Yazar "Kurnaz, Mehmet Levent" seçeneğine göre listele
Listeleniyor 1 - 14 / 14
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The emergence of projected scaled patterns of extreme temperatures over Europe(Frontiers Media SA, 2023-06-28) Öztürk, Tuğba; Canbaz, Emine; Bilgin, Başak; Matte, Dominic; Kurnaz, Mehmet Levent; Christensen, Jens HesselbjergThis work investigates the scalability of extreme temperatures over the European domain with global warming levels. We have used the EURO-CORDEX ensemble of regional model simulations at 0.11° resolution for daily minimum and maximum temperatures to analyze future changes in extreme weather daily events. Scaling with the annual mean global warming modeled by the driving GCM was applied to future extreme temperature indices changes. Regional changes in each index were scaled by corresponding global warming levels obtained from GCMs. This approach asserts that regional patterns of climate change and average global temperature change are linearly related. It can provide information regarding climate change for periods or emission scenarios when no simulations exist. According to the results, the annual minimum of the lowest temperature of the day (TNn) increases more than the annual maximum of the highest temperature of the day (TXx) for Europe. The multi-model mean of the changes in scaled patterns of extreme temperatures emerges early, around 2020, even before it becomes robust. Individual scaled patterns of TNn and TXx emerge from around 2040.Öğe Future global meteorological drought hot spots: A study based on CORDEX data(American Meteorological Society, 2020-05-01) Spinoni, Jonathan; Barbosa, Paulo; Bucchignani, Edoardo; Cassano, John; Cavazos, Tereza; Christensen, Jens H.; Christensen, Ole B.; Coppola, Erika; Evans, Jason; Geyer, Beate; Giorgi, Filippo; Hadjinicolaou, Panos; Jacob, Daniela; Katzfey, Jack; Koenigk, Torben; Laprise, Rene; Lennard, Christopher J.; Kurnaz, Mehmet Levent; Li, Delei; Llopart, Marta; McCormick, Niall; Naumann, Gustavo; Nikulin, Grigory; Öztürk, Tuğba; Panitz, Hans-Juergen; da Rocha, Rosmeri Porfirio; Rockel, Burkhardt; Solman, Silvina A.; Syktus, Jozef; Tangang, Fredolin; Teichmann, Claas; Vautard, Robert; Vogt, Juergen V.; Winger, Katja; Zittis, George; Dosio, AlessandroTwo questions motivated this study: 1) Will meteorological droughts become more frequent and severe during the twenty-first century? 2) Given the projected global temperature rise, to what extent does the inclusion of temperature (in addition to precipitation) in drought indicators play a role in future meteorological droughts? To answer, we analyzed the changes in drought frequency, severity, and historically undocumented extreme droughts over 1981–2100, using the standardized precipitation index (SPI; including precipitation only) and standardized precipitation-evapotranspiration index (SPEI; indirectly including temperature), and under two representative concentration pathways (RCP4.5 and RCP8.5). As input data, we employed 103 high-resolution (0.448) simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX), based on a combination of 16 global circulation models (GCMs) and 20 regional circulation models (RCMs). This is the first study on global drought projections including RCMs based on such a large ensemble of RCMs. Based on precipitation only,;15% of the global land is likely to experience more frequent and severe droughts during 2071–2100 versus 1981–2010 for both scenarios. This increase is larger (;47% under RCP4.5,;49% under RCP8.5) when precipitation and temperature are used. Both SPI and SPEI project more frequent and severe droughts, especially under RCP8.5, over southern South America, the Mediterranean region, southern Africa, southeastern China, Japan, and southern Australia. A decrease in drought is projected for high latitudes in Northern Hemisphere and Southeast Asia. If temperature is included, drought characteristics are projected to increase over North America, Amazonia, central Europe and Asia, the Horn of Africa, India, and central Australia; if only precipitation is considered, they are found to decrease over those areas.