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Abstract 

 
In this thesis, to model measured data obtained from an actual passive one-port 

device, a circuit modeling method with mixed lumped and distributed elements is 

proposed. Namely, measured data is modelled by means of its Darlington equivalent, 

in other words, as a lossless two-port terminated with a resistance. Two network 

topologies are examined. The first topology is ladder networks connected with unit 

elements and the second one is cascaded separate lumped and distributed networks. 

In the proposed modeling method, analytic expression of the input reflection 

coefficient of the two-port model is obtained by using gradient method, and then, 

after synthesizing this two-variable function, the model is reached. Thus, for the first 

time in the literature, a two-variable circuit modeling method is presented. 
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PASİF TEK KAPILILARIN KARIŞIK TOPLU VE DAĞILMIŞ ELEMANLI 
DEVRE MODELLERİ 

 

Özet 

 
Bu doktora tezinde, fiziksel, pasif tek kapılı bir devreye/elemana ilişkin, bir frekans 

bandında ölçülmüş saçılma parametresi verisinin, bir direnç ile sonlandırılmış 

kayıpsız, karışık toplu ve dağılmış elemanlar içeren iki kapılı bir devre ile modelleme 

yöntemi önerilmiştir. İncelenen model topolojilerinden birincisi, birim elemanlarla 

bağlanmış merdiven devreler, diğeri ise ardarda bağlanmış sadece toplu ve sadece 

dağılmış elemanlar içeren devrelerdir. Önerilen modelleme yönteminde, gradyan 

metodundan yararlanılarak, iki kapılı kayıpsız modelin giriş saçılma parametresinin 

analitik ifadesi elde edilmiş, daha sonra, bu iki-değişkenli analitik giriş fonksiyonu 

sentezlenerek modele ulaşılmıştır. Böylece literatüre ilk kez iki-değişkenli devre 

modelleme yöntemi sunulmaktadır. 
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Chapter 1 

Introduction 

 
In communication systems design, one of the most common problems is to obtain 

circuit models of the components that are defined by numerical data. Especially, in 

the systems working at microwave frequencies, front-end, inter-stage and back-end 

blocks such as high-frequency transistors, antennas and amplifiers are characterized 

by their measured data. In such high frequency systems that contain these kinds of 

blocks, to design filter and matching circuits by using the known analytic and semi-

analytic methods to control the power flow between the stages, it is necessary to 

model the numerically defined components by realizable circuit functions or circuit 

components. From this point of view, to be able to use the present analytic design 

methods, it is very important to model the numerically defined devices via lossy or 

lossless components. 

 

One of the typical fields that needs circuit modeling is the broadband impedance 

matching circuit design [1-3]. In this problem, it is desired to obtain a lossless two-

port network between the given source and the load to transfer maximum power over 

the possible broadest frequency band [4-7]. Here, source and load impedances can be 

regarded as complex one-port networks and they are defined by numerical data. In 

impedance matching problem, power transfer level between source and load can be 

determined via Analytic Gain-Bandwidth Theory [1,8-11]. To be able to use this 

theory, it is necessary to know the one-port models of the complex source and load 

impedances. 

 
In literature, there are valuable works about data modeling [12-16]. But, because of 

the difficulties in modeling by the existing methods in literature and the lack of  
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accuracy in matching problems, numerical or semi-analytic computer aided methods 

which use numerically defined loads are proposed. The method called Real 

Frequency Technique (RFT), developed by Carlin [11] and Yarman [17], is 

improved by many researchers and overcame the difficulties in modeling that is 

inevitable in analytic methods [18-27]. But, new, efficient and accurate data 

modeling and matching network design via analytic methods are unanswered 

fundamental problems for researchers. 

 

In practice, a load can be defined by the amplitude-phase or real-imaginary pairs of 

impedance or reflection parameters measured in the desired frequency band. While 

modeling these kinds of numerical data, realizability conditions of circuit functions 

must be considered. In this work, a physical device defined by numerical data is 

modeled as a lossy one-port or a lossless two-port network (Darlington equivalent 

[28]). 

 

 

 

 

Figure 1.1 Darlington equivalent network. 

 

In literature, two methods are widely used to model the given impedance data: 

1. A network topology is selected and the best suitable components values are 

designated. 

2. An impedance or reflection function which is suitable for the data is 

determined and the model is obtained by synthesizing the function. 

 

In the first method, after selecting the network topology, an optimization tool is used 

to define the suitable component values [29,30]. Although this is a very simple and 

straightforward method, it contains some difficulties: Optimization process is highly 

nonlinear with respect to the component values, can reach a local minimum or can 

diverge. So to get a satisfactory result after the optimization process, initial values 

must be selected properly. But it is not so easy to get suitable initial values. 
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In addition to this difficulty, what is the network topology for the given data? This is 

not clear. So the modeler will try lots of network topologies and select the best 

suitable one. Or the problem will be unanswered. 

 

Lots of methods are proposed to model the given impedance or reflection data. In the 

simplest one, impedance data are represented by a rational function and the 

coefficients of the function are determined by interpolation. Such a rational function 

)( pZ  is given in (1.1), 

 

∑

∑
−

=

−

== 1

0

1

0)( n

i

i
i

n

i

i
i

pb

pa
pZ         (1.1) 

 

where ωσ jp +=  is the usual complex frequency variable, ia  and ib  

))1(,,1,0( −= ni K  are positive real coefficients. But at the end of this method, a 

positive real function cannot be reached. 

 

In [31], two modeling tools are given. These methods use input impedance or 

scattering parameters of the device. In the first method, called Immittance Approach, 

impedance or admittance data are used. Real part of the input impedance is 

approximated by a minimum reactance function, then after removing minimum 

reactive data, the remaining imaginary data is modelled by a Foster function. In the 

second method, called Reflection Parameter Approach, measured reflection 

coefficient data are modelled by a bounded real function. 

 

All the modeling methods in the literature use only lumped (or distributed) elements 

in the models. So in this study, the objective is to develop new modeling methods 

which use mixed lumped and distributed elements in the models. 

 

In the second chapter of this dissertation, some fundamental network theoretical 

concepts relevant to this study are reviewed in a brief manner. 
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In Chapter 3, after discussing modeling concept and gradient method, proposed 

reflection coefficient based method to obtain mixed models for passive one-port 

devices is explained. 

 

In Chapter 4, algorithms, flow charts and numerical aspects of the proposed 

modeling method are given. 

 

Chapter 5 is devoted to the applications of the mixed modeling method. To illustrate 

the utilization of the method, antenna modeling, lumped to mixed filter 

transformation and single stage microwave amplifier design examples are examined. 
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Chapter 2 

Fundamental Properties of Lossless Two-Ports 

 
Circuit components can be characterized as having two or more terminals. 

Components that are connected together in some manner are known as networks. In 

Figure 2.1, a network and its external terminals which provide access to the network 

can be seen. Generally a mathematical representation determined from the external 

terminals is interested and used to predict the response for any source or load 

connected to the network. 

 

 

 

 

 

Figure 2.1 General four-terminal network. 

 

The pair of external terminals used to connect a termination is known as a port, and a 

network with n ports is named an n-port network. The n-port network does not 

necessarily have 2n terminals; a terminal can be common to more than one port. The 

voltage and current definition at each port is shown in Figure 2.1. 

 
2.1  Scattering Parameters 

 
The network parameters (such as Z or Y parameters) require open and short circuits 

to obtain the coefficients. But at higher frequencies, it is difficult to realize an open 

or short circuit, and the accuracy of any measurements is dependent on how well the 
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terminations can be realized. In addition, many active devices oscillate at open and 

short circuit terminations, and any measurements made under these conditions are 

meaningless. 

 

A useful network representation developed to characterize microwave circuits is 

scattering, or S -parameters. The S -parameters can be measured using any 

convenient termination. Perhaps the most important feature is that these parameters 

can be measured at very high frequencies accurately. 

 

 

 

 

 

 

Figure 2.2 General two-port network [32]. 

 

Figure 2.2 shows a two-port network which is driven at port 1 by a Ω1Z  voltage 

source and terminated at port 2 by a Ω2Z  load. 1Z  and 2Z , are known as the 

reference impedances and can be any value, although Ω50  is the most common 

value. The voltage and current definitions are shown in Figure 2.2, and two new 

parameters which are functions of iV , iI  and iZ  can be defined as [32] 

 

i

iii
i

Z
IZV

a
Re2
+

=         (2.1.a) 

 

and 

 

i
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i

Z
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b
Re2

*−
=         (2.1.b) 
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where *
iZ  is the complex conjugate of iZ , and iZRe  is the real part of the reference 

impedance. If ib  is selected as the dependent variable and ia  as the independent 

variable, it can be written for the two-port in Figure 2.2 

 

2221212

2121111

aSaSb
aSaSb

+=
+=

        (2.2) 

 

(2.2) can be expressed in matrix form as [32], 

 

aSb =          (2.3) 

 

for any n-port network. 

 

The coefficients of the S -matrix can be evaluated by setting 02 =a  and 01 =a , then 

solving for 11S , 21S  and 12S , 22S  respectively. Using Figure 2.2, it is seen that the 

output voltage is )( 22ZI− . Then if this is substituted into (2.1.a): 

 

0
Re2Re2 2

2222

2

222
2 =

+−
=

+
=

Z
IZZI

Z
IZVa  

 

Namely ia  is always zero at any port not connected to a source and terminated with 

the reference impedance. Thus, the S -parameters of any network can easily be 

measured by connecting a source to one port at a time. 

 

From transmission line theory, it can be written that [32] 

 

iRiIi VVV +=  

 

and 
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i

iR

i

iI
i Z

V
Z
V

I −=  

 

where the subscripts I  and R  denote the incident and reflected components of 

voltage, respectively. If iZ  is assumed to be real, and substituting into (2.1.a) 
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and into (2.1.b) 

 

i

iR

i

i

iR

i

iI
iiRiI

i

iii
i

Z
V

Z

Z
V

Z
V
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Z
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Re2

*
*

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+

=
−

=  

 

which shows that ia  is a function of the incident voltage and ib  is a function of 

reflected voltages. It is also can be seen that both parameters are the square root of 

power, namely 

 

i

iR
i

i

iI
i Z

V
b

Z
V

a
ReRe

2
2

2
2 == . 

 

Thus, ia  is an incident wave, 2
ia  is incident power, ib  is a reflected wave, and 2

ib  

is reflected power. From (2.2), it is seen that the reflected wave at each port is the 

sum of the incident waves from all ports modified by coefficients of the S -parameter 

matrix. 

 
2

1a  can be written as by using Figure 2.2, 
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and it is found that 2
1a  is the available power from the source. If the reflected power 

is subtracted from the available power from the source, it is obtained that 
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2

Re4Re4

IV
Z

Z
Z

IVIVZ

Z
IZVIZV

Z
IZVIZV

bbaaba iiiiii

=

+
=

−−
−

++
=

−=−

 

 

which is the delivered power to the network. When the source is connected to port 1, 
2

2a  is zero and 2
2b  can be written as 

 

2
22

2

2

2
*
222

2 Re
Re2

IZ
Z
IZV

b =
−

=  

 

which is the delivered power to the load. 

 

S -parameter matrix coefficients ( ijS ) are all ratios of reflected-to-incident waves, 

which is a very convenient representation for microwave circuits. When a generator 

with available power 2
ia  is connected to port i , a  at port i  and b  at all ports can 

be measured. At port i , 
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i
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−
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where inZ  is the input impedance at port i . Thus, 

 

=Γ= iniiS Reflection coefficient at port i  

 

and 

 

== 2

2
2

i

i
ii

a

b
S Reflected power from the input / available power from the source = 

Return loss at port i . 

 

At any port j , where ji ≠ , 

 

== 2

2
2

i

j
ji

a

b
S Delivered power to the load / Available power from the source = 

Transducer power gain. 

 

According to the conservation of energy, the total power incident at all ports of a 

passive network equal the power absorbed by the network, plus power emerging 

from the network. So the power dissipated in the network is the difference between 

incident and reflected power, namely 22
ii ba − . Total dissipated power can be 

written as the sum of the dissipated power at each port [32]: 

 

( ) ∑∑∑
===

−=−=
n

i
ii
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*
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[ ] [ ] bbaaP TT
d

** −=         (2.4.a) 
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where [ ]Ta*  and [ ]Tb*  are obtained by replacing each element of a  and b  with its 

complex conjugate and then by transposing. From (2.3), 

 

[ ] [ ] [ ]TTT aSb

aSb

*** =

=
 

 

which is substituted into (2.4.a): 

 

[ ] [ ] [ ] aSaSaaP TTT
d

*** −=  

 

and then rewritten as 

 

[ ] [ ]{ }aSSIaP TT
d

** −=        (2.4.b) 

 

where I  is the unit matrix. The term within braces in (2.4.b) determines whether the 

dissipated power is positive or negative. This term can be defined as [32] 

 

[ ] SSIQ T*−=         (2.5) 

 

which is known as the dissipation matrix. When Q  is nonnegative, the network is 

passive, or the dissipated power is greater than or equal to zero. 

 

For a passive two-port [32], 

 

12
21

2
11 ≤+ SS         (2.6.a) 

 

and 

 

12
12

2
22 ≤+ SS         (2.6.b) 

 
 
 
 

11



Also if the two-port is lossless, then the dissipated power is zero and (2.5) can be 

written as 

 

[ ] ISS T
=*  

 

or 

 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
10
01

2221

1211
*
22

*
12

*
21

*
11

SS
SS

SS
SS

 

 

which can be expanded as 

 

121
*
2111

*
11 =+ SSSS         (2.7.a) 

022
*
2112

*
11 =+ SSSS         (2.7.b) 

021
*
2211

*
12 =+ SSSS         (2.7.c) 

122
*
2212

*
12 =+ SSSS         (2.7.d) 

 

From (2.7), it can be shown that 
*
2222

*
1111 SSSS =         (2.8.a) 

*
2121

*
1212 SSSS =         (2.8.b) 

 

From these relations it can be concluded that the magnitudes of reflection and 

transmission coefficients are bounded by unity, i.e. 1≤jiS  for ωjp = . 

 

As a result of the discussions above, the fundamental properties of the scattering 

matrix of a lossless two-port can be summarized as [6,33]: 

1. The elements of S -matrix are rational and real for real p . 

2. S -matrix is analytic in 0Re ≥p . 
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3. S -matrix is paraunitary and satisfies pISS T ∀=* . 

