching. Then, the algorithm morphs the blossoms into

augmenting paths and continues the search. The worst case complexity of the

algorithm is O(n3) in Gabow’s implementation.

2.7 Karush-Kuhn-Tucker Conditions

In section 2.3, widely known optimization tool Lagrange multipliers were used.

In this dissertation, we use a more generalized version of Lagrange multipliers,

with Karush-Kuhn-Tucker (KKT) conditions. KKT conditions is an nonlinear

optimization technique which ensures optimality provided that some regularity

conditions are satisfied.

Let’s consider a nonlinear optimization problem where we want to minimize func-

tion L(x), with given constraint,

minL(x) (2.65)

s.t. f(x) ≤ 0 (2.66)
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and x0 is the optimal value to be found. In that case, the constraint is active if

∂L

∂x

∣

∣

∣

x0

= 0, (2.67)

or the constraint is inactive for all admissible values of x when

∂L

∂x

∣

∣

∣

x∈S
= 0 (2.68)

where S is the set of all admissible values of x. Therefore,

∂L

∂x
+ λ

∂f

∂x
= 0, forλ ≥ 0. (2.69)

We can write the Lagrangian as

L(x, λ) = L(x) + λf(x) (2.70)

where the necessary conditions are

∂L
∂x

= 0 (2.71)

f(x) ≥ 0, (2.72)

and

λ ≥ 0, iff(x) = 0, (2.73)

λ = 0, iff(x) < 0 (2.74)

2.8 Fractional Frequency Reuse

The main consideration of wireless networks is using limited band of frequencies

as efficient as possible. The system must be designed cleverly that it should

support many users and all users should be able to use as much bandwidth as
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possible, yet still keep the interference at a acceptable level. It is a hard task and

several approaches have been developed through the years.

In traditional cellular wireless networks, each receiver has a coverage area and

a frequency band is used in that cell. The group of cells that use the whole

bandwidth available are called and named cluster. The same frequency bands are

reused in other cells in other clusters, however by intelligent design, these cells’

distances are maximized to lower interference between these cells. The number

of frequency bands that are repeatedly used is called frequency reuse factor. As

this factor increases, the interference between cells employing the same frequency

decreases at the cost of narrower bandwidth per cell. To optimize the frequency

efficiency,the lowest frequency reuse factor that ensures acceptable interference

between cells must be chosen. However, high demand to the wireless commu-

nication enforces engineers to find better ways to increase frequency efficiency.

Fractional frequency reuse (FFR) technique is a possible solution that gained

popularity over the years.

FFR moves the frequency efficiency to one step further by reusing some frequen-

cies within fractions of cells. In FFR, in addition to assigning each cell in a

cluster a different frequency band, fractions of cells uses another frequency which

increases bandwidth per cell, resulting an increase in number of supported users

within cell. These fractions are generally selected around the receiver, since the

users closer to the receiver are affected less than other users by path loss, making

them more tolerant to the increased interference due to reused frequency. There

are various FFR schemes in the literature, however one of the widely known tech-

niques in the literature is “Strict FFR” which is explained both verbally and

visually in Chapter 4.
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Chapter 3

Single-Cell Partner Selection in Cooperative OFDMA

Cooperative communication is a big step forward in wireless communication sys-

tems. With intelligently designed codewords, users can help each other and

achieve better rates by increasing their overall immunity to channel quality fluc-

tuations. From system-wide perspective, partner selection has a great impact on

maximization the total achievable rates of the users in the system. Therefore,

in this chapter, optimal partner selection in a cooperative wireless network with

OFDMA is considered. The work focuses on one cell and ignores inter-cell inter-

ference. In this system setup, optimal partner selection algorithm has been found

and several near-optimal yet simpler algorithms are investigated. This chapter

forms a basis for Chapter 4 and Chapter 5.

3.1 System Model

We consider a fading Gaussian multiple access channel, with N users randomly

distributed over a disk of radius R, where N is even. The receiver is assumed

to be at the center of the circular cell. The users employ OFDMA in their

transmissions, and also cooperate in pairs. Each cooperating pair, say {i, j} where
i ∈ {1, . . . , N}, j ∈ {1, . . . , N} and i 6= j, is assigned M orthogonal subchannels

Sij ⊂ {1, . . . , NM/2}. This subchannel assignment is assumed to be made once,

and is fixed throughout the transmission. We make no restrictive assumptions
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about the connectivity of the nodes, and consider all possible pairing combinations

among all nodes; which also contains as special cases possible limited connectivity

models. For each cooperating pair {i, j}, the signals received by the users i, j and

the receiver (denoted by index 0), over each subchannel s ∈ Sij, are respectively

given by,

Yi =

√

h
(s)
ji d

−α
ij X

(s)
j +N

(s)
i , (3.1)

Yj =

√

h
(s)
ij d

−α
ij X

(s)
i +N

(s)
j , (3.2)

Y0 =

√

h
(s)
i0 d

−α
i0 X

(s)
i +

√

h
(s)
j0 d

−α
j0 X

(s)
j +N

(s)
0 . (3.3)

In Equations (3.1)-(3.3), the noise components N
(s)
i , N

(s)
j and N

(s)
0 over each sub-

channel are assumed to be independent, zero mean white Gaussian with variances

σ
(s)
i

2
, σ

(s)
j

2
, σ

(s)
0

2
. The symbols X

(s)
i and X

(s)
j denote the codewords trasmitted by

users i and j. The fading over each subchannel is assumed to be independent and

identically Rayleigh distributed. Hence, the instantaneous power fading coeffi-

cients h
(s)
ij , h

(s)
ji , h

(s)
i0 and h

(s)
j0 are i.i.d. exponential random variables. We assume

that full channel state information, which we call h, is available at each user pair

and the receiver (instantaneous channel state information of users in other pairs

will not be needed, once pairing is done based on the channel statistics.) The

symbols dij, di0 and dj0 denote the user i to user j, user i to receiver and user

j to receiver distances respectively; and α denotes the path loss exponent. The

self interference due to full duplex operation over each subchannel is removed by

subtracting appropriately scaled versions of X
(s)
i and X

(s)
j from (3.1) and (3.2)

respectively.

We employ mutual cooperation, i.e., both users involved in a cooperating pair

decode and forward each other’s messages, using the inter-subchannel cooperative

encoding protocol introduced in [9]. Furthermore, each user is able to utilize

the available channel state information to perform power control, in order to

maximize the cooperating pair’s sum rate, as in [10]. Accordingly, the transmitted

19



codewords of users i and j over each subchannel s are formed using [10],

X
(s)
i =

√

p
(s)
i0 (h)X

(s)
i0 +

√

p
(s)
ij (h)X

(s)
ij +

√

p
(s)
Ui
(h)U (s), (3.4)

X
(s)
j =

√

p
(s)
j0 (h)X

(s)
j0 +

√

p
(s)
ji (h)X

(s)
ji +

√

p
(s)
Uj
(h)U (s), (3.5)

The component codewords X
(s)
i0 , X

(s)
ij and U (s) defined in (3.4), are used for di-

rect transmission, common message generation, and cooperation purposes re-

spectively. The variables p
(s)
i0 (h), p

(s)
ij (h) and p

(s)
Ui
(h) simply denote the channel

adaptive powers assigned to these codewords. The definitions for user j follow

similarly. The powers of both users in the cooperating pair should satisfy the

average power constraints,

∑

s∈Sij

E
[

p
(s)
i0 (h)+p

(s)
ij (h)+p

(s)
Ui
(h)
]

,
∑

s∈Sij

E
[

p
(s)
i (h)

]

≤ p̄i,

∑

s∈Sij

E
[

p
(s)
j0 (h)+p

(s)
ji (h)+p

(s)
Uj
(h)
]

,
∑

s∈Sij

E
[

p
(s)
j (h)

]

≤ p̄j.

The decoding at the receiver is performed using backwards decoding [1]. Extend-

ing the rate regions obtained in [10], to include the path loss based on inter-user

and user-receiver distances, it is easy to show that the achievable sum rate for

each cooperating pair, employing power adaptive inter-subchannel cooperative

encoding, is given by the constraint (3.6).

3.2 Sum-rate-optimal partnering algorithm

In this section, we formulate and solve the jointly optimal power control and part-

ner selection problem for the cooperative OFDMA system modeled in Section 3.1.

