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Assist. Prof. Cesim ERTEN Kadir Has University

(Thesis Supervisor)

Assoc. Prof. Ercan SOLAK Işık University
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DISTRIBUTED ITERATIVE CLUSTER LOCALIZATION IN WIRELESS

SENSOR NETWORKS

Abstract

We designed a distributed algorithm for iterative cluster localization. Be-

cause this algorithm is especially designed for large scale networks, increase

in the number of sensor nodes has no inefficiency effect on sensor node per-

formances. A node has the information regarding every node within some

vertices which are in range of the node. In the presented techniques every

node only focused on localizing itself, however in our algorithm every node

can localize itself individually or they obtain localization information from

other nodes. And we see that each node likely to localizes itself after it

has localized other nodes in its cluster which obviously shows the contribu-

tion of coordinate sharing. Although our algorithm is mostly dependent on

sharing information, we show the messaging overhead is quite reasonable.

ii



KABLOSUZ ALGILAYICI AĞLARDA DAĞITIK YENİLEMELİ KÜMESEL

YERELLEŞTİRME

Özet

Kablosuz algılayıcı ağları için dağıtık yenilemeli kümesel yerelleştirme al-

goritması geliştirdik. Bu algoritma büyük ağlara uygun bir şekilde dizayn

edildiğinden, ağ içersindeki algılayıcı düğüm sayısının artışı düğümler üze-

rindeki iş yükünü arttırmayacaktır. Her düğüm diğer komşuları ile iletişim

kurarak bulunduğu sınırlı bir ortam içerisindeki diğer düğümlerden hab-

erdar olur ve bunları kendi kümesinde yereleştirebilmek üzere saklar. Şu

ana kadar geliştirilen dağıtık yerelleştirme tekniklerinde düğümler sadece

kendi kordinatlarını bulmak için işlemler yapıyorlardı, bizim sunduğumuz

algoritma da ise düğümler kendi kordinatlarını kendileri hesaplayabilir veya

başka düğümlerden bu bilgiyi elde edebilirler. Yerelleştirme yapan düğüm-

lerin kendilerinden önce kendi kümeleri içerisindeki düğümleri yerelleştirdik-

lerini gördük. Bu da bize kordinat bilgilerini paylaşmanın yerelleştirmeye

ne kadar çok yararlı olduğunu gösterdi. Kordinatların paylaşımı üzerine olan

bir yerelleştirme algoritması olduğundan, bir düğüm yerelleştirme aşamasına

gelmeden önce kendi kümesi içersinde bulunan düğümlerin pozisyon bilgi-

lerini almış durumda olduğunu gösterdik. Mesajlaşma üzerine dayalı olan

bir yerelleştirme tekniği olmasına rağmen, düğümler üzerindeki mesajlaşma

yükünün makul seviyelerde olduğunu gördük.
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Chapter 1

Introduction

Wireless sensor nodes are small electronic devices which basically consist

of four main parts, a microprocessor, a RAM to store data in, a wireless

communication device and a power supply. The cost of a node depends

on its capabilities and its size. Each sensor node can be equipped with a

sensing device to collect analogous information from the environment such

as temperature, pressure, sound, vibration, motion and etc. Wireless sensor

nodes are originally motivated by military applications such as battlefield

surveillance. There are many applications and systems from other areas

such as environment and habitat monitoring, weather forecast and health

applications those require use of many sensor nodes organized as a network

collectively gathering useful data; see [1] for a survey. In many such appli-

cations it is necessary to know the actual locations of the sensors. Sensor

network localization is the problem of assigning geographic coordinates to

each sensor node in given network. Although Global Positioning System

(GPS ) can determine the geographic coordinate of an object, a GPS device

has to have at least four line of sight communication lines between differ-

ent satellites in order to locate itself. Thus in cluttered space or indoor

environments GPS may be ineffective. Disadvantages including the power

consumption, cost and size limitations allow only a small number of nodes

in a large scale network gave GPS. It is important to design methods that

achieve localization with limited use of such systems.