4. If S -matrix is symmetric )( 2112 SS = , then the lossless two-port is reciprocal. 

 

One can easily obtain the corresponding impedance and admittance matrices, if the 

scattering matrix satisfies all the conditions summarized above and the realizability 

theory in immittance formalism can be established. It is usually expressed based on 

Darlington’s approach and expressed via the driving point functions of a two-port 

terminated by a resistance at the output. At this point, it is meaningful to give the 

following fundamental properties with respect to the driving point reflectance and 

impedance functions [6,33]: 

 

• The function )(1 pS  is said to be bounded real (BR) if 

1. )(1 pS  is real for p  real, 

2. )(1 pS  is analytic in 0Re >p , 

3. 1)(1 ≤ωjS  for all ω . 

• By using the bounded real reflection function ( )(1 pS ) of a resistively 

terminated two-port defined above, the corresponding driving point input 

impedance is given by 

)(1
)(1

)(
1

1
1 pS

pS
pZ

−
+

=        (2.9) 

This impedance function is a positive real function (PRF.) and satisfies the 

followings, 

1. )(1 pZ  is real for p  real, 

2. 0)(Re 1 >pZ  for 0Re >p . 

 

It can be concluded for the realizability of driving point functions as a resistively 

terminated two-port network that, 

A rational positive real impedance function (or a bounded real reflection function) is 

realizable as a resistively terminated lossless two-port. 
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In dealing with cascade connected networks, usually the scattering transfer matrix is 

used instead of the scattering matrix. After rearranging the port variables ia  and ib  

in the scattering equations (2.2), it is obtained that 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2

2

2221

1211

1

1

b
a

TT
TT

a
b

       (2.10) 

 

which defines the scattering transfer matrix T . The elements of T -matrix are related 

to the elements of S -matrix as follows: 

 

21
22

21

11
12

21

22
21

21
11

1,,,det
S

T
S
S

T
S
S

T
S

ST ==−=−=    

 (2.11) 

 

where ]det[S  denotes the determinant of the S -matrix. From the definitions given 

above, the elements of the scattering transfer matrix for a lossless two-port are 

rational functions, and if the two-port is reciprocal as well, the reciprocity condition 

2112 SS =  leads to [ ] 1det =T . 

 
2.2  Canonic Representation of Scattering Matrix and Scattering Transfer 

       Matrix 

 
Scattering matrix can be represented by using three canonic polynomials. For a 

lossless two-port, the canonic forms of the scattering matrix and the scattering 

transfer matrix in terms of these polynomials are given by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=
gh
hg

f
T

hf
fh

g
S

*

*

*

* 1,1
σ
σ

σ
σ

     (2.12) 

 

where )(* pff −=  means the paraconjugate of a real function. The polynomials 

gf ,  and h  have the following properties [6,33]: 
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• ),(),( pggpff ==  and )( phh =  are real polynomials in the complex 

frequency p . 

• g  is a strictly Hurwitz polynomial. 

• f  is monic, i.e., its leading coefficient is equal to unity. 

• gf ,  and h  polynomials are related by the condition 

*** ffhhgg +=        (2.13) 

• σ  is a constant )1( ±=σ . 

 

If the two-port is reciprocal, then the polynomial f  is either even or odd. In this 

case, 1+=σ  if f  is even, and 1−=σ  if f  is odd. As a result, for a lossless 

reciprocal two-port 

 

1* ±==
f
f

σ          (2.14) 

 

and the relation (2.13) can be modified as 
2

** fhhgg σ+=         (2.15) 

 
2.3  Distributed Networks with Commensurate Lines 

 
At microwave frequencies, since the conventional lumped elements have realization 

problems, distributed networks composed of transmission lines are employed. 

Distributed circuit design with transmission line elements is a well known topic in 

the literature. 

 

In distributed network synthesis, most approaches are based on the use of single 

length of transmission lines which are called unit elements (UE). Originally due to 

Richards [34], most of the design methods for microwave filters and matching 

networks employ finite homogenous transmission lines of commensurable lengths as 

ideal UEs. Here by commensurate, it must be understood that all line lengths in the  
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network are multiples of the UE length. If one uses the following transformation, the 

distributed networks composed of commensurate lengths of transmission lines (UEs) 

could be analyzed or synthesized as lumped element networks [34] 

 

τλ ptanh=          (2.18) 

 

where τ  is the delay of the transmission line, p  is the usual complex frequency 

variable ( ωσ jp += ) and λ  is called as Richards variable ( Ω+Σ= jλ ). Under this 

transformation, the mapping of the λ -plane onto p -plane is periodic. As a result, 

the frequency response of a distributed network consisting of commensurate 

transmission lines is periodic with respect to the original real frequency ω . 

 

It is important to express that the right half plane (RHP) and the left half plane (LHP) 

in the p -domain are directly mapped onto the corresponding ones in λ -domain and 

vice versa. Namely; { 0Re0Re >↔> λp } and { 0Re0Re <↔< λp }. Therefore, 

all the realizability conditions which are based on the RHP criteria are kept the same 

in the λ -domain. 

 

The short circuited transmission lines can be regarded as inductors and the open 

circuited transmission lines as capacitors (if the length of the line is shorter than 

quarter wavelength) in λ  domain under Richards transformation (Figure 2.3). So 

driving point impedance functions of the networks containing short circuited or open 

circuited transmission lines positive real rational functions of λ . Eventually, 

synthesis methods of lumped reactance two-ports can be used for the networks 

composed of such commensurate transmission lines. A cascade connected 

 

transmission line has no lumped counterpart and therefore must be treated separately. 

Therefore, the two-port equivalent of a transmission line in λ -domain is taken as a 

new element called the Unit Element (UE). 
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Figure 2.3 Transmission line elements and their counterparts in Richards domain [6]. 

 

The functions of the networks composed of UEs are obviously the functions of λ . 

Indeed, the input impedance )(λZ  of a UE terminated with an impedance )(' λZ  can 

be given by 

 

0
'

0
'

0 )(
)(

)(
ZZ
ZZ

ZZ
+
+

=
λλ

λλ
λ        (2.19) 

 

which is  a rational function if )(' λZ  is rational. So, the following result can be 

concluded [6,33]: 

 

• The driving point impedance of a distributed network composed of cascaded 

UEs is a positive real rational function of λ . 
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According to the Richards theorem, it can be said that a UE of characteristic 

impedance )1(0 ZZ =  may always be extracted from the positive real impedance 

function )(λZ  leaving a remainder 

 

)()1(
)1()()1()('

λλ
λλλ
ZZ
ZZZZ

−
−

=        (2.20) 

 

which is also a positive real function and the degree of )(' λZ  is not higher than that 

of )(λZ  (Figure 2.4). Moreover, if 0)(
1
=

=λ
λEvZ , then the degree of )(' λZ  is one 

less than that of )(λZ . 

 

A similar statement of the theorem is also available for the input reflection function 

[35]. 

 

 

 

 

 

Figure 2.4 Application of Richards theorem. 

 
2.4  Networks with Mixed, Lumped and Distributed Elements 

 
Especially at microwave and millimeter wave frequencies, use of lumped elements 

alone in the circuit realization presents serious implementation problems, because of 

the difficulties regarding the physical interconnection of components and the 

associated parasitic effects. Therefore, it is inevitable to use distributed structures 

composed of transmission lines between the lumped elements. Since these 

transmission lines are also considered in the design process, the performance of the 

network will be better. So it can be concluded that the cascade of reciprocal two-port 

networks connected by means of equidelay ideal transmission lines constitutes a 

useful model. 
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Designing mixed lumped and distributed element networks has gained a great deal of 

importance for a long time in the literature. But, a complete design theory for the 

mixed element networks still does not exist. Although some classical network 

concepts have been extended to cover some classes of mixed element two-ports, the 

problem of approximation and synthesis of arbitrary mixed element networks could 

not be resolved completely. 

 

In literature, a special interest has been devoted to the mixed element networks 

composed of lumped reactances and ideal uniform lossless transmission. That is, the 

structure of interest consists of cascaded lossless lumped two-ports connected with 

ideal transmission lines (UEs) [6]. 

 

Microwave filters and matching networks composed of this kind of cascaded 

structures have obviously the properties of both lumped and distributed networks and 

offer advantages over those designed with lines or lumped elements alone. One of 

the most important advantages is the harmonic filtering property of the mixed 

structure. Furthermore, the required physical circuit interconnections are provided by 

nonredundant transmission line elements which also contribute to the filtering 

performance of the structure. 

 
2.5  Two-variable Characterization of Cascaded Lumped and Distributed Two-

ports 

 
In many engineering problems, multivariable complex functions can be used to 

describe system functions. A typical example can be given as designing microwave 

lossless two-ports composed of mixed lumped-distributed elements. For example, a 

microwave filter or a matching network may include equal length transmission lines 

as well as lumped elements. In this case, description of the distributed sections can 

be made in terms of Richards variable λ , ( τλ ptanh= ), whereas the lumped 

sections are described in terms of the complex frequency variable p . In 

mathematical terms, description of lossless two-ports constructed with lumped and 
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equal length transmission lines can be made by using complex two-variable 

functions. In fact, since the complex variables p  and λ  are not independent, the 

problem is actually a single variable one. However, if one assumes that p  and λ  are 

independent variables, then the problem can be treated using multivariable functions 

[38]. 

 

A lossless two-port composed of cascade connected simple lumped sections and 

equal length distributed sections can be described in terms of two-variable scattering 

parameters. Let us represent the scattering matrix of the lossless two-port as ),( λpS  

and the scattering transfer matrix as ),( λpT . The canonic form of the matrices 

),( λpS  and ),( λpT  can be expressed in terms of two-variable polynomials 

),( λpf , ),( λpg  and ),( λph  [39]; 
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The canonic polynomials satisfy the following properties; 

• g , h  and f  are real polynomials of the complex variables p  and λ . 

• g  is a scattering Hurwitz polynomial, [39-41], i.e. 

1. 0),( ≠λpg  for { } 0,Re >λp , 

2. ),( λpg  is relatively prime with ),( λ−− pg . 

• f  is monic and σ  is a constant )1( =σ . 

• f , g  and h  are related by 

),(),(),(),(),(),( λλλλλλ −−+−−=−− pfpfphphpgpg   (2.24) 

• If the two-port includes cascaded UEs, then f  is defined as 
2/2 )1)(()()(),( λλλλ npffpfpf −==     (2.25) 

where λn  is the number of UEs. 
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Chapter 3 

Gradient Method Based Mixed Modeling 

 
For many communications engineering applications, circuit models for measured 

data obtained from physical devices or subsystems is inevitable. In practice, class of 

problems, which demand circuit models for the measured data, may be categorized 

as follows. 

 

Problems of Type-I “Characterization”: The characterization or assessment of the 

electrical behavior of physical devices utilized in communication systems such as 

minimum noise figure level, maximum power transfer capability etc. For this 

category, the model for the device or the system is essential [42]. 

 

Problems of Type-II “Design”: The design of an analog/digital communication 

system such as antenna matching networks, microwave amplifiers for mobile or 

wireless communication systems etc. For these problems, depending on the design 

method, linear or non-linear circuit models for active and passive devices or sub-

systems may be required [43]. 

 

Problems of Type-III “Simulation”: Fast simulation of high-speed/high-frequency 

analog/digital communication sub-systems to be manufactured on VLSI chips. In this 

category, commercially available simulation packages such as Spice, Super Compact 

etc., are employed. Depending on the complexity of the integrated circuits, 

simulation time may take several days. Therefore, in these type of problems, it is 

usually preferred to come up with circuit models for interconnects and active and 

passive devices to speed up the numerical computations [44-47]. 
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It will be proper to clearly identify the above categories by examples. 

 

In designing high-speed/high-frequency communication systems, one of the major 

issues is to determine the physical limitations of the commercially available devices 

for power transfer. The passive one-port device is regarded as a dissipative complex 

termination. This termination may be described by measured either immittance or 

reflectance data over the frequencies of interest. Precise theoretical power transfer 

limitations of a physical device may be determined by accessing the Analytic Gain 

Bandwidth Theory [1,11,42]. In this case, circuit models for the passive terminations 

are essential. This is a typical Type-I problem. 

 

The design of a single stage microwave amplifier which employs an active device is 

a typical Type-II problem. In this problem, one has to determine the optimum source 

and the load impedances of the active device to optimize the performance of the 

amplifier. Performance optimization may involve the maximization of the flat 

transducer power gain (TPG) while minimizing the input voltage standing wave ratio 

(VSWR) and the noise figure over the prescribed frequency band. For this purpose, 

the optimum source and the load impedances are computed point by point. 

Eventually, one has to model the resulting source and the load impedances 

accordingly to end-up with the front-end and the back-end matching networks as 

shown in Figure 3.1. Hence, the design of the microwave amplifier for optimum 

terminations is completed. 

 

 

 

 

 

Figure 3.1.a Single stage microwave amplifier. 
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Figure 3.1.b Front-end and back-end matching networks of the amplifier. 

 

Utilizations of circuit model tools are also very important to run fast simulation 

packages such as ADS, HFSS, Touch Stones, Super-Compact, Microwave Office, 

Sonnet etc. Simulation of very large networks, those consisting of a large number of 

nodes is a serious problem in the computer-aided design of integrated circuits. 

Circuits of this size can typically require several days of CPU time on a work-station 

for an elegant simulation. However, in many applications, high accuracy in 

simulation is not required. For problems that require less precision, circuit models 

can be used. So circuit models for interconnects and solid-state devices become 

essential to enhance the capability of the commercially available computer packages 

employed for analysis, design and simulation of Very Large Scale Integrated (VLSI) 

Circuits, a typical Type-III problem. 

 

There are several modeling techniques available in the literature, which utilize only 

one type of elements, lumped or distributed, in the circuit topology [48-51]. 

 

In practice, however, especially in the microwave discrete, hybrid or monolithic 

integrated circuit (MIC) designs; the physical realization of ideal lumped and 

distributed network elements presents serious implementation problems. For a 

complete characterization of MIC layouts, it is therefore essential to model all the 

physical parameters and the possible parasitic effects inherent to the implementation 

process, and to take them into account in the design procedure. This would in turn 

require the treatment of mixed, lumped and distributed elements in the network 

design. 
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In the past, there had been considerable interest in using lumped elements together 

with transmission lines in the design of microwave circuits. It has long been 

recognized that mixed element structures incorporating both lumped and distributed 

circuit elements offer many practical and theoretical advantages over those designed 

with transmission lines or lumped elements alone. An analytic treatment of the 

design problem with mixed, lumped and distributed elements, which has not yet been 

solved analytically, requires the characterization of the mixed element structures 

using transcendental or multivariable functions. 

