Yazar "Karbalayghareh, Mehdi" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Channel modelling and performance limits of vehicular visible light communication systems(IEEE-INST Electrical Electronics Engineers Inc, 2020-07) Karbalayghareh, Mehdi; Miramirkhani, Farshad; Eldeeb, Hossien Badr; Kızılırmak, Refik Çağlar; Sait, Sadiq Q.; Uysal, MuratVisible light communication (VLC) has been proposed as an alternative or complementary technology to radio frequency vehicular communications. Front and back vehicle lights can serve as wireless transmitters making VLC a natural vehicular connectivity solution. In this paper, we evaluate the performance limits of vehicular VLC systems. First, we use non-sequential ray tracing to obtain the channel impulse responses (CIRs) for vehicle-to-vehicle (V2V) link in various weather conditions. Based on these CIRs, we present a closed-form path loss expression which builds upon the summation of geometrical loss and attenuation loss and takes into account asymmetrical patterns of vehicle light sources and geometry of V2V transmission. The proposed expression is an explicit function of link distance, lateral shift between two vehicles, weather type (quantified by the extinction coefficient), transmitter beam divergence angle and receiver aperture diameter. Then, we utilize this expression to determine the maximum achievable link distance of V2V systems for clear, rainy and foggy weather conditions while ensuring a targeted bit error rate.Yayın Comparative performance evaluation of VLC, LTE and WLAN technologies in indoor environments(IEEE, 2021-05-24) Zeshan, Arooba; Karbalayghareh, Mehdi; Miramirkhani, Farshad; Uysal, Murat; Baykaş, TunçerRecent years have seen an exponential rise in the demand for indoor wireless connections that have driven future generation networks to aim for higher data rates with extended coverage and affordable rates. The two most prominent technologies for providing indoor wireless connections, WLAN and LTE, have their limitations and they can not coexist in a single band to form heterogeneous networks (HetNets). Visible light communication (VLC) has seen rapid growth in recent years as it has the capability to seamlessly merge with the existing technologies and provide wireless connections with high data rates. VLC based hybrid indoor network effectively combines the preferences of an end-user with the practicality of implementation. In this work, we investigate specific VLC/WLAN and VLC/LTE hybrid scenarios to perform a detailed analysis on the effect of user mobility on the performance of the system and how the performance of the network (in terms of throughput) can be maximized. The study aims to show how different technologies complement each other in the best and even the worst-case scenarios.Yayın Effect of scattering phase function on underwater visible light communication channel models(Elsevier Ltd, 2021-10) Miramirkhani, Farshad; Karbalayghareh, Mehdi; Uysal, MuratNon-sequential ray tracing simulations are commonly employed to model underwater visible light communication (VLC) channels. The accuracy of such simulations highly depends on how well the optical properties of water (i.e., absorption and scattering) as well as scattering phase function (SPF) are modeled in the simulation. Existing empirical models are only a function of chlorophyll concentration and particle composition and are independent of refractive index, size and concentration of particles. In this paper, we carry out an underwater VLC channel modeling study using the Mie SPF which provides a full description of the scattering from phytoplankton particles which dominate the optical properties of most oceanic waters. We obtain the channel impulse response (CIR) based on an extensive non-sequential ray tracing study and calculate the fundamental channel parameters such as channel gain and delay spread. Comparison of CIRs reveals out that deployment of simplified SPF models results in the overestimation of path loss with respect to Mie SPF. Our results clearly demonstrate the importance of selecting realistic SPF models for an accurate underwater VLC channel modeling. While highlighting the channel models, we discuss adaptive modulation technique to maximize the data rate under the constraint of a targeted bit error rate. Besides, the maximum achievable distance is also determined both in terms of analytical guarantees and computer simulations. The results reveal that larger transmission distances can be achieved through Mie SPF channel model.Yayın Enabling 5G indoor services for residential environment using VLC technology(Elsevier B.V., 2022-03-10) Miramirkhani, Farshad; Karbalayghareh, Mehdi; Zeydan, Engin; Mitra, RangeetVisible light communication (VLC) has emerged as a viable complement to traditional radio frequency (RF) based systems and as an enabler for high data rate communications for beyond-5G (B5G) indoor communication systems. In particular, the emergence of new B5G-based applications with quality of service (QoS) requirements and massive connectivity has recently led to research on the required service-levels and the development of improved physical (PHY) layer methods. As part of recent VLC standards development activities, the IEEE has formed the 802.11bb “Light Communications (LC) for Wireless Local Area Networking” standardization group. This paper investigates the network requirements of 5G indoor services such as virtual reality (VR) and high-definition (HD) video for residential environments using VLC. In this paper, we consider such typical VLC scenarios with additional impairments such as light-emitting diode (LED) nonlinearity and imperfect channel feedback, and propose hyperparameter-free mitigation techniques using Reproducing Kernel Hilbert Space (RKHS) methods. In this context, we also propose using a direct current biased optical orthogonal frequency division multiplexing (DCO-OFDM)-based adaptive VLC transmission method that uses precomputed bit error rate (BER) expressions for these RKHS-based detection methods and performs adaptive BER-based modulation-order switching. Simulations of channel impulse responses (CIRs) show that the adaptive transmission method provides significantly improved error rate performance, which makes it promising for high data rate VLC-based 5G indoor services.Yayın Least minimum symbol error rate based post-distortion for adaptive mobile VLC transmission with receiver selection(Elsevier B.V., 2021-08) Miramirkhani, Farshad; Karbalayghareh, Mehdi; Mitra, RangeetIn the context of beyond-5G indoor communication systems, visible light communication (VLC) has emerged as a viable supplement for existing RF-based systems and as an enabler for high datarate communications. However, the existing indoor VLC systems are limited by detrimental outages caused by fluctuations in the VLC channel-gain due to user-mobility. Furthermore, the nonlinear characteristics of the light-emitting diode (LED) degrade the performance of VLC systems in the highpower regime by warping the input constellation. Additional performance-limits are introduced by inter-symbol interference (ISI) due to finite modulation-bandwidth of LEDs, and reflections from walls. In this paper, a random Fourier feature (RFF) based post-distorter is considered for mitigating the LED nonlinearity, and relevant expressions for the signal to noise ratio (SNR) are derived for a direct current biased optical orthogonal frequency division multiplexing (DCO-OFDM) system. Based on the derived expressions for SNR, the effects of user-mobility and ISI are mitigated by a DCO-OFDM based adaptive VLC transmission technique, which varies the transmission-rate/modulation-order under a specified error-rate constraint. Simulations are presented over channels obtained by ray-tracing, which indicates that the proposed algorithm achieves superior data-rates with a significantly lower error-rate.