Yazar "Eldeeb, Hossien Badr" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Channel modelling and performance limits of vehicular visible light communication systems(IEEE-INST Electrical Electronics Engineers Inc, 2020-07) Karbalayghareh, Mehdi; Miramirkhani, Farshad; Eldeeb, Hossien Badr; Kızılırmak, Refik Çağlar; Sait, Sadiq Q.; Uysal, MuratVisible light communication (VLC) has been proposed as an alternative or complementary technology to radio frequency vehicular communications. Front and back vehicle lights can serve as wireless transmitters making VLC a natural vehicular connectivity solution. In this paper, we evaluate the performance limits of vehicular VLC systems. First, we use non-sequential ray tracing to obtain the channel impulse responses (CIRs) for vehicle-to-vehicle (V2V) link in various weather conditions. Based on these CIRs, we present a closed-form path loss expression which builds upon the summation of geometrical loss and attenuation loss and takes into account asymmetrical patterns of vehicle light sources and geometry of V2V transmission. The proposed expression is an explicit function of link distance, lateral shift between two vehicles, weather type (quantified by the extinction coefficient), transmitter beam divergence angle and receiver aperture diameter. Then, we utilize this expression to determine the maximum achievable link distance of V2V systems for clear, rainy and foggy weather conditions while ensuring a targeted bit error rate.Yayın A path loss model for vehicle-to-vehicle visible light communications(Institute of Electrical and Electronics Engineers Inc., 2019-07) Eldeeb, Hossien Badr; Miramirkhani, Farshad; Uysal, MuratThe increasing adoption of LEDs in exterior automotive lighting makes visible light communication (VLC) a natural solution for vehicular networking. In this paper, we consider a vehicle-to-vehicle link and propose a path loss expression as a function of distance and different weather conditions. We conduct ray tracing simulations and verify the accuracy of proposed expression. We further use this expression to derive the achievable transmission distance for a targeted data rate while satisfying a given value of bit error rate. Numerical results are presented to demonstrate the achievable distances for single and dual photodetector deployment cases.