 

Therefore, in this thesis, the problem will be defined as: 

To model the given reflectance data utilizing two kinds of elements namely, lumped 

and distributed circuit elements which constitutes a lossless two port in resistive 

termination. This two-port is called the Darlington equivalent of the physical device 

[28], Figure 3.2. 

 

 

 

 

Figure 3.2 Darlington equivalent network. 

 

In the next sections, gradient or steepest descent method is summarized. Then, the 

proposed methods to model physical devices using mixed lumped and distributed 

elements are presented. In models, ladder networks connected with unit elements and 

cascade connected separate lumped and distributed network topologies are used. 

 
3.1  Gradient Method (Steepest Descent Method) [52] 

 
For solving systems of nonlinear equations, Newton’s method can be used. Newton’s 

method for approximating the solution p  to the single nonlinear equation 

 

0)( =xf          (3.1) 
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requires an initial approximation 0p  to p  and generates a sequence defined by 

 

)('
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1
1

−

−
− −=

k

k
kk pf

pf
pp ,  for 1≥k .    

 (3.2) 

 

Also Newton’s method can be modified to find the vector solution p  to the vector 

equation 

 

0F(x) =          (3.3) 

 

with an initial approximation vector )0(p , where 

 

)),,,(,),,,,(),,,,((),,,( 2121221121 nnnnn xxxfxxxfxxxfxxx KKKKK =F , 

ni ,,2,1 K= .         (3.4) 

 

The advantage of Newton’s method for solving systems of nonlinear equations is its 

speed of convergence once a sufficiently accurate approximation is known. A 

weakness of the method is that an accurate initial approximation to the solution is 

needed to ensure convergence. The method of steepest descent (or gradient method) 

will generally converge only linearly to the solution, namely any starting value will 

give convergence. The method of gradient determines a local minimum for a 

multivariable function. 

 

Gradient method for finding a local minimum for an arbitrary function 

nixxxfFxxxg nin ,,2,1)),,,,((),,,( 2121 KKK ==  can be described as follows; 

• Evaluate g  at an initial approximation ),,,( )0()0(
2

)0(
1

)0(
nppp K=p . 

• Determine a direction from )0(p  that results in a decrease in the value of g . 

• Move an appropriate amount in this direction and call the new value )1(p . 

• Repeat the steps with )0(p  replaced by )1(p . 
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Before describing how to choose the correct direction and the appropriate distance to 

move in this direction, let’s extend the definition “a differentiable single-variable 

function can have a relative minimum only when the derivative is zero” to 

multivariable functions: 

 

Let us define the gradient of g  at ),,,( 21 nxxx K=x , )(xg∇ , by 
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The gradient for a multivariable function is analogous to the derivative of a single 

variable function in the sense that a differentiable multivariable function can have a 

relative minimum at x  only when the gradient at x  is the zero vector. A standard 

result from the calculus of multivariable functions states that the direction of greatest 

decrease in the value of g  at x  is the direction given by )(xg∇− . 

 

The object is to reduce )(xg  to its minimal value of zero, so given the initial 

approximation )0(p , one chooses 

 

( ))0()0()1( ppp g∇−= α        (3.6) 

 

for some constant 0>α . 

 

The problem now reduces to choosing α  so that ( ))1(pg  will be significantly less 

than ( ))0(pg . To determine an appropriate choice for the value of α , one considers 

the single variable function 

 

( )( ))0()0()( pp ggh ∇−= αα        (3.7) 

 

The value of α  that minimizes h  is the value needed for (3.6). 
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Finding a minimal value for h  directly would require differentiating h  and then 

solving a root-finding problem to determine the critical points of h . This procedure 

is generally too costly. So, if it is possible to get an acceptable solution, it is 

generally selected as a number between 0 and 1 without finding the exact value of h . 

Now let us apply gradient method to obtain mixed lumped and distributed models for 

numerically defined passive devices. 

 
3.2  Mixed Modeling via Gradient Method 

 
Assume )( ωjS  is the given reflection coefficient data and 

))tan(,(
))tan(,())tan(,(11 ωτω

ωτωωτω
jjg
jjhjjS =  is the calculated reflection coefficient of the 

mixed model. It is desired to have ))tan(,()( 11 ωτωω jjSjS =  at the end of the 

modeling process. So let us define the error between given and calculated reflection 

coefficients as 

 

))tan(,()()( 11 ωτωωωε jjSjSj −=       (3.8) 

 

This equation also can be written as 
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Let us now write module square of the error 
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At this step, if gradient method is used to obtain the correct ∑
=

=
sn

k

k
k shsh

0
)(  values, 

where sn  specifies the total number of elements in the two-port and the variable 

βα js +=  refers to either the variable p  which is associated with the lumped 

elements or the variable λ  which is associated with the cascaded connection of 

commensurate transmission lines or UEs, then according to (3.6) 
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where γ  is the step size of the process. 

 

Since the real part of )( βjh  is an even function and the imaginary part is an odd 

function, then, the real and the imaginary parts of )( βjh  are given by 
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where 
2

sn
m =  if sn  is even. 

2
1−

= snm  if sn  is odd, and 
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where 
2

sn
m =  if sn  is even. 

2
1+

= snm  if sn  is odd. 

 

Since )( iRh β  and )( ixh β  are numerically specified by (3.12), one can immediately 

determine the unknown real coefficients of the numerator polynomial )(sh  

employing the even-odd linear interpolation technique described below over the 

selected frequencies. 
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)(sh  polynomial can be written as, 
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Let us substitute βjs =  in (3.13), then 
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where 
2

,,1,0 sn
k K=  if sn  is even, 

2
1

,,1,0
−

= sn
k K  if sn  is odd, 

2
,,2,1 sn

l K=  if sn  

is even, 
2

1
,,2,1

+
= sn

l K  if sn  is odd. 

 

Unknown coefficients of )(sh  polynomial { }
snhhhh ,,,, 210 K  are obtained by solving 

the following linear equation sets over n  selected frequencies, 
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After forming )(sh  polynomial, )(sg  polynomial can be obtained by using 

losslessness equation, )()()()()()()( 2 sfsfshshsgsgsG −+−=−=− . Briefly, 
2)( βjg  describes an even polynomial in the phony variable β  such that 

 

βββββ β
β

∀〉+++= ;0...)( 24
2

2
10

2 n
nGGGGG     (3.16) 

 

Coefficients { }
βnGGGG ,...,, 210  can easily be found by any linear or non linear 

interpolation or curve fitting method as described by [49]. Then, replacing 2β  by 
2s− , one can extract )(sg  from )()()( 2 sgsgsG −=−  by explicit factorization. In 

this step, obviously the roots of )( 2sG −  is computed and then, )(sg  is constructed 

on the Left Half Plane (LHP) roots of )( 2sG −  as a strictly Hurwitz polynomial. 

 

At this point, polynomial pairs )(),( pgph  and )(),( λλ gh  are obtained, which are 

describing the lumped section of the mixed model and the distributed part of the 

mixed model, respectively. After synthesizing these polynomial pairs, lumped and 

distributed element values are reached. According to the desired mixed network 

structure, transfer scattering matrices of the components are multiplied and as a 

result, transfer scattering matrix of the mixed network is obtained. So two-variable 

polynomials of the mixed structure ( ),( λph  and ),( λpg ) are obtained. 

 

The iterative process in (3.11) is stopped when 

))tan(,(
))tan(,()())tan(,()()( 11 ωτω

ωτωωωτωωωε
jjg
jjhjSjjSjSj −=−=  is small enough. 

 

In general, in (3.11) numerical derivatives must be calculated. But in the following 

sections, for two special cases (ladder networks connected with UEs and cascaded 

separate lumped and distributed networks), the derivatives are calculated analytically 

and the results are used in the process. So there is no need to calculate numerical 

derivatives. 
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3.2.1  Mixed Models with Ladder Networks Connected with Unit Elements 

 

In this part, circuit topology for the mixed models is selected as the ladder networks 

connected with unit elements. Consider the generic form of a lossless two-port 

formed with cascade connections of series inductances [L], Unit Elements [UE] and 

shunt capacitors [C] as shown in Figure 3.3. In this figure, distributed elements are 

regarded as equal length (or commensurate) transmission lines with constant delay 

τ . 

 

 

 

Figure 3.3 Low-pass ladder network connected with unit elements. 

 

The scattering matrix describing the mixed element two-port can be expressed in the 

Belevitch canonical form as, 
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where ),( λpf  is a monic real polynomial consist of transmission zeros and it is 

given by 
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are real polynomials in the complex variables p  andλ , ( τλ ptanh= , τ  being the 

fixed delay length of unit elements), with ∑
=

=
pn

j

j
iji pgpg

0

)( and ∑
=

=
pn

j

j
iji phph

0

)( ; pn  

and λn  are being the total number lumped and distributed elements respectively, 

),( λpg  is a Scattering Hurwitz polynomial,σ  is a constant; 1=σ . 

 

Since the two-port under consideration is lossless, scattering matrix of (3.17) must 

satisfy the paraunitary or so called losslessness condition. That is, 

 

IpSpS =+),(),( λλ         (3.19) 

 

In this expression, ⎟⎟
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10
01

I  is the unit matrix and “+”designates the dagger 

operation which takes the transpose and the complex conjugate of a matrix under 

consideration. In terms of the canonic polynomials, paraunitary condition yields that 

 

),(),(),(),(),(),( λλλλλλ −−+−−=−− pfpfphphpgpg    (3.20) 

 

The polynomials ),( λpg  and ),( λph  with partial degrees pn  and λn  can be 

expressed in the matrix form such that 
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Tpg =),( λ  and λΛp h

Tph =),( λ      (3.21a) 

 

where [ ]pnT ppp L21=p , [ ]λλλλ nT L21=λ . 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Λ

λ

λ

λ

nnnn

n

n

g

ppp
ggg

ggg
ggg

L

MOMM

L

L

10

11110

00100

  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Λ

λ

λ

λ

nnnn

n

n

h

ppp
hhh

hhh
hhh

L

MOMM

L

L

10

11110

00100

  (3.21b) 

 

 
 

 
 
 

32



Since the first column represents the lumped part of the mixed network and the first 

row represent the distributed part of the mixed structure, hΛ  and gΛ  in (3.21) can be 

written in the following form with 000 =h  and 100 =g  (assuming a transformerless 

model), 

 

 

 

 

 

or in mathematical terms, 

 

),()(),( 1 λλ phphph RL +=        (3.22a) 

),()(),( 2 λλλ phhph RD +=        (3.22b) 

where ),()(),(1 λλλ phhph CDR +=  and ),()(),(2 λλλ phhph CLR += . 

 

Now let us calculate the derivative in (3.11) for the lumped and distributed parts of 

the mixed network, 
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If these derivatives are substituted in (3.11), the following iterative processes for 

lumped and distributed parts of the mixed network are obtained, respectively, 
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As a result, these expressions can be used as an iterative process to obtain the 

suitable )( ph  and )(λh  polynomials, then by using the losslessness equation (2.13), 

)( pg  and )(λg  polynomials can be reached, after selecting )( pf  and )(λf  

polynomials. Then by synthesizing the polynomials for lumped and distributed parts 

of the mixed model, transfer scattering matrices (T  matrices) for each component 

can be formed. After multiplying these T  matrices in the desired connection order, 

),( λph  and ),( λpg  two-variable polynomials for the mixed model are obtained. 

Namely, input reflection expression 
),(
),(),(11 λ

λλ
pg
phpS =  for the desired mixed model 

that fits the given numerical reflection data is reached. 
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3.2.2  Mixed Models with Cascaded Lumped and Distributed Networks 

 

In this section, a different network topology is presented to model passive one-port 

devices. Referring to Figure 3.4, the model is considered as the cascade connections 

of two lossless two ports namely [L] and [D]. The two port [L] consists of all the 

possible transmission zeros of the device in the form of lumped circuit elements 

therefore it is reciprocal whereas, the two port [D] is considered to reflect the 

physical size of the device (such as an antenna) in the form of tandem connection of 

equal length transmission lines or unit elements (UE). Obviously, [D] is also 

reciprocal. 

 

 

 

 

 

 

Figure 3.4 Cascade connected lumped and distributed networks. 

 

In this case, two variable input reflection coefficient ),(11 λpS  of the device is 

expressed in terms of the scattering parameters of [L] and [D] such that [53] 
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),( λpf  is a real polynomial which includes all the transmission zeros of the device 

under consideration. In a mixed element structure constructed by cascade connection 

of pn  lumped and λn  distributed elements, the polynomial ),( λpf  is given by 

 

∏
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where )( pfi  and )(λif  define the transmission zeros of individual lumped and 

distributed subsections appearing in the cascade structure and 

{ } λnjnijiMaxn pgij
,,1,0,,,1,0;0 KK ==+= ≠ . In general, the transmission zeros 

can be located anywhere in p  and λ  planes. From (3.26), it can immediately 

deduced that the transmission zeros of each subsection in the cascade structure have 

to arise in multiplication form. In other words, it can be assumed that ),( λpf  of the 

entire mixed element structure is in product separable form as 
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If one only considers the transmission zeros on the imaginary axis ωj  and Ωj , then, 

)( pfL  will be a real even or odd polynomial, and )(λDf  in general will have the 

form 
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A practical form of ),( λpf  can be obtained by disregarding the finite imaginary 

axis zeros in )( pfL  and )(λDf  (except those at dc) as follows, 
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where 1k  and 2k  designate the total number of transmissions zeros at dc, if these are 

also excluded, then 
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2/2 )1(),( λλλ npf −=  

 

For example, for wideband antennas, it is practical to assume all the transmission 

zeros located at DC and infinity. Therefore, one can choose the following form for 

)( pfL  

 

k
L ppf =)(  which yields k

L

L

pf
pf )1(
)(
)(

−=
−      (3.27) 

 

It should be noted that once the numerator polynomials ∑
=

=
pn

j

j
jLL phph

0
)(  and 

∑
=

=
λ

λλ
n

j

j
jDD hh

0
)(  are initialized, then the complete scattering parameters of [L] and 

[D] can be determined from the losslessness conditions of 

)()()()()()()( 2 pfpfphphpgpgpG LLLLLLL −+−=−=  and 

 

)()()()()()()( 2 λλλλλλλ −+−=−= DDDDDDD ffhhggG . In this regard, strictly 

Hurwitz denominator polynomials )( pgL  and )(λDg  are constructed on the left half 

plane zeros of )( 2pGL  and )( 2λDG , respectively. Hence, the full scattering 

parameters of [L] and [D] are generated as in (3.25) which in turn yield the analytic 

form of the device reflection coefficient as expressed by (3.24). All the above 

explanation leads us to propose the following numerical approach to build the 

antenna models. 