Öğe Future projections of temperature and precipitation climatology for CORDEX-MENA domain using RegCM4.4(Elsevier Science Inc, 2018-07-01) Öztürk, Tuğba; Turp, Mustafa Tufan; Türkeş, Murat; Kurnaz, Mehmet LeventIn this study, we investigate changes in seasonal temperature and precipitation climatology of CORDEX Middle East and North Africa (MENA) region for three periods of 2010-2040, 2040-2070 and 2070-2100 with respect to the control period of 1970-2000 by using regional climate model simulations. Projections of future climate conditions are modeled by forcing Regional Climate Model, RegCM4.4 of the International Centre for Theoretical Physics (ICTP) with two different CMIP5 global climate models. HadGEM2-ES global climate model of the Met Office Hadley Centre and MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology were used to generate 50 km resolution data for the Coordinated Regional Climate Downscaling Experiment (CORDEX) Region 13. We test the seasonal time-scale performance of RegCM4.4 in simulating the observed climatology over domain of the MENA by using the output of two different global climate models. The projection results show relatively high increase of average temperatures from 3 degrees C up to 9 degrees C over the domain for far future (2070-2100). A strong decrease in precipitation is projected in almost all parts of the domain according to the output of the regional model forced by scenario outputs of two global models. Therefore, warmer and drier than present climate conditions are projected to occur more intensely over the CORDEX-MENA domain.Öğe Global exposure of population and land-use to meteorological droughts under different Warming Levels and Shared Socioeconomic Pathways: A Coordinated Regional Climate Downscaling Experiment-based study(John Wiley and Sons Ltd, 2021-12) Spinoni, Jonathan; Barbosa, Paulo; Bucchignani, Edoardo; Cassano, John; Cavazos, Tereza; Cescatti, Alessandro; Christensen, Jens Hesselbjerg; Christensen, Ole Bossing; Coppola, Erika; Evans, Jason; Forzieri, Giovanni; Geyer, Beate; Giorgi, Filippo; Jacob, Daniela; Katzfey, Jack; Koenigk, Torben; Laprise, Rene; Lennard, Christopher John; Kurnaz, Mehmet Levent; Li, Delei; Llopart, Marta; McCormick, Niall; Naumann, Gustavo; Nikulin, Grigory; Öztürk, Tuğba; Panitz, Hans-Jurgen; da Rocha, Rosmeri Porfirio; Solman, Silvina Alicia; Syktus, Jozef; Tangang, Fredolin; Teichmann, Claas; Vautard, Robert; Vogt, Jurgen Valentin; Winger, Katja; Zittis, George; Dosio, AlessandroGlobal warming is likely to cause a progressive drought increase in some regions, but how population and natural resources will be affected is still underexplored. This study focuses on global population and land-use (forests, croplands, pastures) exposure to meteorological drought hazard in the 21st century, expressed as frequency and severity of drought events. As input, we use a large ensemble of climate simulations from the Coordinated Regional Climate Downscaling Experiment, population projections from the NASA-SEDAC dataset, and land-use projections from the Land-Use Harmonization 2 project for 1981-2100. The exposure to drought hazard is presented for five SSPs (SSP1-SSP5) at four Global Warming Levels (GWLs, from 1.5 to 4 degrees C). Results show that considering only Standardized Precipitation Index (SPI; based on precipitation), the combination SSP3-GWL4 projects the largest fraction of the global population (14%) to experience an increase in drought frequency and severity (vs. 1981-2010), with this value increasing to 60% if temperature is considered (indirectly included in the Standardized Precipitation-Evapotranspiration Index, SPEI). With SPEI, considering the highest GWL for each SSP, 8 (for SSP2, SSP4, and SSP5) and 11 (SSP3) billion people, that is, more than 90%, will be affected by at least one unprecedented drought. For SSP5 (fossil-fuelled development) at GWL 4 degrees C, approximately 2 center dot 10(6) km(2) of forests and croplands (respectively, 6 and 11%) and 1.5 center dot 10(6) km(2) of pastures (19%) will be exposed to increased drought frequency and severity according to SPI, but for SPEI, this extent will rise to 17 center dot 10(6) km(2) of forests (49%), 6 center dot 10(6) km(2) of pastures (78%), and 12 center dot 10(6) km(2) of croplands (67%), with mid-latitudes being the most affected areas. The projected likely increase of drought frequency and severity significantly increases population and land-use exposure to drought, even at low GWLs, thus extensive mitigation and adaptation efforts are needed to avoid the most severe impacts of climate change.