The objective is to maximize the overall sum rate of the entire system, by opti-

mally pairing the users. Let us denote by Γ the set of all possible 2-user partitions

of the set {1, . . . , N} of users. To find the number of all possible 2-user partitions,

consider the following approach. Fix an arbitrary user n1 ∈ {1, . . . , N}. There

are N − 1 possible partners n′
1 ∈ {1, . . . , N} \ {n1}, for n1. Once we select the
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Ri +Rj ≤ min







∑

s∈Sij

E

[

log

(

1 +
h
(s)
i0 d

−α
i0 p

(s)
i (h) + h

(s)
j0 d

−α
j0 p

(s)
j (h)

σ
(s)
0

2

+
2
√

h
(s)
i0 d

−α
i0 h

(s)
j0 d

−α
j0 p

(s)
ui (h)p

(s)
uj (h)

σ
(s)
0

2







 ,

∑

s∈Sij

E



log



1 +
h
(s)
ij d

−α
ij p

(s)
ij (h)

h
(s)
ij d

−α
ij p

(s)
i0 (h) + σ

(s)
j

2





+ log



1 +
h
(s)
ji d

−α
ji p

(s)
ji (h)

h
(s)
ji d

−α
ji p

(s)
j0 (h) + σ

(s)
i

2









+
∑

s∈Sij

E

[

log

(

1 +
h
(s)
i0 d

−α
i0 p

(s)
i0 (h) + h

(s)
j0 d

−α
j0 p

(s)
j0 (h)

σ
(s)
0

2

)]







(3.6)

partner n′
1, and remove n1 and n′

1 from the set of users, we have N − 2 users

remaining. Fix another user n2 ∈ {1, . . . , N}\{n1, n
′
1}, for which there are N −3

possible partners. Repeating the same procedure until all partnerings are made,

the number of all possible 2-user partitions can be found by,

L =

N/2
∏

n=1

(N − 2n+ 1). (3.8)

Let Γl denote the lth 2-user partition of Γ, where l ∈ {1, . . . , L}, and p(h) denote

the vector of powers of all users, containing as its elements the non-negative

powers p
(s)
i0 (h), p

(s)
ij (h), p

(s)
Ui
(h), ∀s, ∀i, j ∈ {1, . . . , N} and ∀h. Then, the sum

rate maximization problem can be stated as,

max
Γl∈Γ,
p(h)

∑

{i,j}∈Γl

Ri +Rj

s.t.
∑

s∈Sij

E
[

p
(s)
i0 (h)+p

(s)
ij (h)+p

(s)
Ui
(h)
]

≤ p̄i, ∀{i, j} ∈ Γl

Ri +Rj satisfy (3.6), ∀{i, j} ∈ Γl. (3.9)

In its present form, (3.9) seems rather difficult to solve, as the rates, which form
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Figure 3.1: Graph representations of the system

the objective function for power optimization, depend on the selected partnering

strategy, while the partnering strategy that needs to be selected depends on the

rates. Therefore, before we proceed, it is instructive to introduce a simple 4-user

example, depicted in Figure 3.1(a), which will shed some light into the solution

of the general problem. In Figure 3.1(a), all possible links which can be used

for cooperation among all possible pairs are shown. Here, as suggested by (3.8)

there are only three possible 2-user partitions of the set of users: {{1, 2}, {3, 4}},
{{1, 3}, {2, 4}} and {{1, 4}, {2, 3}}. The crucial observation is that, once one of

these partitions is fixed, the sum rate of each pair in that partition depends solely

on the channel gains on the subchannels used by that particular pair, and is not

affected by the transmission policy of the remaining pair, thanks to the orthogonal

nature of OFDMA. But then, since each pair’s transmission rate is independent of

the other, we can simply find the optimal power allocation, and the resulting sum

rate separately for each pair, for each given partition. Afterwards, the optimal

partition can be selected by performing a search over the L power optimized sum-

rate values. This argument is obviously valid for an arbitrary number of pairs as

well: going back to our original problem, our optimization problem (3.9) can be

equivalently stated as a two step problem
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max
Γl∈Γ,

∑

{i,j}∈Γl

max
pi(h),pj(h)

(Ri +Rj),

s.t.
∑

s∈Sij

E
[

p
(s)
i0 (h)+p

(s)
ij (h)+p

(s)
Ui
(h)
]

≤ p̄i, ∀{i, j} ∈ Γl

Ri +Rj satisfy (3.6), ∀{i, j} ∈ Γl. (3.10)

which can further be converted into

max
Γl∈Γ,

∑

{i,j}∈Γl

(Ri +Rj)
∗, (3.11)

where (Ri + Rj)
∗ is the power optimized sum rate of pair {i, j}, obtained by

running the iterative algorithm proposed in [10]. While (3.11) is considerably

simpler than (3.9), a brute force search over all possible partnering strategies

would require factorial time, as evident from (3.8). However, given the sum

rates achievable by each possible partnering, it is possible to model (3.11) as an

equivalent matching problem in graph theory. Let us go back to our simple 4-user

example, and create a complete undirected graph, where the users are the vertices,

and the weights over the edges are the sum rate that is achievable by the pair of

users connected by that particular edge, in case they are paired. The resulting

graph is shown in Figure 3.1(b). In order to create all the weight information

in this example, we need to compute six sum rates, each corresponding to one

possible pair of users. However, note that since there are 4 users in this graph,

we can simultaneously choose only 2 disjoint pairs, and the pairs for which the

summation of the corresponding weights is maximized should be found. This

problem is known as “maximum weighted matching” in graph theory, which can

be solved by an efficient algorithm presented in [20].

The worst-case complexity of the maximum weighted matching algorithm isO(N3)

[20]. Meanwhile, for a general system with N users, the complete graph consisting

of all possible pairings of users contains only N × (N −1)/2 edges. Since the cost

of finding the weights (Ri + Rj)
∗ on each edge based on power optimization is

constant, the overall cost of generating the graph becomes negligible, compared
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to the cost of weighted matching as N grows. Note however that, for moderate

number of users, which is typical in a wireless network, the fixed cost of computing

these weights using iterative power optimization may become a time consuming

computational burden. In practical networks, users are not necessarily station-

ary, and the topology of the network, and hence the channel conditions, may

change frequently. Every time the topology changes, we may need a new match-

ing. Therefore, in the next section, we propose alternative matching algorithms

with the aim of obtaining even faster and more practical results.

3.3 Practical suboptimal pairing algorithms

In our model, the locations of the users, and their distances to each other are

the major factors that effect their transmission rates. The impacts of Rayleigh

fading and noise variances on the rates are negligible in comparison to path loss.

This forces the power allocation and partner selection to be mostly dependent on

the topology of the network, which means that a suboptimal but fast algorithm

can be derived based only on user locations as an alternative to the maximum

weighted matching algorithm. But then, the weights of the graph will not be

needed to match the users, and this will decrease the time consumed by the

matching algorithm drastically.

When we seek ways of utilizing user locations directly in partnering decisions,

two contrasting approaches immediately come to mind: (i) the users close to each

other being grouped together, and, (ii) the users at a disadvantage being grouped

with users with stronger links. Also, it is clear that the partnering should depend

on the user-receiver distances as well as the inter-user distances, hence it is of

interest to see whether one should group the users starting with the nearest to or

farthest from the receiver. Therefore, in what follows, we propose five algorithms

that make partnering decisions based on differing criteria based on the relative

locations of the users.
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Algorithm A: Select Nearest to Receiver

The two users nearest to the receiver get matched. These users are removed

from the pool, and the algorithm repeatedly matches the rest of users with

the same method until every user is matched.

Algorithm B: Select Farthest from Receiver

The two user farthest from the receiver get matched. These users are re-

moved from the pool, and the algorithm repeatedly matches the rest of users

with the same method until every user is matched.

Algorithm C: Maximum Matching on Nearest Four to Receiver

The user nearest to the receiver is selected. Then, three users which are

nearest to it are selected. Maximum weighted matching algorithm runs on

those users and the users get matched. The algorithm repeatedly matches

the rest of users with the same method until every user is matched.

Algorithm D: Maximum Matching on Farthest Four from Receiver

The user farthest from the receiver is selected. Then, three users which are

nearest to it are selected. Maximum weighted matching algorithm runs on

those users and the users get matched. The algorithm repeatedly matches

the rest of users with the same method until every user is matched.

Algorithm E: Select Nearest and Farthest to Receiver

The user farthest to the receiver gets matched with the nearest to the re-

ceiver. These users are removed from the pool, and the algorithm repeatedly

matches the rest of users with the same method until every user is matched.