 

Let ))tan(,()()( 11 ωτωωωε jjSjSj −=  be the error function defined as the 

difference between the analytic form and the given reflection coefficient of the 

device. Obviously, 2)( ωε j  is a function of both Lh  and Dh . In the mean time, the 

scattering coefficients 
)(
)()(11 pg

phpS
L

L
L =  and 

)(
)()1()(22 pg

phpS
L

Lk
L −

−=−  are a function 

 
 
 

 

 

37



of Lh . Similarly, 
)(
)()(11 λ

λλ
D

D
D g

hS =  is a function of Dh . These functional relations can 

be expressed as 

 

),,( 11
*
2211

*2
DLL SSSF== εεε ; )(11 LL hFS = , )(11 DD hFS = , )(*

22 LL hFS =  (3.28) 

 

where (*) represents the complex conjugate of a complex number. 

 

Taking the partial derivatives of 
LLL hhh ∂

∂
+

∂
∂

=
∂
∂ *

*
* εεεεεε and 

DDD hhh ∂
∂

+
∂
∂

=
∂
∂ *

*
* εεεεεε , 

one can end up with 

 

1

2
1 W
gh LL

=
∂
∂ε

 such that 2*
11

*
22

2
11

*2
21

2
*

1 )1(
)(

DL

DL

L
SS
SS

g
W

−
+=

εε    (3.29a) 

 

and 

 

2

2
1 W

gh DD

=
∂
∂ε

 such that 2
1122

2
21*

2 )1( DL

L

SS
SW

−
= ε     (3.29b) 

 

In order to find the best fit between the analytic form and the given reflection 

coefficients of the device, the amplitude square of the error must be minimized at 

each frequency point. In this case, the gradient method may be employed to 

determine the numerator polynomials Lh  and Dh  from the initialized values of 

)(0 ωjhL  and ))tan((0 ωτjhD  as follows. 

 

)(

2

)()1(

)(

2

)()1(

iD
iDiD

iL
iLiL

h
hh

h
hh

∂
∂

−=

∂
∂

−=

+

+

ε
γ

ε
γ

       (3.30a) 
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or 

 

)(2
)(

)()1(

)(1
)(

)()1(

1

1

i
iD

iDiD

i
iL

iLiL

W
g

hh

W
g

hh

γ

γ

−=

−=

+

+

       (3.30b) 

 

In (3.30), the index i  designates the iteration count starting at 0=i . Certainly, 

different variants of gradient method may be employed to minimize the error at each 

frequency. 

 

By using these expressions (3.30), again an iterative process can be defined to obtain 

the suitable )( ph  and )(λh  polynomials, then by using the losslessness equation 

(2.13), )( pg  and )(λg  polynomials can be reached, after selecting )( pf  and )(λf  

polynomials. Then the expressions given in (3.25) can be formed. So after obtaining 

the scattering parameter expression for lumped and distributed parts of the mixed 

model, (3.24) can be used to form the expression for input reflection expression for 

the desired mixed model. 
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Chapter 4 

Numerical Aspects 

 
In Chapter 3, the proposed mixed modeling procedures via gradient or steepest 

descent method are explained. Two different circuit topologies are examined. Here, 

the algorithms, flow charts and numerical aspects for the proposed procedures are 

given. 

 
4.1  Gradient Method Based Mixed Modeling Algorithm for Ladder Networks 

Connected with Unit Elements 

 
Inputs: 

• ωω Nkk ,..,2,1; = : Given sample frequencies. 

• ωN : Total number of sample frequencies. 

• ωωωω NkjXRjS kkk ,..,2,1);()()( =+= : Given reflection coefficient data. 

• λn : Total number of distributed elements in the mixed model. 

• pn : Total number of lumped elements in the mixed model. 

To be able to determine the number of lumped and distributed elements in the 

model, the designer can use the proposed method in [50]. Here, a single variable 

modeling method with optimum number of elements ( n ) is described. This 

optimum number is calculated by using the difference table method. After 

obtaining the necessary number of elements in the single variable model, the 

same number of elements can be used in the mixed model. So the designer can 
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decide the number of lumped or distributed elements in the mixed model, and the 

number of the other type elements can be calculated as pnn −  or λnn − . 

• )(λDf : A monic polynomial constructed on the transmission zeros of 

distributed part. It is noted that for cascaded connection of UEs 
2/2 )1()( λλλ n

Df −=  is selected. 

• )( pfL : A monic polynomial constructed on the transmission zeros of lumped 

part. 

These transmission zeros can be located by observing the graph of 
22

21 )(1)( kk jSjS ωω −= . 

• λnhhhh 0020100 ,...,,,  and 0201000 ,...,,, nphhhh  : Initial values for the first row and the 

first column of hΛ  matrix. 

To generate the initial values of the unknown coefficients, the designer can built 

single variable models, namely lumped and distributed models. Then from the 

lumped model, 0201000 ,...,,, nphhhh  coefficients and from the distributed model, 

λnhhhh 0020100 ,...,,,  coefficients can be initialized. 

• δ : The stopping criteria for the sum of the square errors. For many practical 

problems it is sufficient to choose 310−=δ . 

 

Computational Steps: 

 

Step 1: 0=i  and start the iterations for the gradient method. 

Step 2: By using the initial coefficients λnhhhh 0020100 ,...,,,  and 0201000 ,...,,, nphhhh , 

compute the strictly Hurwitz denominator polynomials )(λDg  and )( pgL  employing 

the losslessness conditions as described in (3.19). 

Step 3: Synthesize lumped and distributed sections of the mixed model and obtain 

component values. 

Step 4: By using the component values, form transfer scattering matrices as 

described below; 
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a) If the component is a unit element with characteristics impedance CZ , then 

)(),( λλ hg  and )(λf  polynomials can be written as 

( ) ( ) ( ) 2/12
22

1
2

1)(1
2

1 λλλλλλ −=
−

=+
+

= f
Z

Zh
Z

Zg
C

C

C

C  

b) If the component is a series inductor with the value L , then )(),( phpg  and )( pf  

polynomials are 

( ) ( ) 1
2

)(1
2

==+= pfpLphpLpg  

c) If the component is a shunt capacitor with the value C , then )(),( phpg  and )( pf  

polynomials are 

( ) ( ) 1
2

)(1
2

=−=+= pfpCphpCpg  

Transfer scattering matrices for the components can be formed by using these 

polynomials and equation (2.12). 

Step 5: According to the desired connection order, multiply the transfer scattering 

matrices of the components and obtain transfer scattering matrix of the mixed model 

as (2.23) and ),(),,( λλ phpg  and ),( λpf  two-variable polynomials. 

Step 6: Compute the error 
))tan(,(
))tan(,()()(
τωω
τωωωωε

kki

kki
kki jjg

jjhjSj −=  over the given 

frequencies. Here τ  is the normalized delay length of the distributed elements and 

can be calculated as eωπτ /)2/(= , which corresponds to a delay length of 090  at the 

frequency max2.1 ωω =e . 

Step 7: Compute the sum of the square errors ∑
=

=
ω

ωεδ
N

k
kii j

1

2 )( . If δδ ≤i , set 

),(
),(),(11 λ

λλ
pg
phpS

i

i=  and stop. Otherwise go to the next step. 

Step 8: Compute the complex quantities over the sample frequencies for the given 

initials, 

))tan(,(
)()()(1 τωω

ωεγωω
kki

ki
kiki jjg

jjhjh −
+=+ , 
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))tan(,(
)())tan(())tan((1 τωω

ωεγτωτω
kki

ki
kiki jjg

jjhjh −
+=+ . 

Step 9: Separate the real and the imaginary parts of 

)()()( )1()1(1 kiXkiRki jhhjh ωωω +++ +=  and 

))(tan())(tan())tan(( )1()1(1 ωτωτωτ +++ += iXiRi jhhjh  

Step 10: Using the real and imaginary parts of the above equations find the 

coefficients of the polynomials ∑
=

+ =
λ

λλ
n

l

l
li hh

0
01 )(  and ∑

=
+ =

pn

l

l
li phph

0
01 )(  by means of 

even-odd linear interpolation routine described in (3.18). 

Step 11: Set 1+= ii  and go to Step 2. 
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Figure 4.1 Flowchart for gradient method based mixed modeling algorithm for ladder 

networks connected with unit elements. 
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4.2  Gradient Method Based Mixed Modeling Algorithm for Cascaded Separate 

Lumped and Distributed Networks 

 
Inputs: 

• ωω Nkk ,..,2,1; = : Given sample frequencies. 

• ωN : Total number of sample frequencies. 

• ωωωω NkjXRjS kkk ,..,2,1);()()( =+= : Given reflection coefficient data. 

• λn : Total number of distributed elements of the prototype [D]. 

• pn : Total number of lumped elements of the prototype [L]. 

pn  and λn  can be calculated as described in section 4.1. 

• )(λDf : A monic polynomial constructed on the transmission zeros of [D]. It 

is noted that for cascaded connection of UEs 2/2 )1()( λλλ n
Df −=  is selected. 

• )( pfL : A monic polynomial constructed on the transmission zeros of [L]. 

These transmission zeros can be located as described in section 4.1. 

• DnDDD hhhh λ,...,,, 210  and npLLLL hhhh ,...,,, 210  : Initial values for the numerator 

polynomials )(λDh  and )( phL  of the input reflection coefficients 

)(
)()(11 λ

λλ
D

D
D g

hS =  and 
)(
)()(11 pg

phpS
L

L
L =  [D] and [L], respectively. 

Initial values for the unknown coefficients DnDDD hhhh λ,...,,, 210  and 

npLLLL hhhh ,...,,, 210  can be generated as described in section 4.1. 

• δ : The stopping criteria for the sum of the square errors. For many practical 

problems it is sufficient to choose 310−=δ . 

 

Computational Steps: 

 

Step 1: Set 0=i  and start the iterations for the gradient method. 

Step 2: By using the initial coefficients DnDDD hhhh λ,...,,, 210  and npLLLL hhhh ,...,,, 210 , 

compute the strictly Hurwitz denominator polynomials )()( λiDg  and )()( pg iL  

employing the losslessness conditions of [D] and [L] as described in (3.19). 
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Step 3: Construct 
)(
)(

)(
)(

)(
)(11 λ

λ
λ

iD

iD
iD g

h
S =  and 

)(
)(

)(
)(

)(
)(11 pg

ph
pS

iL

iL
iL =  of [D] and [L]. 

Step 4: By cascading [L] and [D], generate the input reflectance 11S  of the composite 

structure. 
)()(1

)()(
)(

),(
),(

),(
)(11)(22

)(11
2

)(21
)(11

)(

)(
)(11 λ

λ
λ
λ

λ
iDiL

iDiL
iL

i

i
i SpS

SpS
pS

pg
ph

pS
−

+== . 

Step 5: Compute the error 
))tan(,(
))tan(,()()(
τωω
τωωωωε

kki

kki
kki jjg

jjhjSj −=  over the given 

frequencies. Here τ  is the normalized delay length of the distributed elements and 

can be calculated as eωπτ /)2/(= , which corresponds to a delay length of 090  at the 

frequency max2.1 ωω =e . 

Step 6: Compute the sum of the square errors ∑
=

=
ω

ωεδ
N

k
kii

1

2 )( . If δδ ≤i , set 

),(
),(),(11 λ

λλ
pg
phpS

i

i=  and stop. Otherwise go to the next step. 

Step 7: Compute the complex quantities over the sample frequencies for the given 

initials, 

2*
)(11

*
)(22

2

)(11
*2

)(21
2

)(

*
)(1 )1(

)(

iDiL

iDiL

iL

i
ii SS

SS

g
W

−
+=

εε ; 2
)(11)(22

2
)(21*

)(2 )1( iDiL

iL
ii SS

S
W

−
= ε  and generate the 

complex quantities 
)(1

)(
)()1(

1
i

iL
iLiL W

g
hh +=+

 and )(
)(

)()1(
1

i
iD

iDiD W
g

hh +=+  point by 

point. 

Step 8: Separate the real and the imaginary parts of 

)()()( )1()1(1 kiXkiRki jhhjh ωωω +++ +=  

and ))(tan())(tan())tan(( )1()1(1 ωτωτωτ +++ += iXiRi jhhjh . 

Step 9: Using the real and imaginary parts of the above equations find the 

coefficients of the polynomials ∑
=

+ =
λ

λλ
n

l

l
li hh

0
01 )(  and ∑

=
+ =

pn

l

l
li phph

0
01 )(  by means of 

any linear interpolation routine. 

Step 10: Set 1+= ii  and go to Step 2. 
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Figure 4.2 Flowchart for gradient method based mixed modeling algorithm for 

cascaded lumped and distributed networks. 
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Chapter 5 

Applications 

 
In this chapter, mixed modeling applications are given by using the proposed 

modeling method. First, two different mixed models of a monopole antenna are 

generated, then given lumped element Butterworth and Chebyshev filters are 

transformed to the mixed element counterparts. Finally, an amplifier with mixed 

elements is obtained from the amplifier with lumped elements. 

 
5.1  Antenna Modeling 

 
In this part, by using the proposed mixed modeling method, a short monopole 

antenna is modelled. The topologies used in the mixed models are ladder networks 

connected with unit elements and cascaded separate lumped and distributed 

networks. 

 

5.1.1  Antenna Model with Ladder Networks Connected with Unit Elements 

 

In this example, a model for the data that belongs to a short monopole antenna, 

employed for military communication purpose, is generated. Data for the antenna is 

provided over 20MHz to 100MHz. The reflectance data for the antenna is given in 

Table 5.1 over a normalized frequency band of [0.2 to 1]. 
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Table 5.1 Reflectance data for the monopole antenna. 

