Yazar "Dehkharghani, Rahim" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Battle Royale Optimizer for solving binary optimization problems(Elsevier B.V., 2022-05) Akan, Taymaz; Agahian, Saeid; Dehkharghani, RahimBattle Royale Optimizer (BRO) is a recently proposed metaheuristic optimization algorithm used only in continuous problem spaces. The BinBRO is a binary version of BRO. The BinBRO algorithm employs a differential expression, which utilizes a dissimilarity measure between binary vectors instead of a vector subtraction operator, used in the original BRO algorithm to find the nearest neighbor. To evaluate BinBRO, we applied it to two popular benchmark datasets: the uncapacitated facility location problem (UFLP) and the maximum-cut (Max-Cut) graph problems from OR-Library. An open-source MATLAB implementation of BinBRO is available on CodeOcean and GitHub websites.Yayın BinBRO: Binary Battle Royale Optimizer algorithm(Elsevier Ltd, 2022-02-04) (Rahkar Farshi), Taymaz Akan; Agahian, Saeid; Dehkharghani, RahimStochastic methods attempt to solve problems that cannot be solved by deterministic methods with reasonable time complexity. Optimization algorithms benefit from stochastic methods; however, they do not guarantee to obtain the optimal solution. Many optimization algorithms have been proposed for solving problems with continuous nature; nevertheless, they are unable to solve discrete or binary problems. Adaptation and use of continuous optimization algorithms for solving discrete problems have gained growing popularity in recent decades. In this paper, the binary version of a recently proposed optimization algorithm, Battle Royale Optimization, which we named BinBRO, has been proposed. The proposed algorithm has been applied to two benchmark datasets: the uncapacitated facility location problem, and the maximum-cut graph problem, and has been compared with 6 other binary optimization algorithms, namely, Particle Swarm Optimization, different versions of Genetic Algorithm, and different versions of Artificial Bee Colony algorithm. The BinBRO-based algorithms could rank first among those algorithms when applying on all benchmark datasets of both problems, UFLP and Max-Cut.Yayın ComStreamClust: a communicative multi-agent approach to text clustering in streaming data(Springer Science and Business Media Deutschland GmbH, 2023-12) Najafi, Ali; Gholipour-Shilabin, Araz; Dehkharghani, Rahim; Mohammadpur-Fard, Ali; Asgari-Chenaghlu, MeysamTopic detection is the task of determining and tracking hot topics in social media. Twitter is arguably the most popular platform for people to share their ideas with others about different issues. One such prevalent issue is the COVID-19 pandemic. Detecting and tracking topics on these kinds of issues would help governments and healthcare companies deal with this phenomenon. In this paper, we propose a novel, multi-agent, communicative clustering approach, so-called ComStreamClust for clustering sub-topics inside a broader topic, e.g., the COVID-19 and the FA CUP. The proposed approach is parallelizable, and can simultaneously handle several data-point. The LaBSE sentence embedding is used to measure the semantic similarity between two tweets. ComStreamClust has been evaluated by several metrics such as keyword precision, keyword recall, and topic recall. Based on topic recall on different number of keywords, ComStreamClust obtains superior results when compared to the existing methods.Yayın Mental disorder and suicidal ideation detection from social media using deep neural networks(Springer, 2024-12) Ezerceli, Özay; Dehkharghani, RahimDepression and suicidal ideation are global reasons for life-threatening injury and death. Mental disorders have increased especially among young people in recent years, and early detection of those cases can prevent suicide attempts. Social media platforms provide users with an anonymous space to interact with others, making them a secure environment to discuss their mental disorders. This paper proposes a solution to detect depression/suicidal ideation using natural language processing and deep learning techniques. We used Transformers and a unique model to train the proposed model and applied it to three diferent datasets: SuicideDetection, CEASEv2.0, and SWMH. The proposed model is evaluated using the accuracy, precision, recall, and ROC curve. The proposed model outperforms the state-of-theart in the SuicideDetection and CEASEv2.0 datasets, achieving F1 scores of 0.97 and 0.75, respectively. However, in the SWMH data set, the proposed model is 4% points behind the state-of-the-art precision providing the F1 score of 0.68. In the real world, this project could help psychologists in the early detection of depression and suicidal ideation for a more efcient treatment. The proposed model achieves state-of-the-art performance in two of the three datasets, so they could be used to develop a screening tool that could be used by mental health professionals or individuals to assess their own risk of suicide. This could lead to early intervention and treatment, which could save lives.Yayın Multi-task learning on mental disorder detection, sentiment analysis, and emotion detection using social media posts(Institute of Electrical and Electronics Engineers Inc., 2024) Armah, Courage; Dehkharghani, RahimMental disorders such as suicidal behavior, bipolar disorder, depressive disorders, and anxiety have been diagnosed among the youth recently. Social media platforms such as Reddit have become popular for anonymous posts. People are far more likely to share on these social media platforms what they really feel like in their real lives when they are anonymous. It is thus helpful to extract people's sentiments and feelings from these platforms in training models for mental disorder detection. This study uses multi-task learning techniques to examine the estimation of behaviors and mental states for early mental disease diagnosis. We propose a multi-task system trained on three related tasks: mental disorder detection as the primary task, emotion analysis, and sentiment analysis as auxiliary tasks. We took the SWMH dataset, which included four main different mental disorders already labeled (bipolar, depression, anxiety, and suicide) and offmychest. We then added labels for emotion and sentiment to the dataset. The observed results are comparable to previous studies in the field and demonstrate that deep learning multi-task frameworks can improve the accuracy of related text classification tasks when compared to training them separately as single-task systems.