The performance comparisons of the above algorithms are presented in the fol-

lowing section.
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Table 3.1: Transmission rates of cooperating pairs obtained by a sample run of
proposed algorithms

Pair MWM AlgoA AlgoB AlgoC AlgoD AlgoE

1 17.084 21.045 19.439 21.045 17.926 17.078
2 16.618 19.596 18.133 18.062 17.731 16.621
3 16.414 13.073 16.649 15.336 16.727 16.410
4 14.924 10.064 13.073 11.534 16.417 14.911
5 10.683 4.833 5.484 4.833 7.164 10.683
6 8.716 3.906 4.388 3.798 3.906 8.657
7 7.938 3.451 3.906 3.496 3.451 7.760
8 7.164 3.074 3.496 2.793 3.074 5.111
9 3.906 2.841 2.841 2.642 2.865 4.833
10 3.596 2.329 2.793 2.706 2.858 4.429
Total 107.043 84.211 90.202 86.245 92.117 106.494

3.4 Simulation Results

Fifty runs were taken from each of the algorithms proposed in Section 3.3, as

well as from the weighted matching algorithm described in Section 3.2. In the

simulations, N = 20 users were placed in a disk with radius R = 100m according

to a uniform random distribution. The receiver was placed at the center of the

disk. All of the users had the same transmission power and the same number M =

3 of Rayleigh fading subchannels. The path loss exponent in the simulations were

set to α = 2. The noise variances were normalized to unity. Users’ transmission

power before path loss and fading was set to P = 104. The simulations for

lower signal to noise ratios (SNR) also yield similar relative performance results

for the algorithms, although with decreasing SNR, the differences between the

performances of the proposed algorithms become less pronounced.

In Table 3.1, a detailed comparison of the rates achieved by each cooperating pair

is given for a sample run of all algorithms. We observe that, if the users close to

the receiver are coupled first, these users’ transmission rates are high, however

the farther users’ rates are so low that, the total is not as much as one can obtain

by a more nearly equal distribution. This is the main problem encountered in

Algorithm A. The same also applies to Algorithm B with a little bit of difference.
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The users farther away from the receiver are selected as close as possible to each

other, however, since the SNR goes down because of the path loss, the cooperation

gain is still low for these users, and total rate becomes low. It is noteworthy that,

algorithm B gives better results than algorithm A. Algorithm E, which is inspired

by the optimal matching, performs surprisingly well.

In Figure 3.2, the matchings created by the algorithms are visually compared to

maximum weighted matching. It is observed that, maximum weighted matching

generally selects pairs such that, one of the users in the pair is close to the re-

ceiver, while the other user is far away from the receiver. This is rather surprising

in that, the pairing that is optimal for the benefit of the entire system also hap-

pens to match users with best channel conditions with those with worst channel

conditions. The achievable rates of the proposed algorithms are compared to the

total transmission rate of maximum weighted matching, by defining the ratio of

the sum rate achievable by each algorithm to the optimal sum rate of weighted

matching in the form of a percentage, which we call the efficiency. We observe

that, Algorithm E creates a matching which is closes to the maximum weighted

matching, and hence achieves the best efficiency.

In Table 3.2, we provide the statistics of the efficiencies of our proposed algo-

rithms. In our simulations, the efficiencies of the algorithms A and B are between

75% and 95%. Algorithms C and D include maximum weighted matching for

subgroups of users as a subroutine, but they are still fast algorithms since sub-

groups include small numbers of users. Algorithm D gives better results than

C, with efficiencies between 80% and 99%. Algorithm E is the best among the

proposed heuristic algorithms in terms of efficiency, with efficiencies between 94%

and 99%. Since one closer and one further user is paired with each other, for most

user pairs, cooperative gain is average, but in total, this converges to the max-

imum transmission rate. Also, there is no maximum weighted matching routine

in this algorithm, making it much faster.
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Figure 3.2: Maximum weighted matching and matchings created by different
proposed algorithms.

Table 3.2: Statistics of proposed algorithms
Efficiencies AlgoA AlgoB AlgoC AlgoD AlgoE

min 76.994 83.379 78.735 85.114 94.337

max 95.864 96.953 97.225 99.551 99.655

mean 87.109 90.483 88.874 94.236 97.527

3.5 Conclusion

Partner selection in wireless networks is a key consideration in rate maximization

for cooperative networks. In this chapter, we formulated the joint power allocation

and partner selection problem, with the goal of maximizing the sum-rate of a

cooperative OFDMA network. It is shown that, the problem can be reduced into

a maximum weighted matching problem which has a polynomial time solution.

The result of the maximum weighted matching algorithm, inspired us to develop

some heuristic algorithms with lower complexity. Hence, to further simplify the

partnering problem, we proposed matching algorithms which only use the location
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information of the users. We demonstrated that, the algorithm which matches

the users farthest away from the receiver to the ones closest to the receiver, gives

a near-optimum solution, very fast.

The main result of this part of the study is, the users nearer to the receiver uses

further user’s channel aggressively, reducing further users individual transmission

rate in exchange for increasing total rate of the pair significantly. While this is

meaningful from the sum rate maximization point of view, the system favors the

nearer users reducing the fairness of the system in comparison to non-cooperative

networks. In the following chapters, we are going to use the information gained

by this part and try to increase fairness while maximizing the sum rate of the

system.. In Chapter 4, we design a new frequency reuse scheme to force users to

cooperate with closer users to increment fairness of the system and increase the

cooperative gain. In Chapter 5, we are dealing with a cognitive scenario, where

primary users transmission rate cannot be affected negatively by the existence of

the secondary user, therefore the problem can be said to have a fairness constraint.

The study presented in this chapter is published at WCNC’12 conference in Paris,

France [21].
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Chapter 4

Multi-Cell Partner Selection in Cooperative OFDMA

with FFR

In order to maximize the capacity of a wireless system, usable frequency bands are

limited and must be used effectively. Therefore, in traditional cellular systems,

each cell employs a different frequency band and by intelligent design of frequency

reuse pattern, limits the inter-cell interference under a desired level. Although

this approach works quite well, it limits the frequencies used in each cell, therefore

not all of the frequencies are supported at each cell. To overcome this problem,

Fractional Frequency Reuse technique is developed and gaining popularity among

researchers. In FFR, more frequency bands are used repeatedly, therefore more

bandwidth is used effectively. The most popular FFR scheme in the literature is

“Strict FFR” where each cell has its own frequency band as in traditional cellular

systems, with an addition of distinct and repeatedly reused frequency band used

in the areas near to the receivers in each cell. “Strict FFR” is an more effective

in terms of frequency reuse, however not suitable enough for cooperation among

users. In this chapter, we introduce a novel FFR scheme which is designed to

increase fairness and cooperative gain among users, reducing inter-cell interference

significantly by cell sectorization.
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(a) Strict FFR Scheme. (b) Complementary FFR Scheme.

F1

F2

F3

F4

(c) Complementary FFR: cluster of in-
terest

Figure 4.1: Illustration of complementary FFR scheme, compared to strict FFR

4.1 Proposed Cooperation and Frequency Reuse Model

We consider a cellular multiple access setup, consisting of several fading Gaussian

multiple access channels operating in parallel. Multiple access towards each base

station is facilitated using OFDMA, and frequency reuse is employed to increase

the user capacity of the system. Yet, in our model, the users are further assumed

to cooperate in pairs based on overheard information. Note that if we allow

receiver selection, two cell-edge users belonging to two distinct neighboring cells

could be ideal candidates for a cooperating pair. Therefore, traditional multiple

access and frequency reuse techniques, which target orthogonal transmissions and

especially try to avoid interference from neighboring cells are not suitable in our

cooperative setup. Hence, we first develop a novel frequency reuse and multiple

access model, which is directly tailored for pairwise cooperation.
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In Chapter 3, it was shown that in power controlled single cell cooperative

OFDMA channels, optimal partner selection results in users close to base sta-

tion being paired with cell edge users. As a result, cell center users abuse, rather

than help, the cell edge users by taking over their subchannels while cooperat-

ing minimally, yielding a sum rate optimal but unfair resource allocation and

partnering strategy. In a typical multi-cell environment, the cell edge users are

more prone to interference and also suffer more from path loss; therefore fairer

strategies compared to the partnering in Chapter 3 should be developed. Keep-

ing this in mind, we propose to use a frequency reuse scheme which forces inner

and outer users to cooperate in separate groups. This idea coincidentally leads

to a fractional frequency reuse setup, an example of which is shown in Figure

4.1(a). In Figure 4.1(a) we assume three-cell clusters, which use four orthog-

onal frequency bands, F1, F2, F3 and F4, each denoted by different shades of

grey. The main goal in FFR, is to increase the user capacity by allowing reuse

of frequencies near the cell center, while still protecting cell edge users by assign-

ing them orthogonal bands. Note however that orthogonalizing cell edge users

in adjacent cells is completely against the spirit of user cooperation, as it rules

out the possibility of cooperating across cells. Therefore, we propose the use of a

rather unorthodox FFR scheme, called complementary fractional frequency reuse,

which purposely assigns the same frequency sub-bands to neighboring cell sectors

facing each other. This scheme is shown in Figure 4.1(b), where again distinct

orthogonal frequency bands, F1, F2, F3 and F4 are used. Note that, the model in

Figure 4.1(b) creates a translated frequency reuse pattern, with pseudo-cells that

are composed of one sector from each cell being assigned a common frequency

sub-band which is reused throughout. This not only enables cooperation across

cells, but it also allows cooperating users to select an optimal receiver, as each

pseudo-cell is now served by any one of the three base stations in the cluster. In

our model, we divide the cells in the system into 3-cell clusters, and repeat the

frequency reuse pattern over each cluster, as shown in Figure 4.1(b). We assume

that there are K = 12N users in a given cluster, where N is an integer, and that

these users are uniformly distributed over the cluster surface, yielding 4N users

32



per cell. Assuming hexagonal cells with radius r, each cell is divided into two

concentric regions: the users inside a circle of radius rin = r/2 surrounding the

base station of each cell are called the inner users, and the remaining users are

called outer users. Since the number of users is proportional to the area they are

distributed on, there are on average N inner and 3N outer users in each cell. This

also amounts to an average of 3N users per each pseudo-cell sharing the same

frequency resource.