The remainder of the thesis is organized as follows, in Chapter 2 we

give summary on previous work done over localization problem. Chapter

3 describes necessary literature background over localization problem. In

Chapter 4, we introduce our algorithm and analyze computational complex-
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ity and messaging overhead. Chapter 5 gives the experimental results and

in Chapter 6 conclusion and overview of the subject is described.
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Chapter 2

Previous Work

There has been exist a widely studied literature on the study of Wireless

Sensor Network (WSN) localization problem [2, 3, 4, 5, 6, 7, 8, 9]. In

addition to that there have been many surveys conducted about WSN lo-

calization problem, some of which has been provided in [10, 4, 11, 1]. Due to

the aim of having a deep understanding of existing localization techniques,

we have classified them into three categories so that we have discussed the

process of the computational source supply, the types of information needed

for localization and finally, the result produced by these techniques. And

Table 2.1 shows the list of several algorithms with their specific properties.

The headers of columns are Algorithm, Computational Source Supplied, In-

formation Used, Measurement Errors, Output, Require Anchor respectively

to the column ordering in Table 2.1.

Table 2.1: This table shows the information needed by algorithms, the

requirements of the algorithms and the results produced by algorithms.

Alg. CompSrcSup. InfoUsed MeasErr. Output R.A.

[8] Distributed Distance Yes Unique No
[9] Centralized Distance Yes Finite No
[2] Distributed Distance Yes Unique No
[7] Centralized Distance No Unique Yes
[5] Centralized Distance Yes Unique No

Distance and Angle
[3] Distributed Distance and Angle Yes Region Yes
DICL Distributed Distance No Unique Yes

First category on, the process of the computational source supply, can

be divided into two subcategories as centralized algorithms and distributed

algorithms. Centralized algorithms [12, 5, 9, 7] carry out the localization
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on few number of specific central computers. It is possible to split central-

ized algorithms into three phases for a better understanding. First phase

is collecting necessary information into the central computers which may

require too many number of messaging through the network. After first

phase is done, central computers have all information about network and

start localizing the network. The third case is returning the localization

data back to the sensor nodes which has same messaging overhead with the

first phase. Despite of high messaging overhead, another disadvantage is

that centralized approaches are not appropriate for big networks. On the

other hand centralized approaches are able to localize more nodes than the

distributed algorithms might do because they use all the information in the

network. On distributed algorithms [8, 2, 3, 4] computational power is sup-

plied by the sensor nodes. Unlikely to centralized approaches, distributed

algorithms do not require too many messaging since each node knows about

only some closer nodes in a specific range, but localization process may take

some number of iterations for realization to converge. On the other hand,

distributed algorithms are suitable for mobile sensor networks where sensor

nodes are moving randomly while it is probably not possible for centralized

approach.

The types of information needed for localization is the second cate-

gory and this types of information are connectivity, distance, and angle

[10, 13, 14]. Using connectivity information, a sensor node knows about

neighboring nodes but it is not able to gather any further information

such as distance. And localization using connectivity information is not

preferable since it’s resulting lack of solution accuracy. On the other hand,

gathering connectivity information has no additional cost for sensor nodes

hence it requires no additional hardware. Different methods are available

for obtaining distance measurements between two sensor nodes. For in-

stance, most known distance measurement methods are time difference of

arrival (TDoA), time of arrival (ToA), and received signal strength indica-
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tion (RSSI). Since it is impossible to measure exact distance in real world en-

vironment, these errors obliviously effects localization [14]. However, many

assumptions made on simulating real world measurement errors are not con-

sistent with characteristics of real measurement errors [14]. In addition to

distance information, the method for measuring angle between two sensor

nodes is known as angle of arrival, (AoA). Achieving angle information re-

quires more complex hardware than distance information such as array of

microphones or array of antennas [13].

Final categorization is the result produced by existing localization al-

gorithms. A group of algorithms try to assign a single coordinate to each

sensor node in network which is called unique localization [8, 2, 7, 5]. When

it is not possible to localize nodes uniquely, possible positions where sensor

node can be on are assigned to the nodes which is known as finite localiza-

tion [9]. However, even it would be not possible to assign single or finite

number of coordinates to a single node due to lack of information. [6] pro-

posed a region based localization algorithm for assigning bounded regions

to sensor nodes using noisy distance and angle measurements where each

sensor nodes are expected to be somewhere in the associated region.