Öğe Impact of climate change on natural snow reliability, snowmaking capacities, and wind conditions of ski Resorts in Northeast Turkey: a dynamical downscaling approach(Mdpi Ag, 2016-04) Demiroğlu, Osman Cenk; Turp, Mustafa Tufan; Öztürk, Tuğba; Kurnaz, Mehmet LeventMany ski resorts worldwide are going through deteriorating snow cover conditions due to anthropogenic warming trends. As the natural and the artificially supported, i.e., technical, snow reliability of ski resorts diminish, the industry approaches a deadlock. For this reason, impact assessment studies have become vital for understanding vulnerability of ski tourism. This study considers three resorts at one of the rapidly emerging ski destinations, Northeast Turkey, for snow reliability analyses. Initially one global circulation model is dynamically downscaled by using the regional climate model RegCM4.4 for 1971-2000 and 2021-2050 periods along the RCP4.5 greenhouse gas concentration pathway. Next, the projected climate outputs are converted into indicators of natural snow reliability, snowmaking capacity, and wind conditions. The results show an overall decline in the frequencies of naturally snow reliable days and snowmaking capacities between the two periods. Despite the decrease, only the lower altitudes of one ski resort would face the risk of losing natural snow reliability and snowmaking could still compensate for forming the base layer before the critical New Year's week. On the other hand, adverse high wind conditions improve as to reduce the number of lift closure days at all resorts. Overall, this particular region seems to be relatively resilient against climate change.Öğe Impacts of climate change on precipitation climatology and variability in Turkey(Springer International Publishing Ag, 2020) Türkeş, Murat; Turp, M. Tufan; An, Nazan; Öztürk, Tuğba; Kurnaz, Mehmet LeventIn this chapter, changes in seasonal precipitation climatology, extreme weather conditions, and aridity conditions of Turkey are evaluated for the period of 2021-2050 with respect to the reference period of 1971-2000 by using regional climate model simulations. Projections of future climate conditions are modeled by forcing Regional Climate Model, RegCM4.4 of the International Centre for Theoretical Physics (ICTP) with MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology. The outputs of MPI-ESM-MR are used to generate 10 km resolution data by the double nesting method under both RCP4.5 and RCP8.5 emission scenarios. The seasonal time-scale performance of RegCM4.4 in reproducing the observed climatology over Turkey is tested by using the output of the global climate model. The projection results show a strong decrease in precipitation for almost all parts of the domain according to the output of the regional model. The intensity of drought conditions is projected to increase. According to the projection results, more arid conditions are expected in the region for the near future. Therefore, drier than present climate conditions are projected to occur more intensely over Turkey.Öğe Projected changes in extreme temperature and precipitation indices over CORDEX-MENA domain(MDPI AG, 2021-05) Öztürk, Tuğba; Saygılı Aracı, Fatma Sibel; Kurnaz, Mehmet LeventIn this study, projected changes in climate extreme indices defined by the Expert Team on Climate Change Detection and Indices were investigated over Middle East and North Africa. Changes in the daily maximum and minimum temperature-and precipitation-based extreme indices were analyzed for the end of the 21st century compared to the reference period 1971–2000 using regional climate model simulations. Regional climate model, RegCM4.4 was used to downscale two different global climate model outputs to 50 km resolution under RCP4.5 and RCP8.5 scenarios. Results generally indicate an intensification of temperature-and precipitation-based extreme indices with increasing radiative forcing. In particular, an increase in annual minimum of daily minimum temperatures is more pronounced over the northern part of Mediterranean Basin and tropics. High increase in warm nights and warm spell duration all over the region with a pronounced increase in tropics are projected for the period of 2071–2100 together with decrease or no change in cold extremes. According to the results, a decrease in total wet-day precipitation and increase in dry spells are expected for the end of the century.