Due to symmetry, it is sufficient to focus on a single cluster, which is highlighted

by the bold boundary in Figure 4.1(b), and shown separately in Figure 4.1(c).

The light gray region at the center of the cluster, consisting of one sector from

each cell, will be our pseudo-cell of interest. A sample user distribution is also

given in Figure 4.1(c), showing only the set of outer users, Uout, belonging to the

pseudo cell of interest, and the inner users, Uin,b in each cell, where b = {1, 2, 3} is

the receiver, or equivalently, cell index. Other outer users may be communicating

with receivers from a different cluster, and hence are not shown on Figure 4.1(c).

The receiver of each cell in the cluster is located at the center of the cell. The inner

users in cell b, labeled Uin,b, are to be grouped in cooperating pairs, exclusively
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within that cell; i.e., there is no inter-cell cooperation for inner users. Each pair of

users {i, j} ∈ Uin,b × Uin,b is assigned a distinct set of sub-channels Sij ⊂ F1, and

both users of the pair simultaneously utilize these sub-channels. The outer users

Uout in the pseudo-cell shared by receivers b = {1, 2, 3} are also to be grouped

in cooperating pairs. If a cooperating pair has users from two different cells, an

intended receiver is also to be selected optimally. Each pair {i, j} ∈ Uout × Uout

is assigned a distinct set of sub-channels Sij ∈ F2, and both users of the pair

simultaneously utilize these subchannels. It is easy to check that, assuming n

subchannels are assigned to each pair, there needs to be a total of nN/2 sub-

channels in F1, and 3nN/2 subchannels in F2. This subchannel assignment is

assumed to be made once, and is fixed throughout the transmission.

Regardless of the cooperating pair being an inner or outer pair, the signals re-

ceived by the users i, j and the receiver b, over each subchannel s ∈ Sij , are

respectively given by,

Yi =

√

h
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i +N
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i , (4.2)
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where, for each subchannel s, N
(s)
i , N

(s)
j and N

(s)
b denote independent, zero mean

white Gaussian noise components, having variances σ
(s)
i

2
, σ

(s)
j

2
, σ

(s)
b

2
; I

(s)
i , I

(s)
j

and I
(s)
b denote intercell interference at users i, j and receiver b; X

(s)
i and X

(s)
j

denote the codewords transmitted by users i and j; h
(s)
ij , h

(s)
ji , h

(s)
ib and h

(s)
jb are i.i.d.

exponential power fading coefficients. The variables dij, dib and djb denote the

user i to user j, user i to receiver and user j to receiver distances respectively; and

α denotes the path loss exponent. We assume that pairwise channel state infor-

mation h =
{

h
(s)
ij , h

(s)
ji , h

(s)
ib , h

(s)
jb , ∀s ∈ Sij

}

, is only available at the corresponding

cooperating pair and the receiver, and pairing is done at the receiver, based only

on the channel statistics. The calculation of intercell interference terms, Ii, Ij

and Ib require special attention, and will be discussed in the following section.

34



(a) Calculation of Ib,in (b) Calculation of Iin,j

(c) Calculation of Ib,out (d) Calculation of Iout,j

Figure 4.2: Interferer locations for inner and outer users. Only the interfering
pseudo-cells are shown for outer users (Figures 4.2(c) and 4.2(d)). Cell sectors,
shown by dashed blue lines, help reduce the interference at the receivers, but the
interference at the users is affected by all first tier interferers.

4.2 Encoding, Decoding and Achievable Rates

Let us assume that users i and j are paired, and assigned a set of subchan-

nels Sij and a base station b. The cooperation then proceeds according to the

power controlled inter-subchannel cooperative OFDMA model of [10]. Namely,

the users employ block Markov superposition encoding, and decode each other’s

message at the end of each block, and the receiver decodes the user messages

using backwards decoding after receiving all blocks of information. The trans-

mitted codeword, consisting of direct transmission, common message generation

and common message transmission components, X
(s)
ib , X

(s)
ij and U (s) respectively
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where the powers, assigned to the codewords selected from zero mean Gaussian

distributions, should satisfy the long term average constraint

∑
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]

≤ P̄i,

For each pair {i, j}, and receiver b, the resulting achievable sum rate can be

obtained by extending the rate regions in [10] and Chapter 3, to include the

inter-cell interference parameters Ii, Ij and Ib, which are modelled as Gaussian,

resulting in (4.1) at the bottom of this page. Note however that, while the general

form of the sum rate expression does not depend on whether we are dealing with

an inner or outer pair, the interference terms do. Due to the cooperative nature of

our model, and the geometry of complementary FFR, four different interference

terms arise: inner user to base station, Ib,in; inner user to inner user j, Iin,j; outer

user to base station, Ib,out; and outer user to outer user j, Iout,j.

The geometries used in the calculation of each interference term are shown in

Figures 4.2(a)-4.2(d). While computing interference, we only consider first tier

interferers, and assume worst case scenarios for the positions of the interferers.

An important observation is, since we already use cell sectoring as a part of

our complementary FFR setup, we can further exploit the sectorized structure

to limit the interference at the base stations by adjusting the receive antenna

beams. As a result, while computing Ib,in, we have only two first tier interferers,

and for Ib,out, we have only three first tier interferers, see Figures 4.2(a) and

4.2(c). This way, the increased interference for inner users, which is typical for

FFR, is significantly reduced, as a byproduct of our cooperative model. Since the

users cannot do receive beamforming, we need to consider six interferers, while

computing Iin,j and Iout,j .
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Since our main goal is to optimize the powers, partnering strategies and receiver

selection; and channel state information at the transmitters is limited, we take

the powers of the interferers outside the cluster of interest to be equal to their

average, say P̄ , while computing total interference at each channel state, which

is a common assumption. This way, the convexity of the optimization problem

is preserved. Also, we assume that the fading from the interferers is averaged

out, and we only consider a simplified path loss model from the interferers. The

resulting average interference powers are given by,

Ib,in = 2× P̄ /(r
√
3− rin)

α (4.6)

Ib,out = 2× P̄ /(r
√
7)α + P̄ /(r

√
10)α (4.7)

Iin,j =

6
∑

m=1

P̄ /dαjm,in (4.8)

Iout,j =

6
∑

m=1

P̄ /dαjm,out (4.9)

where djm,in (respectively, djm,out) is the distance of the mth first tear inner (re-

spectively, outer) interferer to inner (respectively, outer) user j, and depends on

user coordinates. Finally, if {i, j} ∈ Uin,b×Uin,b, we set {Ib, Ii, Ij} = {Ib,in, Iin,i, Iin,j};
if {i, j} ∈ Uout × Uout we set {Ib, Ii, Ij} = {Ib,out, Iout,i, Iout,j} in (4.1).

4.3 Jointly Optimum Power, Cooperating Partner and Receiver Se-

lection

The sum rate of the system can be written as a sum of inner and outer user

pair rates, and due to the orthogonality of the subchannels, the sum rate of

inner users and outer users can be optimized separately. As far as inner user

sum rate maximization is concerned, there is no issue of base station selection,

and for each inner cell, the problem can be reduced to the joint partnering and

power control problem in Chapter 3, by adding the intercell interference powers

computed in the previous section to noise variances. Hence, we will focus here on
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the outer user rate maximization, which is considerably more involved. Note that

the sum rate maximization for each pseudo-cell can be solved separately, thanks

to orthogonality supplied by OFDMA. The goal is then to solve,

max
Γl∈Γ,

bij∈{1,2,3},
p(h)

∑

{i,j}∈Γl

(Ri +Rj)bij

s.t.
∑

s∈Sij

E
[

p
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(h)+p
(s)
ij (h)+p

(s)
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(h)
]

≤ P̄i,

(Ri +Rj)bij satisfies (4.1), ∀{i, j} ∈ Γl, (4.10)

where Γl is a two user partition of the set Uout of users in the pseudo-cell of

interest, Γ is the set of all such distinct partitions Γl, bij is the receiver selected

by {i, j} and p(h) denotes the vector of all power variables at all channel states.