5



Chapter 3

Preliminaries

The sensor network localization problem can be converted into graph realiza-

tion problem. Graph realization problem is based on reconstructing vertex

positions using given distance information between adjacent vertices. Let

G(V,E) be the graph corresponding to our physical network N. Each vertex

vi ∈ V = (v1, ..., vm, vm+1, ..., vn) corresponds to a specific physical sensor

node i in N. Vertices v1, ..., vm corresponds to the nodes with known posi-

tions, called anchors. The rest of the vertices are the nodes with unknown

positions. There exists an edge (vi, vj) ∈ E if nodes i and j are within

sensing range or both i, j ≤ m. Each edge (vi, vj) where vi, vj ∈ V and

i 6= j is associated with a real number, d(vi, vj). That real number rep-

resents the Euclidean distance between the two nodes i, j. Formally, the

graph realization problem is assigning coordinates to the vertices so that

the Euclidean distance between any two adjacent vertices is equal to the

real number associated with that edge [15, 16].

The graph realization problem has intrinsic connections with the graph

rigidity theory. If we think of a graph in terms of bars and joints, a rigid

graph means ‘not deformable’ or ‘not flexible’ [7]. In graph theory, definition

of rigidity encompasses noncontinuously deformable graph. Formally, the

rigidity of a graph can be characterized by Laman’s condition [17]. A graph

(a) (b) (c)

Figure 3.1: (a) Non-rigid, not enough edges (b) Non-rigid, edges are not

well distributed (c) Rigid
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0
v1

2 3

v5

(a)

v1 v5

v1 v5

(b)

Figure 3.2: (a) v5 can be any where on the circle having a radius of d(v1, v5)

centered on v1 (b) With preserving distances positions of vertices can move

v1

v0

(a)

v1

v2 v3

v6v5v4

(b)

Figure 3.3: (a) Flip ambiguity, v could be on v0 or v1. (b) 3-Connected

G(V,E) with 2n − 3 edges where n is number of vertices in G, is rigid in

R2 if and only if no subgraph G′ of G has more than 2n′ − 3 edges, where

n′ is the number of vertices in G′ [18, 16]. Informally, a graph is rigid if it

has a sufficient number of edges and its edges are ‘well distributed’ among

its subgraphs; see Figure 3.1 for non-rigid and rigid graph examples.

Obviously if the graph is not rigid, infinite number of realizations are

possible through continuous deformations; see Figure 3.2. However, even

when the graph is rigid there may be ambiguities that give rise to more

than one possible realization. There exist two types of ambiguities: flip

ambiguity and flex ambiguity. Flip ambiguity occurs by partial reflection

of a graph; see Figure 3.3a. Avoiding flip ambiguity requires the graph to

be 3-Connected. 3-Connectivity requires a graph not to get disconnected

even after removal of any two vertices; see Figure 3.3b. Even if the graph
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v4

v2
v3

v1

(a)

v4

v2
v3

v1

(b)

v4

v2

v3

v1

(c)

v4

v2 v3

v1

(d)

v4

v2 v3

v1

(e)

Figure 3.4: (a) Original (b) Edge (v1, v4) removed (c) Inner triangle ro-

tated until (d) |v1, v2| equals to d(v1, v4). (e) (v1, v4) reinserted

is rigid it may not remain so after the removal of a single edge which gives

rise to a flex ambiguity. The new graph can be flexed with continuous

deformations arriving at a configuration to insert the removed edge with

the same distance; see Figure 3.4. This type of an ambiguity is eliminated

if the graph is redundantly rigid, i.e. it stays rigid upon removal of any

single edge.

In order to formalize these ambiguities the term globally rigid is intro-

duced [19]. Formally, it has been proven that a graph G(V,E) containing

four or more vertices has unique realization in R2 if and only if it is globally

rigid [16, 20, 21, 22, 19, 11]. A graph is globally rigid if and only if it is

3-connected and redundantly rigid [16, 20]. Although a graph G(V,E) is

globally rigid in R2, it is NP-Hard to find a unique realization of G(V,E).

This problem has been correctly conjectured by [20, 16] and lately proven

by [21, 22]. In spite of the NP-Hardness of the graph realization problem

[11] even when the given graph is globally rigid, checking a graph for global

rigidity has a polynomial time solution [23]. Furthermore it is possible to
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w

y z

(a)

v

u
x

w

y z

x

(b)

Figure 3.5: (a) Trilateration graph, u, v, w corresponds initial K3. (b) x

has three uniquely localized neighbors, so the coordinate of x is the point

three circles intersect.

extract globally rigid components of a graph in polynomial time if the graph

itself is not globally rigid [18].