Öğe Projected changes in temperature and precipitation climatology of Central Asia CORDEX Region 8 by using RegCM4.3.5(Elsevier Ltd, 2017-01-01) Öztürk, Tuğba; Turp, Mustafa Tufan; Türkeş, Murat; Kurnaz, Mehmet LeventThis work investigated projected future changes in seasonal mean air temperature (°C) and precipitation (mm/day) climatology for the three periods of 2011–2040, 2041–2070, and 2071–2100, with respect to the control period of 1971–2000 for the Central Asia domain via regional climate model simulations. In order to investigate the projected changes in near future climate conditions, the Regional Climate Model, RegCM4.3.5 of the International Centre for Theoretical Physics (ICTP) was driven by two different CMIP5 global climate models. The HadGEM2-ES global climate model of the Met Office Hadley Centre and the MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology were downscaled to 50 km for the Coordinated Regional Climate Downscaling Experiment (CORDEX) Region 8. We investigated the seasonal time-scale performance of RegCM4.3.5 in reproducing observed climatology over the domain of the Central Asia by using two different global climate model outputs. For the future climatology of the domain, the regional model projects relatively high warming in the warm season with a decrease in precipitation in almost all parts of the domain. A warming trend is notable, especially for the northern part of the domain during the cold season. The results of our study show that surface air temperatures in the region will increase between 3 °C and about 7 °C on average, according to the emission scenarios for the period of 2071–2100 with respect to past period of 1971–2000. Therefore, the projected warming and decrease in precipitation might adversely affect the ecological and socio-economic systems of this region, which is already a mostly arid and semi-arid environment.Öğe Projections of climate change in the Mediterranean Basin by using downscaled global climate model outputs(Wiley-Blackwell, 2015-11-30) Öztürk, Tuğba; Ceber, Zeynep Pelin; Türkeş, Murat; Kurnaz, Mehmet LeventThe Mediterranean Basin is one of the regions that shall be affected most by the impacts of the future climate changes on hydrology and water resources. In this study, projected future changes in mean air temperature and precipitation climatology and inter-annual variability over the Mediterranean region were studied. For performing this aim, the future changes in annual and seasonal averages for the future period of 2070-2100 with respect to the period from 1970 to 2000 were investigated. Global climate model outputs of the World Climate Research Program's Coupled Model Intercomparison Project Phase 3 multi-model dataset were used in this work. Intergovernmental Panel on Climate Change SRES A2, A1B and B1 emission scenarios' outputs were used in future climate model projections. Future surface mean air temperatures of the larger Mediterranean basin increase mostly in summer and least in winter, and precipitation amounts decrease in all seasons at almost all parts of the basin. Future climate signals for air temperature and total precipitation values are much larger than the inter-model standard deviation. Inter-annual temperature variability increases evidently in summer season and decreases in the northern part of the domain in the winter season, while precipitation variability increases in almost all parts of domain. Probability distribution functions are found to be shifted and flattened for future period compared to the reference period. This indicates that the occurrence of frequency and intensity of high temperatures and heavy precipitation events will likely increase in the future period.Öğe RegCM4.3.5 Bölgesel i?klim modelini kullanarak Türkiye ve çevresi bölgelerin yakın gelecekteki hava sıcaklığı ve yağış klimatolojileri i?çin öngörülen değişikliklerin i?ncelenmesi(Ege Üniversitesi, 2014-06-01) Turp, M. Tufan; Öztürk, Tuğba; Türkeş, Murat; Kurnaz, Mehmet LeventBu çalışmada 1970 – 2000 referans dönemi iklimine göre 2020 – 2050 dönemi için Türkiye’nin ortalama hava sıcaklığı ve yağış klimatolojilerinde öngörülen değişiklikler, bölgesel iklim modeli benzetimleri kullanılarak araştırıldı. Yakın gelecekteki iklim koşullarında öngörülen değişimleri incelemek için Uluslararası Teorik Fizik Merkezi’ne ait olan RegCM4.3.5 isimli bölgesel iklim modeli üç farklı küresel modelden yararlanılarak koşuldu. Max Planck Meteoroloji Enstitüsü’ne ait MPI-ESM-MR, Met Office Hadley Merkezi’ne ait HadGEM2 ve Amerikan Ulusal Okyanus ve Atmosfer Dairesi Jeofiziksel Akışkanlar Dinamiği Laboratuvarı’na ait GFDL-ESM2M modelleri Türkiye ve çevresi için dinamik olarak 50 km’ye alt ölçeklendirildi. Öngörüler, Hükümetlerarası İklim Değişikliği Paneli’nin (IPCC) RCP4.5 ve RCP8.5 salım senaryolarına göre gerçekleştirildi. Model sonuçlarına göre, Türkiye’de ortalama hava sıcaklıklarında 1970 – 2000 dönemine göre 2020 – 2050 döneminde 0.5 °C ile 4 °C arasında değişen artışlar olacaktır. Bu artış, sıcak mevsimlerde soğuk mevsimlere göre daha fazla olacaktır. Türkiye’nin yağış klimatolojisinde ise, bölgesel iklim modeli sonuçlarına göre, özellikle ülkenin Akdeniz ikliminin egemen olduğu batı ve güney bölgelerinde ve tüm mevsimlerde, yaklaşık 0.4 mm/gün ile 1.2 mm/gün arasında değişen belirgin yağış azalışlarının oluşması beklenir.