The joint maximization problem is rather difficult to solve, as the channel gains,

distances, and hence the sum rates themselves depend on which users are paired,

and which base station is selected. A brute force search clearly results in a

combinatoric problem, and is not a viable option. The key to solving (4.10) is to

realize that like its single-cell counterpart of the system presented in Chapter 3,

it can be reduced to a maximum weighted matching problem on a graph, if the

sum rate obtainable by each pair of users and the selected receiver, after power

control, is viewed as the weights assigned to the edges of the graph. A simple four

user, three receiver example is shown in Figure 4.3(a). The resulting weighted

graph is shown in Figure 4.3(b). Each of the three parallel edges connecting each

user pair corresponds to selecting a distinct receiver. Clearly, in the final solution,

each pair should be assigned only one edge, so that it is served by only one base

station. The trick is to realize that the edge selection for each potential pair may

in fact be done before solving the matching problem: one can simply keep only

the edge corresponding to the most powerful receiver for each pair, and delete

the other two, without considering which partners or receivers are selected by the

other users. This can be shown easily by contradiction. Let us assume we know

that users i and j are paired in the optimal strategy, and let them be served by
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base station b. Now, if there exists b′ 6= b, for which (Ri + Rj)b < (Ri + Rj)b′ in

the original graph, the edge between i and j corresponding to receiver b can be

removed, and selecting b′ as the new receiver will result in a strictly better system

sum rate, as the sum rate of the other users remain unchanged. This contradicts

the optimality of b, and shows that any edge corresponding to such inferior b can

be removed initially, without compromising optimality. As a result, the model in

Figure 4.3(c) is obtained, and the structure of the problem once again reduces to

that of single cell partnering. The jointly optimal partnering, receiver selection

and power allocation problem can therefore be stated as an equivalent three stage

problem,

max
Γl∈Γ,

∑

{i,j}∈Γl

max
b

max
pi(h),pj(h)

(Ri +Rj)b,

s.t.
∑

s∈Sij

E
[

p
(s)
ib (h)+p

(s)
ij (h)+p

(s)
Ui
(h)
]

≤ P̄i,

(Ri +Rj)b satisfies (4.1), ∀{i, j} ∈ Γl. (4.11)

which can further be converted to

max
Γl∈Γ,

∑

{i,j}∈Γl

(Ri +Rj)
∗, (4.12)

and being a maximum weighted matching problem on a complete graph, (4.12)

can be solved in polynomial time using methods such as Edmonds algorithm [20].

Algorithm 1 below summarizes the stages of our three step optimization.

Instead of calculating the optimum powers to obtain the graph weights for each

pair of users, it is also possible to resort to some heuristic distance based al-

gorithms to perform the matching step. We now propose such an algorithm:

the distances among each pair of outer users in each pseudo-cell are computed

and sorted. The users closest to each other are matched, removed from the list

of users, then the same procedure is applied to the remaining users. Once the

matching is found, power allocation and receiver selection steps are performed.
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(a) 3 receiver system model

(R1+R2)b

(R2+R3)b

(R3+R4)b

(R1+R4)b

(R1+R3)b

(R2+R4)b

(b) Weighted graph, b =
1, 2, 3 for each pair

(R1+R2)*

(R2+R3)*

(R3+R4)*

(R1+R4)*

(R1+R3)*

(R2+R4)*

(c) Reduced graph, after
selecting b∗ for each pair

Figure 4.3: Determination of weights for edge cell users

The distance based matching for the inner users is identical to single cell match-

ing, and is performed using Algorithm E in Chapter 3. The performance of the

heuristic algorithm will be evaluated in the following section.

Algorithm 1 Algorithm for outer cell users

for all (i, j) ∈ Uout do

for all receivers b ∈ {1, 2, 3} do

Compute optimal powers using the algorithm from [10]
Calculate (Ri +Rj)b by equation (4.1)

end for

Select b∗ = arg max (Ri +Rj)b,
Use (Ri +Rj)

∗ , (Ri +Rj)b∗ as graph weights
end for

Run MWM algorithm on weighted graph for optimal pairing.

4.4 Simulation Results

We simulate our proposed frequency reuse, partner selection, base station selec-

tion and power allocation strategy for a system with 4N = 24 users per cell,

r = 2rin = 100m. We assume that the average power of each user is unity, and

the fading is exponential with mean 1. Each user is assigned an average of one

subchannel, that is, in the cooperative scenario, the user pair is assigned two

subchannels and share both of these subchannels. This amounts to a total of 60

subchannels reused in the system. Note that, if FFR, whether complementary or
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Figure 4.4: Sum rate comparison of proposed model with non-cooperative models.

strict, is not used, each cell can support only 20 users, in which case the worst 4

users should be blocked. The rate maximization is carried out for only the outer

users in the central pseudo-cell of the cluster, and the inner users; and per cell

sum rate is found by averaging.

In Figure 4.4, we compare the sum rates of four strategies: our proposed jointly

optimized strategy, our heuristic strategy, strict FFR with single user power con-

trol but no cooperation, and power control only (no FFR). Each index on the hor-

izontal axis refer to a different user geometry. While the use of non-cooperative

strict FFR increases the user capacity, it yields less sum rate compared to no

FFR, due to the added interference at the inner users. In fact, it was noted in

[13] that when rin = r/2, FFR and no FFR give nearly the same rate, as validated

here. However, our proposed strategy, as well as the heuristic partnering approach

nearly double the rates of both non-cooperative techniques, thanks to the gain

from cooperation, reduction of interference due to the sectorized complementary

FFR model, and flexibility in choosing partners and receivers.

In Figure 4.5, we give the optimal partnering strategy for a sample geometry.

Dividing the cell into two has the effect of increasing the connectivity of the

users, and encourages cooperation, compared to a single cell setup presented in

Chapter 3. As a result, especially the cell edge users with comparable direct link

gains tend to pair with close-by helpers, as opposed to the observations in the
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Figure 4.5: Sample optimal partnering strategy obtained by MWM.

User Pair No FFR Strict FFR Comp. FFR
User Rates User Rates Sum rate

12-16 1.20 - 1.14 1.20 - 1.14 4.92
6-17 0.99 - 1.21 0.99 - 1.21 4.29
2-5 0.98 - 0.84 0.98 - 0.84 4.24
3-10 0.75 - 0.78 0.75 - 0.78 3.88
4-14 0.71 - 0.75 0.71 - 0.75 3.76
8-11 1.01 - 1.10 1.01 - 1.10 3.44
1-9 0.69 - x 0.69 - 0.65 3.37
15-18 x - x 0.68 - 0.59 3.13
7-13 0.80 - x 0.80 - 0.68 3.07

Table 4.1: Comparison of user rates for cooperative vs. noncooperative protocols.

single cell scenario Chapter 3. This leads to a fairer solution and higher rates for

cell edge users. This is further illustrated in Table I, where we tabulate the rates

of the outer users, falling into the pseudo-cell in Figure 4.5. In non-cooperative

strict FFR and no FFR scenarios, each user is assigned a single subchannel and

performs single user optimal power control, leading to the individual rates given

in Table I. Note that, without FFR, only 7N/3 = 14 of the 3N = 18 outer users

can be supported, hence the worst four users are denied access to the channel. In

the cooperative FFR scenario, each pair is assigned two subchannels, and their

sum rate is shown. The pairs shown on Table I correspond to optimal partnering

obtained by MWM. It can be observed from Table I that the worst case users

benefit more from cooperation, as the sum rates of user pairs are more nearly

equal compared to the non-cooperative setup.
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4.5 Conclusion

We proposed a new fractional frequency reuse technique, to be used in conjunction

with pairwise cooperation in cooperative multicell multiple access channels. This

technique allows cell edge users, potentially from adjacent cells, to share the same

subchannels, and select their receiver, which is also convenient for soft hand-off

scenarios. We obtained the jointly optimal partner selection, power allocation

and receiver selection policy, and demonstrated that this policy not only doubles

the system sum rate compared to non-cooperative techniques, but also it provides

a fairer rate distribution for cell edge users.
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Chapter 5

Cognitive Cooperative Networks and Partner Selection

With the increasing demand for wireless networks, physically limited usable fre-

quency bands’ values go higher by time. Therefore, new techniques are constantly

under research to increase efficiency of wireless communication channels. How-

ever, most of the already-in-use licensed frequency bands are standardized long

ago and can’t take advantage of these new technologies. This creates an efficiency

problem that can be solved with cognitive radio approach. With cognitive radio,

primary user who has the channel use rights transmits its message, and a sec-

ondary user joins into the channel, transmits its own message with one rule; do

not affect primary users communication negatively. Therefore, although the chan-

nel is occupied by one user, secondary user can still communicate with intelligent

design of communication scheme.