Although finding a unique realization of a globally rigid graph is NP-

Hard, there exists an exceptional globally rigid graph class called trilater-

ation graphs that is uniquely localizable in polynomial time. A graph is a

trilateration graph if it has a trilateration ordering π = {u1, u2, ..., un} where

u1, u2, u3 forms a K3 and each ui has at least three neighbor uj that come be-

fore ui in π, i.e. j > i. Figure 3.5 shows an example of a trilateration graph.

A possible trilateration ordering for this graph is π = {u, v, w, x, y, z}. Be-

cause a node is uniquely localizable if it has 3 uniquely localized neighbors,

every vertex in a trilateration ordering is localized successively since each

vertex ui ∈ π, i > 3 has three neighboring vertices come from earlier than ui

in ordering which makes ui localizable with these three neighboring infor-

mation. Figure 3.5b shows an example trilateration step for a single node,

x which is trilaterated using u, v, w.

Bilateration graphs are defined similarly. A graph is a bilateration graph

if is has a bilateration ordering π = {u1, u2, ..., un} where u1, u2, u3 forms a

K3 and each ui for i > 3 has at least two neighbors that come before ui in

9



a b

c

y

z

(a)

a b

c

y0

y1

(b)

a b

c

y0

z 0

y1

z 1
z 2

z 3

(c)

Figure 3.6: (a) Bilateration graph, π = {a, b, c, y, z} (b) y has flip ambi-

guity, two possible positions flipped through (b, c). (c) shows the possible

positions of vertices after finite localization by fixing a, b, c.

π. We note that unlike trilateration graphs a bilateration graph may not be

globally rigid therefore uniquely realizable. Instead bilateration graphs are

finitely localizable i.e. fixing u1, u2, u3 (to eliminate global transformations

of the graph) we can find a finite set of possible locations for each ui ∈ π

where i > 3.
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Chapter 4

Distributed Iterative Cluster Localization

Distributed Iterative Cluster Localization (DICL) relies on two low level

primitives: A reliable internode distance measurement and internode com-

munication. There are several techniques for obtaining distance between

two sensor nodes such as TDoA, RSSI, ToA [10, 13, 14]. However DICL

does not make any assumptions on how the distance information is gath-

ered and thus it is not dependent on a specific technology. We assume that

the gathered distance information is error-free. We also assume that the

communication between sensor nodes is done through broadcasting and a

broadcasted data is transmitted by all neighboring nodes of the broadcaster.

We also note that, each sensor node has a unique identification number. Let

ku is the number of neighboring nodes of u, hence ku = |Nu| and where each

v ∈ Nu is adjacent to u. Let kiu = |N i
u| where N i

u contains nodes in ith level

where,

N0
u = {u}

N1
u = Nu

N i
u =

(
ki−1

u⋃
j=1

Nvj

)
\ (N i−1

u ∪N i−2
u ), 2 ≤ i ≤ r, vj ∈ N i−1

u

DICL consists of two main phases: Initial Setup and Iterative Localiza-

tion. During initial setup, each sensor node broadcasts and gathers distance

and coordinate information between its neighbors. Using this information

each node u constructs a cluster centered at u and this cluster is localized

in the next phase Iterative Localization.

The iterative localization phase is iterative by nature. Each cluster cen-

11



ter localizes its cluster based on its current knowledge of the cluster which

consists of the internode distance and known positions. It then shares in-

formation regarding newly found unique positions within its cluster with

its neighbors. Finally it collects analogous information from its neighbors.

This process of cluster localization, sharing and gathering of new informa-

tion is repeated at each iteration. Although our localization method takes

its roots from [9, 8], several important features make it unique. In [8] the

idea of clusters are proposed where each sensor node has its own cluster.