Frequency (ω ) Re ( S ) Im ( S ) 

0.20 0.9170 -0.3112 

0.30 0.5545 -0.5446 

0.40 -0.1111 0 

0.45 0.3289 0.4698 

0.50 0.6437 0.3325 

0.55 0.7828 0.2270 

0.60 0.8686 0.1248 

0.65 0.9040 0.0528 

0.70 0.9189 -0.0187 

0.75 0.9233 -0.0831 

0.80 0.9214 -0.1415 

0.90 0.9019 -0.2566 

1.00 0.8288 -0.3767 

 

Naturally, the antenna does not propagate any power at dc. Therefore, ),( λpf  is 

selected as )1(),( 22 λλ −= ppf . From ),( λpf  expression, 2=pn  and 2=λn . 

Namely, the model will contain two lumped and two distributed elements with 

6545.0)2.14/( =⋅⋅= cωπτ  where cω  designates the upper edge or the cut-off 

frequency of pass-band. This delay length corresponds to the half of the quarter 

wavelength at 100 MHz. In this case the unknown real coefficients 

{ }2221201000 ,,,, hhhhh  of the polynomial ),( λph  are chosen as the free parameters of 

the problem and determined in such a way that the antenna data is best fit to 

))tan(,(11 ωτjjwS . Eventually, ),(11 λpS  is generated as 

 

),(
),(),(11 λ

λλ
pg
phpS =  

 

where 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

4699.01678.08854.1
3802.13621.22089.0
03551.05667.0

),( λph  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1049.19182.21342.2
3802.18506.25706.0
03551.05667.0

),( λpg  

 

and it is synthesized as depicted in Figure 5.1 [54]. 

 

 

 

 

 

 

Figure 5.1 Antenna model with ladder networks connected with unit elements 

( 1CZ =1.5082, 2CZ =9.5478, τ =0.6545,C=0.68775, L=5.1566, R=16.156). 

 

Consequently, the fit between the analytic form of the reflection coefficient and 

measured data is given in Figure 5.2. Close examination of Figure 5.2 reveals that the 

obtained mixed model can be used as an acceptable model of the monopole antenna. 

 

 
Figure 5.2 Comparison of the given and calculated reflection coefficients. 
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5.1.2  Antenna Model with Cascaded Separate Lumped and Distributed 

Networks 

 

In this example, the monopole antenna in section (5.1.1) is modelled by using a 

mixed model composed of cascade connected lumped and distributed networks. In 

the lumped circuit [L], only two elements ( 2=pn ) with single transmission zero at 

DC are used. In the distributed part [D] of the model, only two sections of unit 

elements are utilized ( 2=λn ) with 6545.0=τ . This delay length corresponds to the 

half of the quarter wavelength at 100 MHz. 

 

For the lumped and the distributed parts of the mixed model, the following 

polynomials are obtained, 

 

14782.05226.1)( 2 +−= ppphL ,  11085.15226.1)( 2 ++= pppgL  

4782.08847.47453.2)( 2 −+−= λλλDh , 1085.14509.59218.2)( 2 ++= λλλDg  

 

Finally cascading [L] and [D] it was found 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=

4383.55433.05226.1
7453.28847.44782.0

5717.33568.01
),( λph , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

4383.55433.05226.1
9218.24509.51085.1
5717.33568.01

),( λpg  

 

with )1(),( 2λλ −= ppf . 

 

Synthesis of the above reflection coefficient 
),(
),(),(11 λ

λλ
pg
phpS =  results in the 

following antenna model (Figure 5.3). 
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Figure 5.3 Antenna model with cascaded lumped and distributed networks 

(L=1.9193, C=0.7933, ZC1=1.4249, ZC2=5.0892, τ=0.6545, R=0.3972). 

 

As a result, the fit between the analytic form of the reflection coefficient and 

measured data is given in Figure 5.4. It can be seen from Figure 5.4 that the curves of 

the mixed model fit to the curves formed by using the given antenna data. So also 

this mixed model can be considered as an acceptable model of the given monopole 

antenna. 

 

 
Figure 5.4 Fit between model and the measured data for the monopole antenna. 
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5.2  Transformation from a Lumped Element Filter to a Mixed Element Filter 

via Modeling 

 
In this part, mixed element counterparts of a lumped element Butterworth and a 

lumped element Chebyshev filter are obtained by using the proposed mixed element 

modeling method. 

 

5.2.1  Mixed Model of a Lumped Element Butterworth Filter 

 

In this example, a two-lumped-element Butterworth filter is transformed to a mixed 

counterpart. Given lumped filter and its input reflection coefficient calculation are 

given in Figure 5.5 and Table 5.2, respectively. Mixed model contains two-lumped 

and two-distributed elements. Since the lumped filter has a low-pass nature, ),( λpf  

is selected as 

 

)1(1)()(),( 2λλλ −⋅== fpfpf . 

 

In this example, ladder networks connected with unit elements approach will be 

utilized. 

 

 

 

 

Figure 5.5 Two-lumped-element Butterworth filter 

(L=1.4142, C=1.4142, R=1). 
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Table 5.2 Reflectance data for the lumped element Butterworth filter. 

Frequency (ω ) Re { }S  Im { }S  Frequency (ω ) Re { }S  Im { }S  

0 0 0 0.9 -0.0929 0.6225 

0.1 -0.0099 0.0014 1.0 0 0.7071 

0.2 -0.0383 0.0113 1.1 0.1031 0.7639 

0.3 -0.0812 0.0379 1.2 0.2061 0.7951 

0.4 -0.1310 0.0883 1.3 0.3024 0.8057 

0.5 -0.1765 0.1664 1.4 0.3886 0.8015 

0.6 -0.2040 0.2704 1.5 0.4639 0.7873 

0.7 -0.2015 0.3912 1.6 0.5287 0.7669 

0.8 -0.1635 0.5137 1.7 0.5841 0.7429 

 

Eventually, ),(11 λpS  is generated as 

 

),(
),(),(11 λ

λλ
pg
phpS =  

where 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

03189.04600.0
6898.03167.10493.0
6383.01453.00319.0

),( λph  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

03189.04600.0
6898.00063.29452.0
1864.10867.20005.1

),( λpg  

 

and it is synthesized as depicted in Figure 5.6. 

 

 

 

 

 

Figure 5.6 Mixed model of the Butterworth filter 

( 1CZ =1.2800, 2CZ =0.72427,τ =0.3850,L=0.92509,C=0.96316,R=1.066). 
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In Figure 5.7, reflection coefficients of the given lumped Butterworth filter and the 

obtained mixed model are drawn on the same graph. 

 

 
Figure 5.7 Reflection coefficients of the lumped Butterworth filter and the mixed 

model. 

 

In Figure 5.8, transducer power gain curves (TPG) are given for comparison purpose. 

So the mixed element Butterworth filter is obtained from the lumped element one via 

proposed modeling method. 

 
Figure 5.8 Transducer power gain curves for Butterworth filters. 
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5.2.2  Mixed Model of a Lumped Element Chebyshev Filter 

 

In this example, a three-lumped-element Chebyshev filter ( π  type network) is 

transformed to a mixed element counterpart. Given lumped filter and its input 

reflection coefficient calculation are given in Figure 5.9 and Table 5.3, respectively. 

 

 

 

 

 

Figure 5.9 Three-lumped-element Chebyshev filter 
(L1=1.0967, C1=1.5963, C2=1.5963, R=1). 

 

Table 5.3 Reflectance data for the lumped element Chebyshev filter. 

Frequency (ω ) Re { }S  Im { }S  

0.1 -0.0218 -0.1005 

0.2 -0.0797 -0.1775 

0.3 -0.1556 -0.2165 

0.4 -0.2285 -0.2141 

0.5 -0.2795 -0.1751 

0.6 -0.2909 -0.1092 

0.7 -0.2441 -0.0340 

0.8 -0.1212 0.0146 

0.9 0.0684 -0.0314 

1.0 0.2327 -0.2337 

1.1 0.2354 -0.5272 

1.2 0.0787 -0.7525 

1.3 -0.1229 -0.8541 

 

In the mixed model, ladder networks connected with Unit Elements structure is used. 

Since the lumped filter has a low-pass nature, ),( λpf  is selected as 
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22 1)1(1)()(),( λλλλ −=−⋅== fpfpf . 

 

Eventually, ),(11 λpS  is generated as 
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and it is synthesized as depicted in Figure 5.10. 

 

 

 

 

 

 

 

Figure 5.10 Mixed model of the Chebyshev filter 

(L1=0.70268, C1=1.1419, ZC1=0.84203, ZC2=0.29913, 5035.0=τ , R=1). 

 

In Figure 5.11 and in Figure 5.12, input reflection coefficient and transducer power 

gain performances for the given lumped filter and for the obtained mixed model are 

given, respectively. It can be seen form Figure 5.12 that TPG curve of the mixed 

element filter fits to the TPG curve of the lumped element filter. As a result, by using 

the proposed method, a lumped element Chebyshev filter is transformed to the mixed 

element type. 
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Figure 5.11 Reflection coefficients of the Chebyshev filter and the mixed model. 

 

 
Figure 5.12 Transducer power gain curves for Chebyshev filters. 

 
5.3  A Single Stage Microwave Amplifier Design via Modeling 

 
In [6], a single stage microwave amplifier with HFET2001 is designed. In the 

matching networks, lumped elements have been used. Here these lumped matching 

networks are replaced by mixed element counterparts. The new mixed element 

matching networks are obtained via modeling by using ladder networks connected 
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with unit elements. In Table 5.4, scattering parameters of HFET2001 and in Figure 

5.13, microwave amplifier designed in [6] are given. 

 

Table 5.4 Scattering parameters of HFET2001. 

Frequency(GHz) 
11S  12S  21S  22S  

6 0.3719-0.7976i 0.0250+0.0433i -1.1472+1.6383i 0.6583-0.2660i 

7 0.2213-0.8259i 0.0304+0.0459i -0.8649+1.6974i 0.6247-0.3047i 

8 0.0723-0.8268i 0.0361+0.0479i -0.5893+1.7114i 0.5889-0.3400i 

9 -0.0424-0.8089i 0.0369+0.0473i -0.3586+1.6873i 0.5587-0.3698i 

10 -0.1507-0.7755i 0.0378+0.0466i -0.1429+1.6338i 0.5271-0.3972i 

11 -0.2266-0.7411i 0.0374+0.0470i 0.0136+1.5599i 0.5056-0.4242i 

12 -0.2970-0.6996i 0.0369+0.0473i 0.1547+1.4719i 0.4827-0.4501i 

13 -0.3669-0.6484i 0.0361+0.0479i 0.2861+1.4062i 0.4556-0.4636i 

14 -0.4291-0.5906i 0.0353+0.0485i 0.4064+1.3293i 0.4282-0.4756i 

15 -0.4956-0.5223i 0.0377+0.0529i 0.5294+1.2473i 0.3971-0.5083i 

16 -0.5518-0.4468i 0.0402+0.0573i 0.6399+1.1545i 0.3523-0.5223i 

 

 

 

Figure 5.13 Single stage microwave amplifier with lumped elements 

(L1=0.98, L2=3.23, L3=1.93, C1=1.27, C2=0.06, C3=1.04, C4=0.57). 

 

Eventually, ),(11 λpS F  and ),(11 λpS B  for front-end and back-end matching networks 

respectively are generated as 

 

),(
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and it is synthesized as depicted in Figure 5.14. 

 

 

 

 

 

Figure 5.14 Mixed element front-end matching network 

(L1=0.6088, C1=0.7766, ZC1=1.1062, ZC2=0.7806, τ=0.0065, R=1.0092). 
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and it is synthesized as depicted in Figure 5.15. 

 

 

 

 

 

Figure 5.15 Mixed element back-end matching network 

(L1=1.2333, C1=0.9540, ZC1=2.8900, ZC2=2.2740, τ=0.0065, R=0.7618). 
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After connecting front-end matching network, active element (HFET2001) and back-

end matching network, single stage microwave amplifier is formed, which can be 

seen in Figure 5.16. 

 

 

 

 

 

Figure 5.16 Single stage microwave amplifier with mixed elements 

(L1=0.6088, L2=1.2333, C1=0.7766, C2=0.9540, ZC1=1.1062, ZC2=0.7806, 

ZC3=2.8900, ZC4=2.2740, τ=0.0065, RS=1.0092, RL=0.7618). 

 

To be able to compare transducer power gain curves for lumped and mixed element 

designs, the graphs are given in Figure 5.17. 

 
Figure 5.17 Transducer power gain curves for lumped and mixed element amplifiers. 

 

As a result, it can be concluded from Figure 5.17 that almost the same TPG 

performance is obtained from the mixed element design. So the given lumped 

element amplifier is successfully transformed to a mixed element amplifier via the 

proposed modeling method. 
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Chapter 6 

Design and Implementation Issues 

 
In this chapter, first planar transmission lines are summarized. Then, practical issues 

are covered for the lumped and mixed element circuits examined in Chapter 5. In the 

implementation process of lumped element circuits, small transmission lines between 

the lumped elements connecting them degrade the performance of the network. So in 

this chapter, transducer power gain curves for lumped element circuits are drawn by 

inserting these lines between lumped elements. But in the mixed element circuits, 

there is no need to insert such connection lines, since they are already inserted in the 

design or modeling process. In this chapter, transducer power gain performances of 

the ideal/practical lumped and mixed element circuits are compared. 

 
6.1  Characteristics of Planar Transmission Lines 

 
Transmission lines are used to carry information or energy from one point to the 

other in microwave circuits. Also they are used as circuit elements for passive 

circuits such as filters, impedance transformers, couplers, etc.. Passive elements in 

conventional microwave circuits can be considered as distributed. Since the size of 

discrete lumped elements (resistors, inductors and capacitors) used in circuits at 

lower frequencies become comparable to the wavelength at microwave frequencies. 

But,if the size of lumped elements are much smaller than the wavelength, they can be 

used at microwave frequencies. 

 

To be able to use a transmission structure as a circuit element in MICs, the structure 

should be planar. By planar,it is meant that the characteristics of the element can be 
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determined from the dimensions in a single plane. Different forms of planar 

transmission lines have been developed for use in MICs. For example, the strip line, 

microstrip line, inverted microstrip line, slot line, coplanar waveguide and coplanar 

strip line are all planar transmission lines. The circuits constructed by using 

transmission lines have advantages such that light weight, small size, improved 

performance, reproducibility and low cost as compared to conventional microwave 

circuits. 