In addition to cognitive networks, cooperation between users may increase through-

put of the system significantly. The cooperation idea is rooted from relay model

which first introduced in [22]. However, in relay channel, the relay only transmits

other user’s signals. In cooperative networks, relays have their own messages to

be transmitted, therefore the cooperative system may be considered as a special

case of relay networks, yet can also be modeled as a multiple access channel with

generalized feedback (MAC-GF). This model was first introduced in [18], however

in [1] extended to the wireless networks and power optimization was done in [2].
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Although in this model users are treated as equals in contrast to the cognitive

setup, in this chapter, the model will be altered to fit in cognitive radio concept.

Cognitive radio was first designed to be used in occupied frequency bands as in

[23], however now the idea has expanded to all wireless networks. With clever

design, the users can transmit their messages by tracing the other user’s chan-

nel conditions and sends messages according to the other user’s power allocation

strategy. The systems where the second user transmits signals according to first

user’s power in the channel without negatively affecting first user’s rate is called

underlay. Underlay systems are studied fairly wall in the literature, and now the

newer and more popular cognitive radio approach is overlay. In overlay cognitive

radio, second user decodes first user’s messages, may use them to create code-

words, and even may relay this message to the receiver. With this approach,

second user may have more flexibility on transmission strategy, which may result

into increased throughput.

In a cellular system with more than one primary and one secondary users, match-

ing of users also have affect on throughput of the system and sum rate of secondary

users. Therefore, partner selection must be done cleverly. In this chapter, a coop-

erative cognitive radio setup with joint optimal power control is considered and

optimum partner selections to maximize system sum rate and secondary users’ to-

tal rate are found. The proposed system is compared to underlay non-cooperative

cognitive radio network.

5.1 System Description

We consider a fading cognitive cooperative multiple access channel with K pri-

mary and K secondary users. The users are to be divided into K disjoint pairs,

each consisting of one primary and one secondary user. Each pair is then as-

signed one of K orthogonal subchannels using OFDMA, and users in a given pair

communicate with each other, as well as with the receiver, over their assigned

subchannel. This creates K cognitive cooperative multiple access channels [24]
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in parallel, having one primary and one secondary user each. The primary and

secondary users are randomly placed on a disk of radius d. The locations of the

users, and the statistics of the channel gains among all users and the receiver

are assumed to be known at the receiver. The receiver uses this information,

and the fact that users in each group will use channel adaptive power control, to

determine the optimal cooperating pair assignment, which is then fixed through-

out the transmission. We assume that the subchannel assignment is fixed at

the beginning of transmissions, and is not optimized instantaneously. Once the

cooperating pairs are determined, it is sufficient to assume that each cooperat-

ing pair of users have only their own channel state information (inter-user and

user-receiver). Likewise, the receiver only needs the instantaneous CSI of the co-

operating pairs, the CSI among non-cooperating primary-secondary users is not

needed.

We denote by Pi the ith primary user, and by Sj the jth secondary user, where

i, j ∈ {1, . . . , K}. A sample system with K = 5 is shown in Figure 5.1, along

with one possible pairing strategy. Once the pairing is fixed, the received signals

Yrij at the receiver, and Ysj at the the secondary user for each cooperating pair

{Pi, Sj} can be written respectively as

Yrij =
√

hpird
−α
ir Xpi +

√

hsjrd
−α
jr Xsj +Nr, (5.1)

Ysj =
√

hpisjd
−α
ij Xpi +Nsj , (5.2)

In (5.1)-(5.2), Xpi and Xsj denote the codewords sent by the primary and sec-

ondary users; hpir, hsjr and hpisj denote the PUi to receiver, SUj to receiver and

PUi to SUj channel power gains due to frequency flat fading; Nr and Nsj denote

the zero mean additive white Gaussian noise components at the receiver and SUj

respectively. The noise variances are σ2
r and σ2

sj
.

This channel model is a generalization of the model introduced in [24] which can

be considered as a relay channel, where the relay also has its own messages to

transmit, or a special case of a MAC with generalized feedback [1, 18], where the
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Figure 5.1: Multi-User Cooperative Cognitive Gaussian MAC

Figure 5.2: Two-User Cooperative Cognitive Gaussian MAC

cooperation signals from one of the users is disabled. We take the latter approach,

and modify the superposition block Markov encoding strategy in [1]: we divide

the PU’s message into two submessages, i.e., Wpi = (Wpir,Wpisj). The submes-

sage Wpir is the information sent directly to the receiver, and the submessage

Wpisj is the part that can be decoded by both the SU and the receiver. The SU

message is not partitioned, as the PU should not aid the SU, due to the cogni-

tive setup. Then, these messages are mapped to randomly generated codewords,

whose entries are selected from unit Gaussian distributions, i.e.,

Xsjr(Wsj(b),Wpisj(b− 1)) (5.3)

Xpir(Wpir(b),Wpisj (b− 1)) (5.4)

Xpisj (Wpisj (b),Wpisj(b− 1)) (5.5)

C(Wpisj (b− 1)) (5.6)

where Xsjr and Xpir are used to transmit fresh information Wsjr(b) and Wpir(b)
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directly intended for the receiver in block b, Xpis is signal transmitted by the

PU to allow potential cooperation from the SU in the next block, and C is the

common signal which is used by both users to cooperatively transmit the PU’s

information Wpisj(b−1) from the previous block. The resulting codewords of the

users are formed by superposition, where we also take into account the possibility

of power control as in [2], as a function of the available channel state information,

denoted by the the channel state vector h = [hpir, hpisj , hsjr]:

Xpi =
√

Ppir(h)Xpir +
√

Ppisj(h)Xpisj +
√

Ppic(h)C, (5.7)

Xsj =
√

Psjr(h)Xsjr +
√

Psjc(h)C. (5.8)

The powers are required to satisfy the average power constraints,

Ppi(h) = Ppir(h) + Ppisj(h) + Ppic(h) (5.9)

Psj(h) = Psjr(h) + Psjc(h) (5.10)

E
[

Pn(h)
]

≤ P̄n where n ∈ {p, s} (5.11)

The achievable rate constraints are as follows:

Rpi ≤ E
{

log(1+spirPpir(h))|spisj <spir

}

Pr[spisj <spir]

+ E
{

log(1+spisjPpisj (h))|spisj >spir

}

Pr[spisj >spir] (5.12)

Rsj < E
{

log
[

1+ssjrPsjr(h)
]}

(5.13)

Rpi+Rsj ≤ min

{

E
{

log
[

1+spirPpir(h)+ssjrPsjr(h)
]

|spisj <spir

}

Pr[spisj <spir]

+ E
{

log
[

1+spisjPpisj(h)
]

|spisj >spir

}

Pr[spisj >spir]

+ E
{

log
[

1+ssjrPsjr(h)
]

|spisj >spir

}

Pr[spisj >spir],

E
{

log(A)
}

}

(5.14)

where A = 1 + spirPpi(h) + ssjrPsj (h) + 2
√

spirssjrPpicPsjc. In (5.12)-(5.14), Rpi

and Rsj denote the rates of primary and secondary users; and the channel fading
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coefficients, normalized by the noise powers are denoted as sij = h2
ij/σ

2
j , where

i ∈ {p, s} and j ∈ {s, r}, i 6= j.

Now, we describe the crucial twist from the cooperative communication frame-

work, due to the cognitive setup: not all rates satisfying the above constraints

are necessarily achievable, as we should also guarantee that the PU’s achievable

rate is no worse than what it would be, had the PU been transmitting alone.

Moreover, we have to assume that the PU would be able to use optimal power

allocation [25], which is single user waterfilling, while computing the worst case

rate requirement of the PU. Therefore, we need the constraint:

Rpi ≥ E
{

log
[

1 + P ⋆
pi
(hpir)spir

]}

, B∗ (5.15)

where P ⋆
pi
(hpr) is the optimal power level for single user transmission, with power

constraint E[P ⋆
pi
(hpir)] = P̄pi; and B∗ is the resulting maximum data rate achiev-

able by the PU, without cooperation.

In the next section, we solve the optimal power allocation problem for the cogni-

tive cooperative scenario, with two separate objectives: sum rate maximization,

which creates an extra incentive for the PU to allow cooperation, and SU rate

maximization, which aims to accommodate as much rate for the cognitive user as

possible, while still providing a maximum single-user rate guarantee for the PU.