Each cluster needs two-hop information to be constructed which is equiva-

lent to C2
u in our problem. Although [8] collects equal amount of information

to DICL running on C2
u does, it does not maximize utilization of collected

data. In addition, only trilateration parts of each cluster is localized with

[8] which cause less nodes to be localized with [8] than DICL would. Similar

to [9] the localization at the cluster-level uses the concept of bilaterations

and finite localization. One important difference is that although [9] is a

centralized localization algorithm, DICL is distributed. [9] needs whole net-

work for localization, and it only localizes one single bilateration component

in the network. We introduce the concept of incremental finite localization

to achieve the localization at the cluster-level. Rest of this chapter provides

the details of the localization algorithm executed by each node u in N.

Algorithm 1 Executed at each u ∈ V in a distributed fashion. Collects

necessary information from its neighbors and constructs its cluster Cr
u.

1: procedure Initial Setup
2: for i← 0, r do
3: Broadcast PacketN i

u

4: Gather PacketN i
v
, v ∈ Nu

5: Construct Cr
u

6: Localize Cr
u

12
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u

v2

v5

v8

v1

(b)
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u v3
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u
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v1

(e)

u

v4

v3

v2

v5

v6

v7

v9

v8

v10

v1

(f)

Figure 4.1: (a) Nu ∪ u. (b) Nv1 ∪ v1. (c) Nu ∪ Nv1 . (d) Nv2 ∪ v2. (e)

Nu ∪Nv1 ∪Nv2 . (f) Final Cu except dashed edges

4.1 Initial setup

Algorithm 1 describes the initial setup phase for node u. (uxcoord, uycoord)

indicates the global coordinates of node u. Initially the coordinates of a

non-anchor node is (null, null). In order to construct a cluster, Cr
u, there

should be r pair of broadcasting and gathering. Each iteration u broadcasts

a packed PacketN i
u

where,

13
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(c)

Figure 4.2: The italic numbers near vertices indicate number of possible

positions of vertices. (a) is Cu. (b) Localized Cu using v1, v2, v3 as anchors.

(c) Incremental localization on (b) with given anchor v9.

Packetu = [uxcoord, uycoord]

PacketNu = [Packetu, (d(u, v1), ..., d(u, vku))], vi ∈ Nu, 1 ≤ i ≤ ku

PacketN i
u

= [PacketNv1
, ..., PacketNv

ki
u

], 0 ≤ i ≤ r, vj ∈ N i
u, 1 ≤ j ≤ kiu

And after each broadcast, u gathers each PacketN i
v
, v ∈ N i

u, it constructs

the cluster Cr
u; see Figure 4.1. Finally, u starts the second phase of DICL,

iterative localization.

Algorithm 2 Executed by each u ∈ V in a distributed fashion. Localization

procedure in order to localize Cu.

1: procedure Localize Cu
2: loop
3: Au ← Gather each PacketAv , v ∈ Nu

4: if any new anchor exists in Au then
5: IncrementalFiniteLocalization(Au)
6: Au = {v1, ..., v|Au|}
7: Each v ∈ Au is an anchor and have not been broadcasted.
8: Broadcast PacketAu

4.2 Iterative Localization

The goal of localization procedure is localizing as possible as vertices to

share them with neighboring nodes, Algorithm 3 shows the pseudocode for

14



localization procedure. This localization process stops at some iteration

point where there are no new information to handle. More specifically, at

each iteration u finitely localizes Cr
u using recently discovered set of anchors,

Au. And we note that every finitely or uniquely localized node is appended

in a list named L. Since finite localization is an incremental process, each

time Algorithm 2 calls IFL procedure it continues its localization from where

it was left; see Algorithm 3.

Algorithm 3 Finite localization procedure for given set of anchors.

1: procedure IncrementalFiniteLocalization(Anchors[ ])
2: Let L keeps all uniquely or finitely localized vertices.
3: for all a ∈ Anchors do
4: Let v equals to avertex and p equals acoord
5: if |v.positions| = 0 then
6: Append p to v.Positions and v to L
7: else
8: for all pv ∈ v.Positions do
9: if pv 6= p then RecursivelyRemove(pv)

10: π ← FindBilaterationOrdering(L)
11: for all v ∈ π do
12: Ancestors←{Neighbors of v in L}
13: Bilaterate(v, Ancestors[1], Ancestors[2])
14: for i← 3, |Ancestors| do
15: UpdateBilateration(v, Ancestors[i])

Each time IFL runs, given set of nodes are set as anchors; see Algo-

rithm 3. There are two cases, v could be a finitely localized node or an un-

localized node. When v is an unlocalized node, the given coordinate p is set

as vertex’s position. If v is finitely localized, each position vi ∈ v.positions

where vi 6= p is removed, since one of the positions in v.positions has to be

the real coordinate of v, there will be always a position vi = p is left.