 

In hybrid MIC applications, microstrips, slot lines, coplanar waveguides (CPWs) and 

coplanar strips (CPSs) have been used, on the other hand in monolithic MICs, 

microstrip has been used generally, although there is an interest in CPW. A few of 

the parameters of the four types of lines are compared in Table 6.1. It can be seen 

from the table that CPWs and CPSs have some advantageous features of microstrip 

lines and slot lines. Their power-handling capabilities, radiation losses and dispersion 

behaviour lie in between the corresponding values for microstrip and slot lines.  

 

Table 6.1 Comparison of various MIC lines [55]. 

Characteristics Microstrips Slot Lines 
Coplanar 

Waveguides 

Coplanar 

Strips 

Impedance range 20-110 55-300 25-155 45-280 

Power-handling 

capability 
High Low Medium Medium 

Radiation loss Low High Medium Medium 

Dispersion Small Large Medium Medium 

Enclosure 

dimensions 
Small Large Large Large 

 

Microstip line is one of the most popular types of planar lines, since it can be 

fabricated and integrated easily with other passive and active microwave devices. 
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The structure of a microstrip line is shown in Figure 6.1. A conductor of width W  is 

printed on a thin, grounded dielectric substrate of thickness Th  and relative 

permittivity rE . 

 
Figure 6.1 Microstrip line configuration [55]. 

 

To be able to characterize microstrip lines by using numerical methods, extensive 

computations must be involved. But for optimization and computer-aided design 

(CAD) of microstrip circuits, closed-form expressions are necessary. Closed-form 

expressions for characteristic impedance ( CZ ) and and relative permittivity ( rE ) can 

be found in [56-60]. The characteristic impedance and effective dielectric constant 

versus ThW /  is given in Figure 6.2. 

 
Figure 6.2 Characteristic impedance and effective dielectric constant of microstrip 

lines [55]. 

 

The characteristic impedance and effective dielectric constant expressions are given 

in Table 6.2. 

 
 

 

64



Table 6.2 Microstrip line characteristics [55]. 
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6.2  Practical Lumped and Mixed Element Structures 

 
In this section, implementations of the filter and amplifier circuits obtained in 

Chapter 5 by using the proposed mixed modeling method are examined. Also 

performance, namely transducer power gain, comparison of the lumped and mixed 

element implementations is given. 

 

6.2.1  Lumped and Mixed Element Butterworth Filters 

 

In section 5.2.1, after applying the proposed mixed modeling method, mixed element 

counterpart of the given two-lumped-element Butterworth filter is reached. Let us 

now construct practical lumped and mixed element Butterworth filters by using the 

obtained prototype filters. 
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In the lumped element filter, small pieces of lines are added. These lines correspond 

to the connections between the lumped elements. The length of the lines are selected 

as 2/λ , since the input impedance of a transmission line with length of 2/λ  is the 

termination resistance R . There is no affect of the transmission line at the 

corresponding frequency to the input impedance, namely to the input reflectance. As 

one moves away from this frequency at both sides, the affect of the line will increase. 

So to be able to reduce the affect, this frequency must be selected as the midband 

frequency of the application. 

 

In this example, suppose that mm12/ =λ  is the desired line lengths. So the 

corresponding frequency is GHz150 . If this frequency is placed in the passband, the 

cut-off frequency of the filter can be selected as .200GHz  

 

After frequency and impedance denormalization ( GHzfn 200= , Ω= 50nR ), ideal 

lumped element Butterworth filter shown in Figure 6.3 is obtained. 

 
Figure 6.3 Ideal lumped element Butterworth filter ( GHzfn 200= , Ω= 50nR ) 

(L=0.05627nH, C=0.02251pF, RS=50Ω, RL=50Ω). 

 

Transducer power gain for the filter shown in Figure 6.3 is given in Figure 6.4. 
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Figure 6.4 Transducer power gain for ideal lumped element Butterwoth filter 

( GHzfn 200= , Ω= 50nR ). 

 

In Figure 6.5, practical lumped element Butterworth filter is shown. In the circuit, air 

is selected as the dielectric material, so 1=rE  is used. The height of the material and 

the thickness of the metal conductor is selected as mTh µ1000=  and mt µ1= , 

respectively. The width of the line is calculated by using AWR-TX Line program to 

obtain a Ω50  input impedance, since the normalization frequency nR  is Ω50  [61]. 

 
Figure 6.5 Practical lumped element Butterworth filter 

( GHzfn 200= , Ω= 50nR , 1=rE ) 

(L=0.05627nH, C=0.02251pF, TL1=TL2= mx µ10007954 , 1=rE , mTh µ1000= , 

mt µ1= , RS=50Ω, RL=50Ω). 
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In Figure 6.6, transducer power gain curve for practical lumped element Butterworth 

filter can be seen. 

 
Figure 6.6 Transducer power gain for practical lumped element Butterwoth filter 

( GHzfn 200= , Ω= 50nR , 1=rE ). 

 

To be able to reduce the line lengths, a dielectric material (GaAs) with 9.12=rE  is 

used. The height of the material and the thickness of the metal conductor is selected 

as mTh µ10=  and mt µ1= , respectively. The width of the line is calculated by 

using AWR-TX Line program to obtain a Ω50  input impedance, since the 

normalization frequency nR  is Ω50  [61]. 

 
Figure 6.7 Practical lumped element Butterworth filter 

( GHzfn 200= , Ω= 50nR , 9.12=rE ) 

(L=0.05627nH, C=0.02251pF, TL1=TL2= mx µ9.35054.6 , 9.12=rE , mTh µ10= , 

mt µ1= , RS=50Ω, RL=50Ω). 
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In Figure 6.8, transducer power gain curve for practical lumped element Butterworth 

filter can be seen. 

 
Figure 6.8 Transducer power gain for practical lumped element Butterwoth filter 

( GHzfn 200= , Ω= 50nR , 9.12=rE ). 

 

Let us now denormalize the obtained mixed element counterpart of the lumped 

element Butterworth filter. Again GHzfn 200=  and Ω= 50nR  are used as the 

denormalization frequency and resistance, respectively. In Figure 6.9, ideal mixed 

element Butterworth filter is shown. 

 
Figure 6.9 Ideal mixed element Butterworth filter ( GHzfn 200= , Ω= 50nR ) 

(L=0.03681nH, C=0.01533pF, TL1=64Ω, TL2=36.21Ω, RS=50Ω, RL=53.3Ω). 

 

Transducer power gain curve for the filter shown in Figure 6.9 is given in Figure 

6.10. 
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Figure 6.10 Transducer power gain for ideal mixed element Butterwoth filter 

( GHzfn 200= , Ω= 50nR ). 

 

Practical mixed element Butterworth filter is obtained as seen in Figure 6.11, after 

calculating the widths and the lengths of the transmission lines seen in Figure 6.9 via 

AWR-TX Line program [61]. 

 
Figure 6.11 Practical mixed element Butterworth filter 

( GHzfn 200= , Ω= 50nR , 1=rE ) 

(L=0.03681nH, C=0.01533pF, TL1= mx µ848.918.3429 , TL2= mx µ848.918.7570 , 

1=rE , mTh µ1000= , mt µ1= , RS=50Ω, RL=53.3Ω). 

 

In Figure 6.12, transducer power gain curve for practical mixed element Butterworth 

filter can be seen. 

 
 

 
 
 

70



 
Figure 6.12 Transducer power gain for practical mixed element Butterwoth filter 

( GHzfn 200= , Ω= 50nR , 1=rE ). 

 

Again to be able to reduce the line lengths, a dielectric material (GaAs) with 

9.12=rE  is used. The height of the material and the thickness of the metal 

conductor is selected as mTh µ10=  and mt µ1= , respectively. The width of the line 

is calculated by using AWR-TX Line program to obtain a Ω50  input impedance, 

since the normalization frequency nR  is Ω50  [61]. 

 
Figure 6.13 Practical mixed element Butterworth filter 

( GHzfn 200= , Ω= 50nR , 9.12=rE ) 

(L=0.03681nH, C=0.01533pF, TL1= mx µ89.3218.3 , TL2= mx µ28.3004.14 , 

9.12=rE , mTh µ10= , mt µ1= , RS=50Ω, RL=53.3Ω). 

 

In Figure 6.14, transducer power gain curve for practical mixed element Butterworth 

filter can be seen. 
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Figure 6.14 Transducer power gain for practical mixed element Butterwoth filter 

( GHzfn 200= , Ω= 50nR , 9.12=rE ). 

 

TPG curves for ideal/practical lumped and mixed element Butterworth filters are 

given in Figure 6.15 with 1=rE  and Figure 6.16 with 9.12=rE  to be able to 

compare with each other. It can be seen from the figures that practical mixed element 

filter responses are very close to the ideal curves, on the other hand practical lumped 

element filter curves are very different from the ideal ones. Also the circuit size of 

the mixed element filters is much smaller than the size of the lumped element filters. 

Transmission line lengths in the mixed element filter is about mµ90 in Figure 6.11 

and mµ30  in Figure 6.13, but in the lumped element filter, they are mµ1000  in 

Figure 6.5 and mµ350  in Figure 6.7. 

 
Figure 6.15 Transducer power gain curves for ideal and practical Butterworth filters 

( GHzfn 200= , Ω= 50nR , 1=rE ). 

 

 

 

 

 

72



 
Figure 6.16 Transducer power gain curves for ideal and practical Butterworth filters 

( GHzfn 200= , Ω= 50nR , 9.12=rE ). 

 

In the previous part, transmission line lengths between the lumped elements were 

desired to be mm12/ =λ , so the corresponding frequency was GHz150 . This is very 

high. If the frequency is reduced to GHz15  and the cut-uff frequency to GHz20 , 

what are the performances of the lumped and mixed element filters? 

 

In Figure 6.17, obtained ideal lumped element Butterworth filter can be seen in the 

case of GHzfn 20= , Ω= 50nR . 

 
Figure 6.17 Ideal lumped element Butterworth filter ( GHzfn 20= , Ω= 50nR ) 

(L=0.5627nH, C=0.2251pF, RS=50Ω, RL=50Ω). 

 

Transducer power gain curve for the filter shown in Figure 6.17 is given in Figure 

6.18. 
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Figure 6.18 Transducer power gain for ideal lumped element Butterwoth filter 

( GHzfn 20= , Ω= 50nR ). 

 

For this case, mm102/ =λ  length transmission lines must be used between the 

lumped elements. In the circuit, air is selected as the dielectric material, so 1=rE  is 

used. The height of the material and the thickness of the metal conductor is selected 

as mTh µ1000=  and mt µ1= , respectively. The width of the line is calculated by 

using AWR-TX Line program to obtain a Ω50  input impedance, since the 

normalization frequency nR  is Ω50  [61]. The obtained practical lumped element 

Butterworth filter is shown in Figure 6.19. 

 
Figure 6.19 Practical lumped element Butterworth filter 

( GHzfn 20= , Ω= 50nR , 1=rE ) 

(L=0.5627nH, C=0.2251pF, TL1=TL2= mx µ100002926 , 1=rE , mTh µ1000= , 

mt µ1= , RS=50Ω, RL=50Ω). 

 

For practical lumped element Butterworth filter, transducer power gain curve can be 

seen in Figure 6.20. 
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Figure 6.20 Transducer power gain for practical lumped element Butterwoth filter 

( GHzfn 20= , Ω= 50nR , 1=rE ). 

 

To be able to reduce the line lengths, again a dielectric material (GaAs) with 

9.12=rE  is used. The height of the material and the thickness of the metal 

conductor is selected as mTh µ10=  and mt µ1= , respectively. The width of the line 

is calculated by using AWR-TX Line program to obtain a Ω50  input impedance, 

since the normalization frequency nR  is Ω50  [61]. The obtained practical lumped 

element Butterworth filter is shown in Figure 6.21. 

 
Figure 6.21 Practical lumped element Butterworth filter 

( GHzfn 20= , Ω= 50nR , 9.12=rE ) 

(L=0.5627nH, C=0.2251pF, TL1=TL2= mx µ3548357.6 , 9.12=rE , mTh µ10= , 

mt µ1= , RS=50Ω, RL=50Ω). 

 

For practical lumped element Butterworth filter, transducer power gain curve can be 

seen in Figure 6.22. 
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Figure 6.22 Transducer power gain for practical lumped element Butterwoth filter 

( GHzfn 20= , Ω= 50nR , 9.12=rE ). 

 

Again let us now denormalize the obtained mixed element counterpart of the lumped 

element Butterworth filter. GHzfn 20=  and Ω= 50nR  are used as the 

denormalization frequency and resistance, respectively. In Figure 6.23, ideal mixed 

element Butterworth filter is shown. 

 
Figure 6.23 Ideal mixed element Butterworth filter ( GHzfn 20= , Ω= 50nR ) 

(L=0.3681nH, C=0.1533pF, TL1=64Ω, TL2=36.21Ω, RS=50Ω, RL=53.3Ω). 

 

In Figure 6.24, transducer power gain curve for the ideal mixed element Butterworth 

filter can be seen. 
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Figure 6.24 Transducer power gain for ideal mixed element Butterwoth filter 

( GHzfn 20= , Ω= 50nR ). 

 

Practical mixed element Butterworth filter is obtained as seen in Figure 6.25, after 

calculating the widths and the lengths of the transmission lines seen in Figure 6.23 

via AWR-TX Line program [61]. 

 
Figure 6.25 Practical mixed element Butterworth filter 

( GHzfn 20= , Ω= 50nR , 1=rE ) 

(L=0.3681nH, C=0.1533pF, TL1= mx µ48.9188.3429 , TL2= mx µ48.9188.7570 , 

1=rE , mTh µ1000= , mt µ1= , RS=50Ω, RL=53.3Ω). 

 

For practical mixed element Butterworth filter, transducer power gain curve is given 

in Figure 6.26. 
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Figure 6.26 Transducer power gain for practical mixed element Butterwoth filter 

( GHzfn 20= , Ω= 50nR , 1=rE ). 

 

To be able to reduce the line lengths, again a dielectric material (GaAs) with 

9.12=rE  is used. The height of the material and the thickness of the metal 

conductor is selected as mTh µ10=  and mt µ1= , respectively. The width of the line 

is calculated by using AWR-TX Line program to obtain a Ω50  input impedance, 

since the normalization frequency nR  is Ω50  [61]. The obtained practical lumped 

element Butterworth filter is shown in Figure 6.27. 