5.2 Maximization of the Achievable Rates

We start by noting, also in light of the findings in [2] for the non-cognitive cooper-

ative MAC, that for channel states which satisfy spisj >spir, the optimal strategy

is to set Ppir(h) = 0, meaning no additional power should be allocated by the

PU for direct transmission. Due to symmetry, for channel states spisj <spir, the

optimal strategy becomes Ppisj (h) = 0, where primary user should transmit its

own message to the receiver directly. Therefore, the maximization of achievable

rates can be separated in two cases depending on the channel states with joint
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power constraints. These power settings ensures convexity of the problem and

the optimization problem can be stated in convex form as follows:

max
P(h)

αRpi +Rsj (5.16)

s.t. Rpi ≤ E
{

log(1+spirPpir(h))|spisj <spir

}

Pr[spisj <spir]

+ E
{

log(1+spisjPpisj (h))|spisj >spir

}

Pr[spisj >spir] (5.17)

Rs < E
{

log
[

1+ssjrPsjr(h)
]}

(5.18)

Rpi+Rsj ≤ min

{

E
{

log
[

1+spirPpir(h)+ssjrPsjr(h)
]

|spisj <spir

}

Pr[spisj <spir]

+ E
{

log
[

1+spisjPpisj(h)
]

|spisj >spir

}

Pr[spisj >spir]

+ E
{

log
[

1+ssjrPsjr(h)
]

|spisj >spir

}

Pr[spisj >spir],

E
{

log(A)
}

}

(5.19)

Rpi ≥ B⋆ (5.20)

E
[

Ppir(h) + Ppisj(h) + Ppc(h)
]

≤ P̄pi (5.21)

E
[

Psjr(h) + Psc(h)
]

≤ P̄sj (5.22)

Ppisj(h), Ppic(h), Psjr(h), Psjc(h) ≥ 0 (5.23)

where, Kl denotes lth cooperating pair of K cooperating pairs in the system,

l ∈ {1, . . . , K}. Note that, by setting α = 1 in (5.16), we obtain the sum rate

maximization for cognitive MAC, and by setting α = 0, we obtain the SU rate

maximization. We will treat both problems in parallel, and discuss their differ-

ences as they become apparent. First, by associating several Lagrange multipliers
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with the constraints in (5.17)-(5.23), we write the Lagrangian,

L =αRpi +Rsj

+ γ1

{

E
{

log(1+spirPpir(h))|spisj <spir

}

Pr[spisj <spir]

+ E
{

log(1+spisjPpisj(h))|spisj >spir

}

Pr[spisj >spir]−Rpi

}

+ γ2

{

E
{

log
(

1 + ssjrPsjr(h)
)}

−Rsj

}

+ γ3

{

E
{

log(A)
}

−Rpi −Rsj

}

+ γ4

{

E
{

log
[

1 + spirPpir(h) + ssjrPsjr(h)
]

|spisj <spir

}

Pr[spisj <spir]

+ E
{

log
[

1+spisjPpisj(h)
]

|spisj >spir

}

Pr[spisj >spir]

+ E
{

log
[

1+ssjrPsjr(h)
]

|spisj >spir

}

Pr[spisj >spir]− Rpi − Rsj

}

+ γ5

{

Rpi −B⋆

}

+ λ1

{

Ppi −E
[

Ppir(h) + Ppisj(h) + Ppic(h)
]

}

+ λ2

{

Psj −E
[

Psjr(h) + Psjc(h)
]

}

+ µ1Ppir(h) + µ2Ppisj(h) + µ3Ppic(h) + µ4Psjr(h) + µ5Psjc(h) (5.24)

For simplicity, we can divide the Lagrange function into two cases, according to

channel states of spisj and spir. Case 1 can be defined strong primary to secondary

user link in comparison to primary to receiver link, i.e., spisj > spir and case 2

is the exact opposite, spisj < spir. Taking the partial derivatives with respect

to the power components of primary and secondary users, as well as the rate

variables, and employing complementary slackness constraint in both cases, it is

easy to show that the following KKT conditions are necessary and sufficient for

51



optimality:

Case 1:

λ1 ≥ (γ1 + γ4)
spisj

1 + spisjPpisj(h)
+ γ3

spir
A

(5.25)

λ2 ≥ (γ2 + γ4)
ssjr

1 + ssjrPsjr(h)
+ γ3

ssjr

A
(5.26)

Case 2:

λ1 ≥ (γ1 + γ4)
spir

1 + spirPpir(h)
+ γ3

spir
1 + spirPpir + ssjrPsjr

(5.27)

λ2 ≥ (γ2 + γ4)
ssjr

1 + ssjrPsjr(h)
+ γ3

ssjr

1 + spirPpir + ssjrPsjr
(5.28)

Case 1 and 2:

λ1 ≥ γ3
spir
√

Ppic(h) +
√

spirssjrPsjc(h)

A
√

Ppic(h)
(5.29)

λ2 ≥ γ3
ssjr
√

Psjc(h) +
√

spirssjrPpic(h)

A
√

Psjc(h)
(5.30)

1 = γ2 + γ3 + γ4 (5.31)

α + γ5 = γ1 + γ3 + γ4 (5.32)

The constraints (5.25) - (5.28) are satisfied with equality, if the powers Ppir(h),

Ppisj(h),Psjr(h),Ppic(h),Psjc(h) are positive.

Let us first consider the sum rate maximization, i.e., α = 1. From (5.31) and

(5.32), we have 1+ γ5 = γ2 + γ3 + γ4 and 1 = γ1 + γ3 + γ4. The crucial trick is to

consider two cases separately: when γ5 = 0, (5.20) is inactive, meaning the PU

rate already satisfies the cognitive transmission constraint. Then, we are back

to the non-cognitive scenario as in [2], and after some lengthy manipulations of

52



(5.25)-(5.30), with γ3 = 1− (γ2 + γ4) = 1− (γ1 + γ4) and γ1 = γ2, we get

Case 1:

Ppisj(h) =

(

(γ1 + γ4)
(λ2spir + λ1ssjr)

λ2
1ssjr

− 1

spisj

)+

, (5.33)

Psjr(h) =

(

(γ2 + γ4)
(λ2spir + λ1ssjr)

λ2
2ssjr

− 1

ssjr

)+

, (5.34)

Ppic(h) =
γ3

(

spir+λ1ssjr/λ2

)

λ1

−D1

(spir + λ1ssjr/λ2)2
spir, (5.35)

Psjc(h) =
γ3

(

ssjr+λ2spir/λ1

)

λ2

−D1

(ssjr + λ2spir/λ1)2
ssjr, (5.36)

Case 2:

Ppir(h) =

(

(γ1 + γ4)
(λ2spir + λ1ssjr)

λ2
1ssjr

− 1

spisj

)+

, (5.37)

Psjr(h) =

(

(γ2 + γ4)
(λ2spir + λ1ssjr)

λ2
2ssjr

− 1

ssjr

)+

, (5.38)

Ppic(h) =
γ3

(

spir+λ1ssjr/λ2

)

λ1

−D2

(spir + λ1ssjr/λ2)2
spir, (5.39)

Psjc(h) =
γ3

(

ssjr+λ2spir/λ1

)

λ2

−D2

(ssjr + λ2spir/λ1)2
ssjr, (5.40)

where D1 = 1 + spirPpisj (h) + ssjrPsr(h) and D2 = 1 + spirPpir(h) + ssjrPsr(h),

provided Ppic(h) and Psjc(h) obtained from equations (5.35), (5.39) and (5.36),

(5.40) are positive. Otherwise, Ppic(h) and Psjc(h) both have to be set to zero

in respective case as there is no other alternative, as having only one cooperative

power non-zero would be strictly suboptimal. For case 1, one should re-solve

(5.25) and (5.26) for Ppisj(h) and Psjr(h), which are the positive roots of the

following quadratic equation:

aiPij(h)
2+biPij(h)+ci = 0, {i, j} ∈ {{p, s}, {s, r}} (5.41)
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where the coefficients are given by

(api; bpi; cpi) = (λ1spirspisj ;λ1(spir + spisj + spisjssjrPsjr(h)

− spirspisj);λ1(1 + ssjrPsjr(h))

− (γ2 + γ4)(spisj + spisjssjrPsjr(h)− spir)− spir)

(asj ; bsj ; csj) = (λ2s
2
sjr

;λ2(2ssjr + spirssjrPpisj(h))− s2sjr;

λ2(1 + spirPpisj (h))− (γ2 + γ4)(spirssjrPpisj (h))− ssjr)

For case 2, the equations which should be re-solved are (5.27) and (5.28) for

Ppir(h) and Psjr(h), which are the positive roots of the following quadratic equa-

tion:

(api; bpi; cpi) = (λ1s
2
pir
;λ1(2spir + spirssjrPsjr(h)

− s2pir);λ1(1 + ssjrPsjr(h))

− (γ2 + γ4)spirssjrPsjr(h)− spir)

(asj ; bsj ; csj) = (λ2s
2
sjr

;λ2(2ssjr + spirssjrPpir(h))− s2sjr;

λ2(1 + spirPpir(h))− (γ2 + γ4)(spirssjrPpir(h))− ssjr)

Note that, because of the equalities γ3 = 1− (γ2+γ4) = 1− (γ1+γ4) and γ1 = γ2,

only one Lagrange multiplier search will be sufficient to reach to the optimal

solution.