After IFL sets all given nodes as anchors, a bilateration ordering π =

{s1, s2, ..., s|π|} is generated where all finitely and uniquely localized nodes in

previous iterations are in π initially. And then, main part of the localization

will start localizing nodes in π successively starting from the first unlocal-

ized node. Since every node v ∈ π has at least two neighbors a, b ∈ L,
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Algorithm 4 Sub procedures for IFL.

1: procedure Bilaterate(vertex v, vertex a, vertex b)
2: Set all positions of a and b as invalid
3: for all pa ∈ a.Positions do
4: for all pb ∈ b.Positions do
5: if Consistent(pa, pb) then
6: (pv1 , pv2)← CircleIntersection(pa, d(a, v), pb, d(b, v))
7: pv1 .Ancestors← pv2 .Ancestors← MergeAncs(pa, pb)
8: Append pv1 and pv2 to v.Positions
9: Set pa and pb as valid

10: Append v to L
11: RecursivelyRemove invalid positions of a and b

1: procedure UpdateBilateration(vertex v, vertex a)
2: Set all positions of a and b as invalid
3: for all pa ∈ a.Positions do
4: for all pv ∈ v.Positions do
5: if Consistent(pa, pb) AND |pv, pa| = d(v, a) then
6: Append pa to pv.Ancestors (pv.Ancestors[a]← pa)
7: Set pa and pb as valid

8: RecursivelyRemove invalid positions of v and a

1: procedure Consistent(position pa, position pb)
2: for all v ∈ V do
3: if pa.Ancestors[v] 6= null AND pb.Ancestors[v] 6= null then
4: if pa.Ancestors[v] 6= pb.Ancestors[v] then
5: return false
6: return true

1: procedure MergeAncs(position pa, position pb)
2: Array Ancestors[ ]
3: for all v ∈ V do
4: Ancestors[v]← pa.Ancestors[v]
5: if Ancestors[v] = null thenAncestors[v]← pb.Ancestors[v]

6: Ancestors[a]← pa and Ancestors[b]← pb
7: return Ancestors

1: procedure RecursivelyRemove(position pa)
2: RecursivelyRemove each pv where pa ∈ pv.Ancestors
3: Delete pa
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v is bilaterated once; see Algorithm 4. Bilateration of v, iterates every

position pair ai bj, ai ∈ a.positions, bj ∈ b.positions and checks against

consistency where two positions ai and bj are not consistent if and only if

sc ∈ ai.ancestors while there exists another position of s, sh ∈ bj.ancestors,

i 6= j, c 6= h; see Algorithm 4. If ai, bj pair is consistent, two circles, one is

centered on ai having a radius of d(a, v) and other is centered on bj with

a radius of d(b, v) are intersected. The intersected points are assigned as

new positions of v which are vx and vx+1 where x + 1 = |v.positions| after

ancestors of vx and vx+1 are generated with merge ancestor procedure; see

Algorithm 4.

After bilateration of v, each position of a and b which marked as invalid

is removed. Remove operation is a recursive procedure and removal of a

position si ∈ s.positions removes each position c where si ∈ c.ancestors

recursively; see Algorithm 4. When a position does not satisfy the distance

to its any of neighbors it is marked as invalid since each position has to have

a connection between any single position of each neighboring node.

After v is bilaterated, it is updated with each remaining neighbor of

v; see Algorithm 4. Update bilateration procedure, takes recently localized

two nodes v and a where v was just bilaterated, and checks whether each

possible position pair of vi ∈ v.positions and aj ∈ a.positions is consistent

and satisfies the geometric distance. If both conditions are satisfied for vi

and aj, aj becomes an ancestor of vi. Update bilaterate procedure removes

all positions of a and v which are marked as invalid.