 
Figure 6.27 Practical mixed element Butterworth filter 

( GHzfn 20= , Ω= 50nR , 9.12=rE ) 

(L=0.3681nH, C=0.1533pF, TL1= mx µ2.336938.2 , TL2= mx µ4.31317.13 , 

9.12=rE , mTh µ10= , mt µ1= , RS=50Ω, RL=53.3Ω). 
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For practical mixed element Butterworth filter, transducer power gain curve is given 

in Figure 6.28. 

 
Figure 6.28 Transducer power gain for practical mixed element Butterwoth filter 

( GHzfn 20= , Ω= 50nR , 9.12=rE ). 

 

TPG curves for ideal/practical lumped and mixed element Butterworth filters are 

given in Figure 6.29 with 1=rE  and in Figure 6.30 with 9.12=rE  for comparison. 

For this case, it can be seen from the figure that practical mixed element filter 

response again is very close to the ideal curves, on the other hand practical lumped 

element filter curve is very different from the ideal ones. Also the circuit size of the 

mixed element filter is much smaller than the size of the lumped element filter. 

Transmission line lengths in the mixed element filter is about mµ918 in Figure 6.25 

and mµ320  in Figure 6.27, but in the lumped element filter, they are mµ10000  in 

Figure 6.19 and mµ3550  in Figure 6.21. 
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Figure 6.29 Transducer power gain curves for ideal and practical Butterworth filters 

( GHzfn 20= , Ω= 50nR , 1=rE ). 

 

 
Figure 6.30 Transducer power gain curves for ideal and practical Butterworth filters 

( GHzfn 20= , Ω= 50nR , 9.12=rE ). 

 

6.2.2  Lumped and Mixed Element Chebyshev Filters 

 

In section 5.2.2, after applying the proposed mixed modeling method, mixed element 

counterpart of the given three-lumped-element Chebyshev filter is reached. Let us 

now construct practical lumped and mixed element Chebyshev filters by using the 

obtained prototype filters. 
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In the lumped element filter, again small pieces of lines are added. These lines 

correspond to the connections between the lumped elements. The length of the lines 

are selected as 2/λ . 

 

In this example, again suppose that mm12/ =λ  is the desired line lengths. So the 

corresponding frequency is GHz150 . If this frequency is placed in the passband, the 

cut-off frequency of the filter can be selected as .200GHz  

 

After frequency and impedance denormalization ( GHzfn 200= , Ω= 50nR ), ideal 

lumped element Chebyshev filter shown in Figure 6.31 is obtained. 

 
Figure 6.31 Ideal lumped element Chebyshev filter ( GHzfn 200= , Ω= 50nR ) 

(L=0.04364nH, C1=C2=0.02541pF, RS=50Ω, RL=50Ω). 

 

Transducer power gain for the filter shown in Figure 6.31 is given in Figure 6.32 

 
Figure 6.32 Transducer power gain for ideal lumped element Chebyshev filter 

( GHzfn 200= , Ω= 50nR ). 
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In Figure 6.33, practical lumped element Chebyshev filter is shown. In the circuit, air 

is selected as the dielectric material, so 1=rE  is used. The height of the material and 

the thickness of the metal conductor is selected as mTh µ1000=  and mt µ1= , 

respectively. The width of the line is calculated by using AWR-TX Line program to 

obtain a Ω50  input impedance, since the normalization frequency nR  is Ω50  [61]. 

 
Figure 6.33 Practical lumped element Chebyshev filter 

( GHzfn 200= , Ω= 50nR , 1=rE ) 

(L=0.04364nH, C1=C2=0.02541pF, TL1=TL2= mx µ10007954 , 1=rE , 

mTh µ1000= , mt µ1= , RS=50Ω, RL=50Ω). 

 

In Figure 6.34, transducer power gain curve for practical lumped element Chebyshev 

filter can be seen. 

 
Figure 6.34 Transducer power gain for practical lumped element Chebyshev filter 

( GHzfn 200= , Ω= 50nR , 1=rE ). 
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To be able to reduce the line lengths, a dielectric material (GaAs) with 9.12=rE  is 

used. The height of the material and the thickness of the metal conductor is selected 

as mTh µ10=  and mt µ1= , respectively. The width of the line is calculated by 

using AWR-TX Line program to obtain a Ω50  input impedance, since the 

normalization frequency nR  is Ω50  [61]. 

 
Figure 6.35 Practical lumped element Chebyshev filter 

( GHzfn 200= , Ω= 50nR , 9.12=rE ) 

(L=0.04364nH, C1=C2=0.02541pF, TL1=TL2= mx µ9.35054.6 , 9.12=rE , 

mTh µ10= , mt µ1= , RS=50Ω, RL=50Ω). 

 

In Figure 6.36, transducer power gain curve for practical lumped element Chebyshev 

filter can be seen. 

 
Figure 6.36 Transducer power gain for practical lumped element Chebyshev filter 

( GHzfn 200= , Ω= 50nR , 9.12=rE ). 
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Let us now denormalize the obtained mixed element counterpart of the lumped 

element Chebyshev filter. Again GHzfn 200=  and Ω= 50nR  are used as the 

denormalization frequency and resistance, respectively. In Figure 6.37, ideal mixed 

element Chebyshev filter is shown. 

 
Figure 6.37 Ideal mixed element Chebyshev filter ( GHzfn 200= , Ω= 50nR ) 

(L=0.02796nH, C=0.01817pF, TL1=42.1Ω, TL2=14.96Ω, RS=50Ω, RL=50Ω). 

 

Transducer power gain curve for the filter shown in Figure 6.37 is given in Figure 

6.38. 

 
Figure 6.38 Transducer power gain for ideal mixed element Chebyshev filter 

( GHzfn 200= , Ω= 50nR ). 

 

Practical mixed element Chebyshev filter is obtained as seen in Figure 6.39, after 

calculating the widths and the lengths of the transmission lines seen in Figure 6.37 

via AWR-TX Line program [61]. 
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Figure 6.39 Practical mixed element Chebyshev filter 

( GHzfn 200= , Ω= 50nR , 1=rE ) 

(L=0.02796nH, C=0.01817pF, TL1= mx µ11.1203.6214 , TL2= mx µ11.12021789 , 

1=rE , mTh µ1000= , mt µ1= , RS=50Ω, RL=50Ω). 

 

In Figure 6.40, transducer power gain curve for practical mixed element Chebyshev 

filter can be seen. 

 
Figure 6.40 Transducer power gain for practical mixed element Chebyshev filter 

( GHzfn 200= , Ω= 50nR , 1=rE ). 

 

Again to be able to reduce the line lengths, a dielectric material (GaAs) with 

9.12=rE  is used. The height of the material and the thickness of the metal 

conductor is selected as mTh µ10=  and mt µ1= , respectively. The width of the line 
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is calculated by using AWR-TX Line program to obtain a Ω50  input impedance, 

since the normalization frequency nR  is Ω50  [61]. 

 
Figure 6.41 Practical mixed element Chebyshev filter 

( GHzfn 200= , Ω= 50nR , 9.12=rE ) 

(L=0.02796nH, C=0.01817pF, TL1= mx µ72.4016.10 , TL2= mx µ35.3685.53 , 

9.12=rE , mTh µ10= , mt µ1= , RS=50Ω, RL=50Ω). 

 

In Figure 6.42, transducer power gain curve for practical mixed element Chebyshev 

filter can be seen. 

 
Figure 6.42 Transducer power gain for practical mixed element Chebyshev filter 

( GHzfn 200= , Ω= 50nR , 9.12=rE ). 

 

TPG curves for ideal/practical lumped and mixed element Chebyshev filters are 

given in Figure 6.43 with 1=rE  and in Figure 6.44 with 9.12=rE . It can be seen 

from the figure that practical mixed element filter response is very close to the ideal 
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curves; on the other hand practical lumped element filter curve is very different from 

the ideal ones. Also the circuit size of the mixed element filter is much smaller than 

the size of the lumped element filter. Transmission line lengths in the mixed element 

filter is about mµ120 in Figure 6.39 and mµ40  in Figure 6.41, but in the lumped 

element filter, they are mµ1000  in Figure 6.33 and mµ350  in Figure 6.35. 

 
Figure 6.43 Transducer power gain curves for ideal and practical Chebyshev filters 

( GHzfn 200= , Ω= 50nR , 1=rE ). 

 

 
Figure 6.44 Transducer power gain curves for ideal and practical Chebyshev filters 

( GHzfn 200= , Ω= 50nR , 9.12=rE ). 

 

In the previous part, transmission line lengths between the lumped elements were 

desired to be mm12/ =λ , so the corresponding frequency was GHz150 . If the 

 
 
 

 
 

 
87



frequency again is reduced to GHz15  and the cut-uff frequency to GHz20 , what are 

the performances of the lumped and mixed element filters? In Figure 6.45, obtained 

ideal lumped element Chebyshev filter can be seen in the case of GHzfn 20= , 

Ω= 50nR . 

 
Figure 6.45 Ideal lumped element Chebyshev filter ( GHzfn 20= , Ω= 50nR ) 

(L=0.4364nH, C=0.2541pF, RS=50Ω, RL=50Ω). 

 

Transducer power gain curve for the filter shown in Figure 6.45 is given in Figure 

6.46. 

 
Figure 6.46 Transducer power gain for ideal lumped element Chebyshev filter 

( GHzfn 20= , Ω= 50nR ). 

 

For this case, mm102/ =λ  length transmission lines must be used between the 

lumped elements. In the circuit, air is selected as the dielectric material, so 1=rE  is 
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used. The height of the material and the thickness of the metal conductor is selected 

as mTh µ1000=  and mt µ1= , respectively. The width of the line is calculated by 

using AWR-TX Line program to obtain a Ω50  input impedance, since the 

normalization frequency nR  is Ω50 . The obtained practical lumped element 

Chebyshev filter is shown in Figure 6.47 [61]. 

 
Figure 6.47 Practical lumped element Chebyshev filter 

( GHzfn 20= , Ω= 50nR , 1=rE ) 

(L=0.4364nH, C=0.2541pF, TL1=TL2= mx µ100002926 , 1=rE , mTh µ1000= , 

mt µ1= , RS=50Ω, RL=50Ω). 

 

For practical lumped element Chebyshev filter, transducer power gain curve can be 

seen in Figure 6.48. 

 
Figure 6.48 Transducer power gain for practical lumped element Chebyshev filter 

( GHzfn 20= , Ω= 50nR , 1=rE ). 
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To be able to reduce the line lengths, a dielectric material (GaAs) with 9.12=rE  is 

used. The height of the material and the thickness of the metal conductor is selected 

as mTh µ10=  and mt µ1= , respectively. The width of the line is calculated by 

using AWR-TX Line program to obtain a Ω50  input impedance, since the 

normalization frequency nR  is Ω50  [61]. 

 
Figure 6.49 Practical lumped element Chebyshev filter 

( GHzfn 20= , Ω= 50nR , 9.12=rE ) 

(L=0.4364nH, C=0.2541pF, TL1=TL2= mx µ3548357.6 , 9.12=rE , mTh µ10= , 

mt µ1= , RS=50Ω, RL=50Ω). 

 

For practical lumped element Chebyshev filter, transducer power gain curve can be 

seen in Figure 6.50. 

 
Figure 6.50 Transducer power gain for practical lumped element Chebyshev filter 

( GHzfn 20= , Ω= 50nR , 9.12=rE ). 
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Again let us now denormalize the obtained mixed element counterpart of the lumped 

element Chebyshev filter. GHzfn 20=  and Ω= 50nR  are used as the 

denormalization frequency and resistance, respectively. In Figure 6.51, ideal mixed 

element Butterworth filter is shown. 

 
Figure 6.51 Ideal mixed element Chebyshev filter ( GHzfn 20= , Ω= 50nR ) 

(L=0.2796nH, C=0.1817pF, TL1=42.1Ω, TL2=14.96Ω, RS=50Ω, RL=50Ω). 

 

In Figure 6.52, transducer power gain curve for the ideal mixed element Chebyshev 

filter can be seen. 

 
Figure 6.52 Transducer power gain for ideal mixed element Chebyshev filter 

( GHzfn 20= , Ω= 50nR ). 

 

Practical mixed element Chebyshev filter is obtained as seen in Figure 6.53, after 

calculating the widths and the lengths of the transmission lines seen in Figure 6.34 

via AWR-TX Line program [61]. 
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Figure 6.53 Practical mixed element Chebyshev filter 

( GHzfn 20= , Ω= 50nR , 1=rE ) 

(L=0.2796nH, C=0.1817pF, TL1= mx µ1.12013.6214 , TL2= mx µ1.120121789 , 

1=rE , mTh µ1000= , mt µ1= , RS=50Ω, RL=50Ω). 

 

For practical mixed element Chebyshev filter, transducer power gain curve is given 

in Figure 6.54. 

 
Figure 6.54 Transducer power gain for practical mixed element Chebyshev filter 

( GHzfn 20= , Ω= 50nR , 1=rE ). 

 

Again to be able to reduce the line lengths, a dielectric material (GaAs) with 

9.12=rE  is used. The height of the material and the thickness of the metal 

conductor is selected as mTh µ10=  and mt µ1= , respectively. The width of the line 
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is calculated by using AWR-TX Line program to obtain a Ω50  input impedance, 

since the normalization frequency nR  is Ω50  [61]. 

 
Figure 6.55 Practical mixed element Chebyshev filter 

( GHzfn 20= , Ω= 50nR , 9.12=rE ) 

(L=0.2796nH, C=0.1817pF, TL1= mx µ4.41764.9 , TL2= mx µ5.37655.51 , 

9.12=rE , mTh µ10= , mt µ1= , RS=50Ω, RL=50Ω). 

 

For practical mixed element Chebyshev filter, transducer power gain curve is given 

in Figure 6.56. 

 
Figure 6.56 Transducer power gain for practical mixed element Chebyshev filter 

( GHzfn 20= , Ω= 50nR , 9.12=rE ). 