Now, we go back to the second possible case, γ5 > 0, meaning that (5.20) is

satisfied with equality, i.e., the PU rate is fixed to its minimum possible value.

The key observation here is that the sum rate maximization problem then becomes

equivalent to SU rate maximization, and solving the SU maximization problem

will also complete the solution of the sum rate maximization. To do so, we may

as well set α = 0, and force equality in (5.20), by varying γ5. Luckily, the KKT

conditions, and the resulting optimal power expressions are almost identical to

the previous sum rate maximization case, except now the equality γ1 = γ2 does

not hold. Therefore, by using equations (5.31) and (5.32), we now need to search
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for two Lagrange multipliers, γ1 + γ4 and γ2 + γ4, rather than one. Since we

are searching for the sum of Lagrange multipliers instead of individual values, we

can treat γ1+ γ4 and γ2+ γ4 as two individual Lagrange multipliers. Once again,

when the cooperative powers turn out to be negative, we set them to zero, and we

instead solve Ppisj(h), Psjr(h) in case 1, Ppir(h), Psjr(h) in case 2, that maximize

the SU rate, with again by roots of the following quadratic equation:

aiPir(h)
2+biPir(h)+ci = 0, i ∈ {p, s} (5.42)

Case 1:

(api; bpi; cpi) = (λ1spirspisj ;λ1(spir + spisj + spisjssjrPsjr(h))

− (γ1 − γ2 + 1)spirspisj ;λ1(1 + ssjrPsjr(h))

− γ1(spisj + spisjssjrPsjr(h))− (1− γ2 − γ4)spir)

(asj ; bsj ; csj) = (λ2s
2
sjr

;λ2(2ssjr + spirssjrPpisj(h))− s2sjr;

λ2(1 + spirPpisj (h))− (γ2 + γ4)(spirssjrPpisj (h))− ssjr)

Case 2:

(api; bpi; cpi) = (λ1s
2
pir

;λ1(2spir + spirssjrPsjr(h))

− (γ1 − γ2 + 1)s2pir;λ1(1 + ssjrPsjr(h))

− (γ1 + γ4)(spir + spirssjrPsjr(h))− (1− γ2 − γ4)spir)

(asj ; bsj ; csj) = (λ2s
2
sjr

;λ2(2ssjr + spirssjrPpir(h))− s2sjr;

λ2(1 + spirPpir(h))− (γ2 + γ4)(spirssjrPpir(h))− ssjr)

Convex optimization represented in this chapter can be done numerically with

iterative implementation of search for Lagrange multipliers. In the next section,

numerical implementation will be used for each primary and secondary user pairs

and optimal partner selection algorithm will be applied on the resulting multiuser

network afterwards.
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5.3 Optimal Partner Selection

In this chapter, we consider a multiuser cognitive cooperative network employing

OFDMA as multiple access technique. Due to cognitive setup, users are divided

into two disjoint sets; set of primary users §p and set of secondary users §s and

each primary user should be matched with a secondary user as partners and

employ joint power control employing cooperative communication scheme. In

this setup with power allocation scheme proposed in section 5.2, we will deal with

two system wide maximization problems; sum rate maximization and secondary

user rates maximization. Since in both maximization problems primary users

have a lower bound on their transmission rates, secondary users’ rates play great

role and the partner selection must be done wisely. Due to the orthogonality

provided by OFDMA, rate maximization of partners can be done independently

from other cooperating partner, which leads us to divide the problem into two

parts; partnerwise rate maximization and partner selection. The maximization

problems can be expressed as follows:

max
Γl∈Γ

∑

{i,j}∈Γl

max
P(h)

αRpi +Rsj (5.43)

s.t.
∑

s∈Sij

E
[

P (s)
pir

(h)+P (s)
pisj

(h)+P (s)
pic

(h)
]

≤ P̄pi, ∀{i, j} ∈ Kl

Ri +Rj satisfy (5.14), ∀{i, j} ∈ Kl. (5.44)

where Γl is the matchings of primary and secondary users, Γ is set of all distinct

partitions of Γl. Note that, by setting α = 0, the maximization problem becomes

secondary user rate maximization problem. The sum rate or the secondary user

rate maximization problems are explained in detail in the previous section, hence

in this section we will only focus on partner selection algorithm.

For optimal partner selection, we have to select one primary and one secondary

user as cooperating partners, repeating until there is no other users left. After
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that step, we have to try all possible partnering combinations, which will re-

sult in a combinatorial complexity algorithm. Instead of this approach, we may

morph this problem into a graph theory weighted matching problem, which can be

solved optimally with O(n3) complexity by Edmond’s Maximum Weighted Match-

ing (MWM) algorithm in [20]. To apply the algorithm, we have to define all users

as edges, and sum rates (or secondary user rates if desired) as weights. As it can

be seen, cognitive setup differs from the mutual cooperation setup in Chapter 1

from graph theory perspective, and resulting graph will be bipartite. However,

MWM algorithm can be applied to bipartite graphs with same complexity. After

computing every weight on the graph, MWM can be run over the resulting graph

and optimum matching scheme can be obtained. MWM algorithm can also be

applied to underlay scenario where the only change is the computation of weight

due to change in power control policy.

5.4 Simulation Results

In our simulations, we have considered K = 20 primary and secondary users,

located randomly with uniform distribution on a cell with radius r = 100m,

where the receiver is located in the center. Partner selection is done once, and

partners do not change throughout the transmission. Each primary and secondary

user has the same power constraint.

We have considered both sum rate optimization and second user rate optimization

problems in both proposed cooperative and underlay scenarios. We applied MWM

to both scenarios and in underlay scenario we also considered a system where

primary and secondary users are randomly matched.

As expected, the maximum sum rate of the system can be achieved by sum

rate maximization power control with MWM where throughput of the system is

43.5198, total rate of the secondary users is 24.6627 and matching can be observed

from Figure 5.3(b). Sum rate maximization may increase rate of primary and

secondary users, therefore, primary users may benefit from this scheme. However,
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(a) Second user rate maximization with cooperation
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(b) Sum rate maximization with cooperation
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(c) Underlay system matched by MWM
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(d) Underlay system with random matching

Figure 5.3: Example Simulation Results

cognitive setup may be used to enable transmission of secondary users without

affecting the primary users’ communication, thus second user maximization may

be more important from this point of view. In secondary user maximization power

control and matching in Figure 5.3(a), the total rate of secondary users is 25.9150,

which is the maximum of all benchmark systems. The system throughput is lower

in comparison to sum rate maximization, yet this is not the main consideration

in this scheme. In underlay scenarios, both the system throughput and sum of

secondary user rates is are lower than proposed schemes while it gets worse when

MWM is not applied.
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5.5 Conclusion

In this chapter, a cooperative cognitive overlay communication setup was intro-

duced and optimum power allocation schemes for sum rate and secondary user

rate maximization were found. The matchings of the primary and secondary users

is done optimally by MWM. The system was simulated and results show that,

proposed system can be used to maximize system throughput or maximize the

secondary users’ rates. Therefore, it can be seen that, cooperation in cognitive

setup can be a promising technique and deserves further research.
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Conclusion

There are several techniques to increase the system throughput in wireless commu-

nication and one of the promising techniques is cooperation. In this dissertation,

we have introduced cooperation with joint power control to maximize partners

total rate. Then we have divided a system into two user partitions, maximized

the rate and selected partners optimally by MWM from graph theory so that we

could maximize the system throughput. Then we have expanded these ideas and

applied them to multi-cell scenario with a novel FFR scheme which encourages

cooperation. At last, we have enabled cooperation in an overlay cognitive setup

with joint power control and found optimal partnering strategy to maximize sys-

tem throughput or second users’ rates. The system was compared to underlay

cognitive setups and shown that proposed system performs better in terms of

throughput. We have shown that cooperation is a promising technique, with

novel ideas and multidisciplinary study, wireless communication systems can be

more optimized.
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