Öğe RegCM4.3.5 İklim modeli? benzeti?mleri? kullanılarak Türki?ye'ni?n gelecek hava sıcaklığı ve yağış klimatolojilerindeki deği?şi?kli?kleri?n çözümlenmesi(Ege Üniversitesi, 2011-06-01) Öztürk, Tuğba; Türkeş, Murat; Kurnaz, Mehmet LeventBu çalışmada 1970-2000 dönemi günümüz iklimine göre 2070-2100 dönemi için Türkiye’nin ortalama hava sıcaklığı ve yağış klimatolojilerindeki değişikler, bölgesel iklim modeli simülasyonları (benzetim) kullanılarak öngörüldü. Günümüz ve gelecek iklim koşullarının model kestirimlerinin yapılması için, International Centre for Theoretical Physics (ICTP) bölgesel iklim modeli RegCM4.3.5 kullanıldı. Met Office Hadley Merkezi’nin HadGEM2 küresel iklim modeli, Türkiye ve çevresi için alt ölçeklendirme yöntemi ile çalışıldı. Gelecekte Türkiye’nin iklim değişkenlerinde oluşacak değişimleri incelemek için, küresel iklim modelinin RCP4.5 ve RCP8.5 salım senaryoları çıktıları kullanıldı. Model çıktılarına göre, Türkiye’de ortalama hava sıcaklıklarında 3 °C ile 7 °C arasında değişen artışlar olacaktır. Sıcaklık artışı, sıcak mevsimlerde soğuk mevsimlere göre daha fazla olacaktır. Bölgesel iklim modeli sonuçlarına göre, Türkiye’nin yağış klimatolojisinde ise, –0.8 mm/gün ile 1.2 mm/gün arasında değişen değişimler beklenmektedir.Öğe Simulation of temperature and precipitation climatology for the Central Asia CORDEX domain using RegCM 4.0(Inter-Research, 2012) Öztürk, Tuğba; Altınsoy, Hamza; Türkeş, Murat; Kurnaz, Mehmet LeventThe Coordinated Regional Climate Downscaling Experiment (CORDEX) is a framework designed to coordinate international efforts on regional climate simulations. CORDEX domains encompass the majority of land areas of the world. Region 8 of the CORDEX basically covers Central Asia, with the corners of the domain at 54.76 degrees N, 11.05 degrees E; 56.48 degrees N, 139.13 degrees E; 18.34 degrees N, 42.41 degrees E; and 19.39 degrees N, 108.44 degrees E and with a horizontal resolution of 50 km. In the present study, the results of an experiment with the ICTP regional climate RegCM 4.0 model that was run for seasonal mean air temperature and precipitation total series are presented. The experiment consists of one simulation from 1989 to 2010 using ERA-Interim reanalysis data as the boundary condition, another simulation for the period 1970-2000 using the global climate model ECHAM5 A1B scenario data for forcing, and finally a simulation for the period 2070-2100 using the ECHAM5 A1B scenario projection data for forcing. Between these 3 simulations we determined the temperature and precipitation climatology obtained from RegCM 4.0 downscaling for Region 8 of the CORDEX framework. In spite of the diverse topography of the region, the temperature and precipitation climatology obtained by RegCM 4.0 from hindcast data captures the general characteristics of the climate of Central Asia. In winter, the warm temperature bias of the forcing data is slightly decreased by regional downscaling. The influences of the Indian monsoon system are well represented, as this region covers a large area towards the southern boundary of Region 8, even though the focus of this work was to capture the general characteristics of the whole region.