Yazar "Hadjinicolaou, Panos" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Business-as-usual will lead to super and ultra-extreme heatwaves in the Middle East and North Africa(Nature Research, 2021-03-21) Zittis, George; Hadjinicolaou, Panos; Almazroui, Mansour; Bucchignani, Edoardo; Driouech, Fatima; El Rhaz, Khalid; Kurnaz, Levent; Nikulin, Grigory; Ntoumos, Athanasios; Öztürk, Tuğba; Proestos, Yiannis; Stenchikov, Georgiy; Zaaboul, Rashyd; Lelieveld, JosGlobal climate projections suggest a significant intensification of summer heat extremes in the Middle East and North Africa (MENA). To assess regional impacts, and underpin mitigation and adaptation measures, robust information is required from climate downscaling studies, which has been lacking for the region. Here, we project future hot spells by using the Heat Wave Magnitude Index and a comprehensive ensemble of regional climate projections for MENA. Our results, for a business-as-usual pathway, indicate that in the second half of this century unprecedented super- and ultra-extreme heatwave conditions will emerge. These events involve excessively high temperatures (up to 56 degrees C and higher) and will be of extended duration (several weeks), being potentially life-threatening for humans. By the end of the century, about half of the MENA population (approximately 600 million) could be exposed to annually recurring super- and ultra-extreme heatwaves. It is expected that the vast majority of the exposed population (>90%) will live in urban centers, who would need to cope with these societally disruptive weather conditions.Yayın Future global meteorological drought hot spots: A study based on CORDEX data(American Meteorological Society, 2020-05-01) Spinoni, Jonathan; Barbosa, Paulo; Bucchignani, Edoardo; Cassano, John; Cavazos, Tereza; Christensen, Jens H.; Christensen, Ole B.; Coppola, Erika; Evans, Jason; Geyer, Beate; Giorgi, Filippo; Hadjinicolaou, Panos; Jacob, Daniela; Katzfey, Jack; Koenigk, Torben; Laprise, Rene; Lennard, Christopher J.; Kurnaz, Mehmet Levent; Li, Delei; Llopart, Marta; McCormick, Niall; Naumann, Gustavo; Nikulin, Grigory; Öztürk, Tuğba; Panitz, Hans-Juergen; da Rocha, Rosmeri Porfirio; Rockel, Burkhardt; Solman, Silvina A.; Syktus, Jozef; Tangang, Fredolin; Teichmann, Claas; Vautard, Robert; Vogt, Juergen V.; Winger, Katja; Zittis, George; Dosio, AlessandroTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.448) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only,;15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (;47% under RCP4.5,;49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.