 

TPG curves for ideal/practical lumped and mixed element Chebyshev filters are 

given in Figure 6.57 with 1=rE  and in Figure 6.58 with 9.12=rE . For this case, it 
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can be seen from the figure that practical mixed element filter response is very close 

to the ideal curves, but practical lumped element filter curve is very different from 

the ideal ones. Also the circuit size of the mixed element filter is much smaller than 

the size of the lumped element filter. Transmission line lengths in the mixed element 

filter is about mµ1200 in Figure 6.53 and mµ400  in Figure 6.55, but in the lumped 

element filter, they are mµ10000  in Figure 6.47 and mµ3550  in Figure 6.49. 

 
Figure 6.57 Transducer power gain curves for ideal and practical Chebyshev filters 

( GHzfn 20= , Ω= 50nR , 1=rE ). 

 

 
Figure 6.58 Transducer power gain curves for ideal and practical Chebyshev filters 

( GHzfn 20= , Ω= 50nR , 9.12=rE ). 
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6.2.3  Lumped and Mixed Element Microwave Amplifiers 

 

In section 5.3, after applying the proposed mixed modeling method, mixed element 

counterpart of the given microwave amplifier is reached. Let us now construct 

practical lumped and mixed element amplifiers by using the obtained prototype 

amplifiers. 

 

In the practical lumped element amplifier, again small pieces of lines are added. 

These lines correspond to the connections of the lumped elements. The length of the 

lines are selected as 2/λ . According to the Table 5.4, the corresponding frequency 

can be calculated as GHzfff UL 7980.9166 =⋅== . 

 

After frequency and impedance denormalization ( GHzfn 1= , Ω= 50nR ), ideal 

lumped element amplifier shown in Figure 6.59 is reached. 

 
Figure 6.59 Ideal lumped element amplifier 

(L1=0.4874nH, L2=1.606nH, L3=0.9599nH, C1=0.0119pF, C2=0.2527pF, 

C3=0.2069pF, C4=0.1134pF, Rs=50Ω, RL=50Ω). 

 

Transducer power gain curve for the ideal lumped element amplifier is given in 

Figure 6.60. 
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Figure 6.60 Transducer power gain for ideal lumped element amplifier. 

 

If mx µ152993744  length transmission lines (calculated via AWR-TX Line program 

[61], the input impedance of this line is Ω50  at GHz7980.9  with 2/λ  length) are 

inserted between the lumped elements, the practical lumped element amplifier circuit 

seen in Figure 6.61 is obtained. In the circuit, air is selected as the dielectric material, 

so 1=rE  is used. The height of the material and the thickness of the metal conductor 

is selected as mTh µ1000=  and mt µ1= , respectively. The width of the line is 

calculated by using AWR-TX Line program to obtain a Ω50  input impedance, since 

the normalization frequency nR  is Ω50  [61]. 

 
Figure 6.61 a) Practical input matching network of lumped element amplifier, Er=1 

(L1=0.4874nH, C1=0.2527pF, C2=0.0119pF, TL1=TL2=TL3= mx µ152993744 , Er=1, 

Th= mµ1000 , t= mµ1 ) 
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Figure 6.61 b) Practical output matching network of lumped element amplifier, Er=1 

(L1=1.606nH, L2=0.9599nH, C1=0.2069pF, C2=0.1134pF, 

TL1=TL2=TL3=TL4= mx µ152993744 , Er=1, Th= mµ1000 , t= mµ1 , RS=50Ω, 

RL=50Ω). 

For practical lumped element amplifier, transducer power gain curve can be seen in 

Figure 6.62. 

 
Figure 6.62 Transducer power gain for practical lumped element amplifier, Er=1. 

 

The length of the lines is very long, 15,299mm. If it reduced to 2mm, the amplifier 

and its transducer power gain curve shown in Figure 6.63 and in Figure 6.64 are 

obtained. 
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Figure 6.63 a) Practical input matching network of lumped element amplifier, Er=1, 

TL=2x2mm, (L1=0.4874nH, C1=0.2527pF, C2=0.0119pF, 

TL1=TL2=TL3=2000x2000µm Er=1, Th= mµ1000 , t= mµ1 ) 

 

 
Figure 6.63 b) Practical output matching network of lumped element amplifier, Er=1 

(L1=1.606nH, L2=0.9599nH, C1=0.2069pF, C2=0.1134pF, 

TL1=TL2=TL3=TL4=2000x2000µm, Er=1, Th= mµ1000 , t= mµ1 , RS=50Ω, RL=50Ω). 
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Figure 6.64 Transducer power gain for practical lumped element amplifier, Er=1, 

TL=2x2mm. 

 

If mx µ11293011.30  length transmission lines (calculated via AWR-TX Line 

program [61], the input impedance of this line is Ω50  at GHz7980.9  with 2/λ  

length) are inserted between the lumped elements, the practical lumped element 

amplifier circuit seen in Figure 6.65 is obtained. In this case, a dielectric material 

(RT/Duroid 5880) with 16.2=rE  is used. The height of the material and the 

thickness of the metal conductor is selected as mTh µ10=  and mt µ1= , 

respectively. The width of the line is calculated by using AWR-TX Line program to 

obtain a Ω50  input impedance, since the normalization frequency nR  is Ω50  [61]. 

 
Figure 6.65 a) Practical input matching network of lumped element 

amplifier,Er=2.16 (L1=0.4874nH, C1=0.2527pF, C2=0.0119pF, 

TL1=TL2=TL3= mx µ1129301.30 , Er=2.16, Th= mµ10 , t= mµ1 ) 
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Figure 6.65 b) Practical output matching network of lumped element 

amplifier,Er=2.16 (L1=1.606nH, L2=0.9599nH, C1=0.2069pF, C2=0.1134pF, 

TL1=TL2=TL3=TL4= mx µ1129301.30 , Er=2.16, Th= mµ10 , t= mµ1 , RS=50Ω, 

RL=50Ω). 

 

For practical lumped element amplifier, transducer power gain curve can be seen in 

Figure 6.66. 

 
Figure 6.66 Transducer power gain for practical lumped element amplifier, Er=2.16. 

 

Again the length of the lines is very long, 11,293mm. If it reduced to 2mm, the 

amplifier and its transducer power gain curve shown in Figure 6.67 and in Figure 

6.68 are obtained. 
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Figure 6.67 a) Practical input matching network of lumped element 

amplifier,Er=2.16, TL=2x2mm (L1=0.4874nH, C1=0.2527pF, C2=0.0119pF, 

TL1=TL2=TL3=2x2mm, Er=2.16, Th= mµ10 , t= mµ1 ) 

 
 

Figure 6.67 b) Practical output matching network of lumped element 

amplifier,Er=2.16, TL=2x2mm (L1=1.606nH, L2=0.9599nH, C1=0.2069pF, 

C2=0.1134pF, TL1=TL2=TL3=TL4=2x2mm, Er=2.16, Th= mµ10 , t= mµ1 , RS=50Ω, 

RL=50Ω). 

 
Figure 6.68 Transducer power gain for practical lumped element amplifier, Er=2.16, 

TL=2x2mm. 

 

 
 
 

101



Let us now denormalize the obtained mixed element counterpart of the lumped 

element amplifier. GHzfn 1=  and Ω= 50nR  are used as the denormalization 

frequency and resistance, respectively. In Figure 6.69, ideal mixed element amplifier 

is shown. 

 
Figure 6.69 Ideal mixed element amplifier 

(L1=0.3028nH, L2=0.6134nH, C1=0.1545pF, C2=0.1898pF, TL1=39.03Ω, 

TL2=55.31Ω, TL3=144.5Ω, TL4=113.7Ω, Rs=50.46Ω, RL=38.09Ω). 

 

Transducer power gain curve for ideal mixed element amplifier is given in Figure 

6.70. 

 
Figure 6.70 Transducer power gain for ideal mixed element amplifier. 

 

Now let us obtain the practical mixed element amplifier circuit. In the circuit, air is 

selected as the dielectric material, so 1=rE  is used. The height of the material and 

the thickness of the metal conductor is selected as mTh µ1000=  and mt µ1= , 
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respectively. The dimensions of the lines are calculated by using AWR-TX Line 

program [61]. As a result, the circuit seen in Figure 6.71 is obtained. 

 
Figure 6.71 Practical mixed element amplifier, Er=1 

(L1=0.3028nH, L2=0.6134nH, C1=0.1545pF, C2=0.1898pF, 

TL1= mx µ8.19517.4256 , TL2= mx µ8.19516870 , TL3= mx µ8.195149.728 , 

TL4= mx µ8.19515.1253 , Er=1, Th= mµ1000 , t= mµ1 , RS=50.46Ω, RL=38.09Ω). 

 

In Figure 6.72, transducer power gain curve for the practical mixed element amplifier 

is given. 

 
Figure 6.72 Transducer power gain for practical mixed element amplifier. Er=1. 

 

Now let us obtain the practical mixed element amplifier circuit. In this circuit, a 

dielectric material (RT/Duroid 5880) with 16.2=rE  is used. The height of the 

material and the thickness of the metal conductor is selected as mTh µ10=  and 

mt µ1= , respectively. The dimensions of the lines are calculated by using AWR-TX 

Line program [61]. As a result, the circuit seen in Figure 6.73 is obtained. 
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Figure 6.73 Practical mixed element amplifier, Er=2.16 

(L1=0.3028nH, L2=0.6134nH, C1=0.1545pF, C2=0.1898pF, TL1= mx µ144858.25 , 

TL2= mx µ142427.43 , TL3= mx µ1532263.2 , TL4= mx µ1507512.5 , Er=2.16, 

Th= mµ10 , t= mµ1 , RS=50.46Ω, RL=38.09Ω). 

 

In Figure 6.74, transducer power gain curve for the practical mixed element amplifier 

is given. 

 
Figure 6.74 Transducer power gain for practical mixed element amplifier, Er=2.16. 

 

TPG curves for ideal/practical lumped and mixed element amplifiers are given in 

Figure 6.75 with Er=1 and in Figure 6.76 with Er=2.16. It can be seen from the 

figure that practical mixed element amplifier response is close to the ideal curves, on 

the other hand practical lumped element amplifier curve is very different from the 

ideal ones. Also the circuit size of the mixed element filter is much smaller than the 
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size of the lumped element filter. Transmission line lengths in the mixed element 

filter is about mµ1950 in Figure 6.71 and mµ1500  in Figure 6.73, but in the lumped 

element filter, they are mµ15300  in Figure 6.61 and mµ11290  in Figure 6.65. 

 
Figure 6.75 Transducer power gain curves for ideal and practical amplifiers, Er=1. 

 

 
Figure 6.76 Transducer power gain curves for ideal and practical amplifiers,Er=2.16. 
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Chapter 7 

Conclusions 

 
There are several modeling techniques available in the literature, which utilize only 

one type of elements, lumped or distributed, in the circuit topology [48-51]. In 

practice however, especially in the microwave discrete or monolithic integrated 

circuit (MIC) design, the physical realization of ideal lumped and distributed 

network elements presents serious implementation problems. For a complete 

characterization of MIC layouts, it is therefore essential to model all the physical 

parameters and the possible parasitic effects inherent to the implementation process 

and to take them into account in the design procedure. This would in turn require the 

treatment of mixed lumped and distributed elements in the network design. 

 

All the modeling methods in the literature use only lumped (or distributed) elements 

in the models. So in this study, the objective is to develop new modeling methods 

which use mixed lumped and distributed elements in the models. Therefore, the gap 

of the literature which covers passive one port models with two kinds of elements 

has been filled with this thesis. 

 

Also it has been shown in the last chapter of the thesis that the performance of the 

mixed element circuits is better than that of the lumped element circuits. Since the 

transmission lines between the lumped elements in the mixed models have been 

considered as circuit elements, they have been optimized to make the performance 

better during the modeling or design process. So at the end of the process, the 

obtained performance curve is very close to the desired one. But since the lines in the 

lumped element circuits degraded the performance, the obtained curve is very 

 

 
 
 
 

106



different from the desired one. Also the size of the mixed element circuits is smaller 

than that of the lumped element circuits. So by using the proposed method, smaller 

circuits and better performances have been obtained. 

 

In most of the existing studies, the particular interest is devoted to a special network 

configuration. But from the technical realization point of view, it is a very useful 

structure, where in addition to the lumped reactances, the lossless two-port is allowed 

to contain ideal uniform lossless transmission lines in cascade mode. Therefore, one 

of the used mixed model topologies in this work is “Ladder Networks Connected 

with Unit Elements” and the second one is “Cascaded Lumped and Distributed 

Networks”. 

 

At the beginning of the proposed mixed modeling algorithm, user must supply 

measured reflection data ( S ) for the device to be modeled and measurement 

frequencies (ω ), then select the transmission zeros locations of the model, namely, 

)( pf  and )(λf  polynomials and the degree (namely number of lumped and 

distributed elements) of the model. Transmission zeros are located by examining 
21 S−  information and the degree is obtained by using the difference table based 

method proposed by Yarman and Kılınç in [50]. 

 

In the proposed modeling algorithm, input reflection function of the two-variable 

model has been utilized. It is necessary and sufficient for this kind of functions to be 

bounded real. In the algorithm, this has been achieved by using a strictly Hurwitz 

)( pg  and )(λg  polynomials for lumped and distributed parts of the mixed model, 

respectively. So it has been guaranteed to obtain a realizable network function at the 

end of the modeling process. 

 

An iterative process has been defined to obtain the best fit between the given 

reflectance data S  and calculated input reflection function ),(11 λpS  at each 

iteration. In this process, gradient (steepest descent) approach has been employed. To 

get a satisfactory result in a short time or to converge quadratically, initial values are 
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very important in gradient approach based algorithms. All gradient based methods 

have the properties that they generally converge only linearly to the solution, namely 

any starting value will give convergence So to make the convergence time shorter, 

suitable initial values must be obtained. 

 

For one-variable (only lumped or only distributed elements) gradient based modeling 

algorithms, suitable initial value generation algorithm has been developed, but for 

two-variable modeling, this is not possible. 

 

In the thesis, lumped element filters have been transformed to mixed element 

counterparts by using the proposed algorithm. In literature, there are not coefficient 

tables to design mixed element filters. So by using the proposed method, it is now 

possible to form such coefficient tables. 

 

In this work, lossless two-variable models have been examined. Future work is to 

obtain lossy models and circuit models for active devices. 

 

In this thesis, only two-variable, two-port circuit models have been obtained. I hope 

the work done in this thesis will be useful to get n -variable and /or m -port circuit 

models and transformation expressions from lumped/distributed networks to mixed 

networks and from mixed networks to lumped/distributed networks in the future. 
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