Öğe Technical climate change adaptation options of the major ski resorts in Bulgaria(Springer International Publishing, 2016-01-01) Demiroğlu, Osman Cenk; Turp, Mustafa Tufan; Öztürk, Tuğba; An, Nazan; Kurnaz, Mehmet LeventClimate change has been and increasingly will be a major threat to the ski tourism industry, whose survival is highly dependent on the existence of snow cover of sufficient depth and duration. For this matter, it is even now more usual for the ski resorts to adapt to this issue by various measures at the technical, operational, and political levels. Technically speaking, snowmaking has become the method most used throughout the industry to combat the immediate impacts of climate change, while moving the ski areas to higher terrains has been standing out as an another option, wherever available and feasible. In this study, the aim is to project the future climatic changes in snowmaking capacity; in other words, technical snow reliability, and the moving requirements, if any, of the four major ski resorts in Bulgaria for the period of 2016-2030 with respect to the control period of 1991- 2005. For this purpose, the past and the future climatic conditions for the technical snow reliability of the ski resorts and their immediate surroundings are determined by the temperature and the relative humidity values generated and projected through the Regional Climate Model RegCM 4.4 of the Abdus Salam International Centre for Theoretical Physics (ICTP) by scaling the global climate model MPI-ESM-MR of Max Planck Institute for Meteorology down to a resolution of 10 km. The model is further processed according to the recent RCP 4.5 and RCP 8.5 concentration scenarios of the IPCC. The model outputs on air temperature and relative humidity are utilized for determination of wet-bulb temperatures through psychographic conversions that ultimately provide us with thresholds for snowmaking limits. Findings display the temporal changes in the snowmaking hours of the ski resorts at various altitudinal levels calculated according to the environmental lapse rates. Such displays can guide the practitioners in considering investment lives and moving the ski resorts according to optimistic and pessimistic projections.Öğe The Worldwide C3S CORDEX Grand Ensemble A Major Contribution to Assess Regional Climate Change in the IPCC AR6 Atlas(American Meteorological Society, 2022-12) Diez-Sierra, Javier; Iturbide, Maialen; Gutierrez, Jose M.; Fernandez, Jesus; Milovac, Josipa; Cofino, Antonio S.; Cimadevilla, Ezequiel; Nikulin, Grigory; Levavasseur, Guillaume; Kjellstrom, Erik; Bulow, Katharina; Horanyi, Andras; Brookshaw, Anca; Garcia-Diez, Markel; Perez, Antonio; Bano-Medina, Jorge; Ahrens, Bodo; Alias, Antoinette; Ashfaq, Moetasim; Bukovsky, Melissa; Buonomo, Erasmo; Caluwaerts, Steven; Chou, Sin Chan; Christensen, Ole B.; Ciarlo, James M.; Coppola, Erika; Corre, Lola; Demory, Marie-Estelle; Djurdjevic, Vladimir; Evans, Jason P.; Fealy, Rowan; Feldmann, Hendrik; Jacob, Daniela; Jayanarayanan, Sanjay; Katzfey, Jack; Keuler, Klaus; Kittel, Christoph; Kurnaz, Mehmet Levent; Laprise, Rene; Lionello, Piero; McGinnis, Seth; Mercogliano, Paola; Nabat, Pierre; Öztürk, Tuğba; Panitz, Hans-Jurgen; Paquin, Dominique; Pieczka, Ildiko; Raffaele, Francesca; Remedio, Armelle Reca; Scinocca, John; Sevault, Florence; Somot, Samuel; Steger, Christian; Tangang, Fredolin; Teichmann, Claas; Termonia, Piet; Thatcher, Marcus; Torma, Csaba; van Meijgaard, Erik; Vautard, Robert; Warrach-Sagi, Kirsten; Winger, Katja; Zittis, George; Önol, BarışThe collaboration between the Coordinated Regional Climate Downscaling Experiment (CORDEX) and the Earth System Grid Federation (ESGF) provides open access to an unprecedented ensemble of regional climate model (RCM) simulations, across the 14 CORDEX continental-scale domains, with global coverage. These simulations have been used as a new line of evidence to assess regional climate projections in the latest contribution of the Working Group I (WGI) to the IPCC Sixth Assessment Report (AR6), particularly in the regional chapters and the Atlas. Here, we present the work done in the framework of the Copernicus Climate Change Service (C3S) to assemble a consistent worldwide CORDEX grand ensemble, aligned with the deadlines and activities of IPCC AR6. This work addressed the uneven and heterogeneous availability of CORDEX ESGF data by supporting publication in CORDEX domains with few archived simulations and performing quality control. It also addressed the lack of comprehensive documentation by compiling information from all contributing regional models, allowing for an informed use of data. In addition to presenting the worldwide CORDEX dataset, we assess here its consistency for precipitation and temperature by comparing climate change signals in regions with overlapping CORDEX domains, obtaining overall coincident regional climate change signals. The C3S CORDEX dataset has been used for the assessment of regional climate change in the IPCC AR6 (and for the interactive Atlas) and is available through the Copernicus Climate Data Store (CDS).