After IFL is executed, Au is cleared and then filled with nodes where

each v ∈ Au is an anchor and not broadcasted before. And those nodes are

packed and then broadcasted to the neighbors in the form of the PacketAu

where,

PacketAu = [Packetv1 , ..., Packetv|Au|
] where vi ∈ Au, 1 ≤ i ≤ |Au|
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4.3 Analysis of DICL

We analyze the messaging overhead, computational complexity and the

space requirements of DICL. There are two performance measurements for

messaging overhead, number of broadcasts and total amount of broadcasted

information. We define k as mean of the average degree of each sensor node

in N, k = (kv1 + kv2 + ... + kvn)/n. As DICL is described into two phases,

analysis is done with the same way. Before analyzing Algorithm 1 the size

of packets used is defined where Packetu has a size of O(1), size of PacketNu

is O(k) and PacketN i
u

is expected to be O(ki), 1 ≤ i ≤ r. Hence number of

broadcasts in Algorithm 1 is O(kr) and total amount of packets broadcasted

is O(kr). In the Iterative Localization phase each recently discovered anchor

is broadcasted at most once in PacketAu . The number of nodes in a cluster

Cr
u is bounded by O(kr), therefore total size of all packets broadcasted in

the network is O(kr) which is same as the first phase. As a result, the

total messaging size is O(kr) which is relatively linear to big values of n. In

terms of running time and memory requirements, a single execution of IFL

takes O(2k
r
) in the worst case. Since IFL has exponential running time and

memory requirements in cluster level, assuming cluster sizes are constant

each IFL requires constant time. And experimental results also shows us

that non of the r and k value pair reached any exponential running time,

memory requirement nor messaging overhead.
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Chapter 5

Experimental Setup and Results

The implementation was coded in C++ using LEDA library [24]. Because

DICL is a distributed algorithm, a discrete event simulation system has been

designed to test DICL. Experiments are performed on a computer with the

configuration of AMD X2 3800+ of CPU and 3GB of RAM.

5.1 Random Network Generation and Parameters

Preliminaries mentions about the conversion of the network N to a G(V,E)

therefore, generating a random network is equivalent to generating a ran-

dom graph G. Random Graph Generator (RGG) takes some sort of inputs

and generates a random graph G which is then fed to Network simulation

class where all experiments are simulated. The parameters RGG needs

are: number of nodes in network and average degree. Number of nodes in

network (n) corresponds the number of physical sensor nodes in N. Sec-

ond parameter is average degree (k) where expected number of neighbors

of each node is k each node’s expected number of neighbors is k and the

average degree of G equals to k as it is also defined in Chapter 4. In order

to generate a random graph, RGG first generates n random nodes in plane

with random number generation method of LEDA [24] where each axis of a

point is bounded with 500. After that, while range value of sensor nodes is

increasing, each sensor node is connected other nodes in that range. This

process iteratively continues until average degree of graph equals to k.

We note that since seed values are used for each configuration, all experi-

ments are clearly reproducible in any platform. We generated seed sequence

for experiments from a generator seed “DICL”that is 3425.

We have generalized DICL for variable r value which varies between 2-8
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in experiments to determine optimum r value. And k differs between 4 and

16. We fix n at 100 because performance of DICL is only related with k

and r not n. Each unique configuration is repeated 10 times with different

seed values taken from seed sequence successively.

5.2 Experiments and Discussion of Results

We select our performance measures in order to analyze and construe lo-

calization, messaging performances, running time and space requirements.

For a given n, we compute average of localized node ratio (lnr) as follows

lnr = ln/n where ln is the number of uniquely localized nodes in N. The

second and third performance measurements are average broadcast count

per node (bc) and average broadcasting amount per node (ba) which are

closely related with each other. bc counts number of messages in N broad-

casted and takes its average by dividing it n. Because the size of each

broadcasted packet differs specifically at the second phase, only counting bc

does not show bandwidth usage per node therefore we compute the total

size of broadcasted packets and take its average through N. The fourth

indicator average time per node (at) is the average running time required

by DICL on a specific node. Last two performance measures are related

to highlight how much space required by DICL. Maximum possibilities per

node (mp), let mpu is the maximum value of |v.positions| where v ∈ Cr
u,

then mp = Max
vi∈N

(mpvi
). Hence simulations may take too much time to run

for bigger values of r, we bound mpu, u ∈ Cr
u at 1024 to prevent number of

possibilities for each node not to grow exponentially. And finally, Average

of total possibilities per cluster (tp) is the average of
∑n

i=1 tpvi
for all vi ∈ N.

Figure 5.1 is a visual illustration of the performance of DICL. The

LNR values for r =1,2,3 for a specific random network which is included in

experiments also are shown. We note that r =1, DICL works like analogous

iterative trilateration. Even for a small value of r = 3 80% of the network

is localized. It is also important to note that the number of iterations per
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Unlocalized node (46, 23%) 

Localized for r=1 (26, 13%) 

Localized for r=2 (46, 23%) 

Localized for r=3 (154, 77%) 

Anchor (12, 6%) 

Figure 5.1: Random network localized with DICL. n =200, k =6.

node is almost 3 and MP is limited with 128 where r = 3. Which shows

DICL provides a high localization ratio even if the network is sparse (k =6)

and at the same time it is amenable for distributed implementation.

Figure 5.3 shows the lnr values for different r and k values. As r

increases, lnr grows as expected however for r > 5 localization is not effected

anymore. DICL localizes the graph shown in Figure 5.2 only for values of

r > 4. Thus, the reason why bigger values of r can not localizes additional

vertices is that occurrence possibility of such partial graphs are very low.

The total number of broadcasts per node during experiments are shown

in Figure 5.4. Since first phase of algorithm is constant which broadcasts

always r times in order to construct Cr
u, the irregularity in the plot caused by
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u

v2v1

Figure 5.2: Globally rigid bilateration graph, u covers all edges and vertices

in this graph for r ≥ 4, for r < 4 this graph can not be localized with DICL
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Figure 5.3: The ratio of localized nodes with DICL to n

the broadcasts in the Iterative Localization phase. Number of broadcasts on

second phase depends on how many anchors are localized in each iteration

which changes each iteration. There are more message overhead between

6 ≤ k ≤ 10. For sparse networks when k < 6, the messaging overhead is

low since not that many nodes are localized to be broadcasted in the first

place. In contrast when k > 10 each localization iteration uniquely localizes

many nodes at once therefore requires fewer broadcasts. However as can be

verified in Figure 5.5, the BA values indicating the broadcast size per node
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Figure 5.4: Average number of broadcasts per node

grows proportionally in terms of k and r.
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Figure 5.5: Average amount of data broadcasted in units

Figure 5.6 shows the number of finite positions per node during exe-

cution of IFL. The peak values are reached at 7 ≤ k ≤ 10 for almost all

r values, since low connectivity does not enable too many bilaterations,

therefore possible locations, whereas high connectivity leads to unique lo-
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Figure 5.6: Maximum possibilities per node

calization too quickly. Similar reasoning could apply to TP except that

cluster size plays an important role as well in this case; see Figure 5.7.

The excepted cluster size is kr, therefore for large values of k (k ≥ 9), TP

is constant or grows slightly even though MP decreases. High connectivity

leads to ease of unique localization but also gives rise to large clusters, which

seem to cancel out each others’ affects in terms of space requirements of a

sensor node.

Actual running times for each node is shown in the Figure 5.8 in terms

of seconds. Since the total time that spent for localization by each node

is directly dependent on size of Cr
u. For all values of r, the changes on k

affects running time similarly which means the discriminant parameter is k

not r in terms of running times. In addition, growth in Figure 5.8 seems

to be similar to that of TP for k ≤ 9.
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Figure 5.7: Total possibilities of each cluster contain end of localization
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Figure 5.8: Running time in seconds during DICL
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Chapter 6

Conclusion

We have designed and simulated a Distributed Iterative Cluster Localiza-

tion algorithm for wireless sensor networks. And the experimental results

show that DICL has a success on localization of large networks. It offers

to localize a network with reasonable memory requirement and messaging

overhead in feasible running time even if it has exponential running time in

theory. An important direction for future is to generalize the localization

framework to handle error in measurements. And merging two localization

phases together which leads localization to start while Cr
u is constructing.

Since we have shown that DICL is successful in localization even in sparse

networks, more realistic parameters could be considered such as transmis-

sion errors, transmission delays and transmission rates. It would also be

useful to conduct experiments to analyze the efficiency of model when the

network is employed in various regions with randomly placed obstacles.
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