Yazar "Sticklen, Jon" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Yayın Integrating vendors into cooperative design practices(Taylor & Francis Ltd, 2009) Eskil, Mustafa Taner; Sticklen, JonThis paper describes a new approach to cooperative design using distributed, off-the-shelf design components. The ultimate goal is to enable assemblers to rapidly design their products and perform simulations using parts that are offered by a global network of suppliers. The obvious way to realise this goal would be to transfer desired component models to the client computer. However, in order to protect proprietary data, manufacturers are reluctant to share their design models without non-disclosure agreements, which can take in the order of months to put in place. Due to bandwidth limitations, it is also impractical to keep the models at the manufacturer site and do simulations by simple message passing. To deal with these impediments in e-commerce the modular distributed modelling (MDM) methodology is leveraged, which enables transfer of component models while hiding proprietary implementation details. MDM methodology with routine design (RD) methods are augmented to realise a platform (RD-MDM) that enables automatic selection of secured off-the-shelf design components over the Internet, integration of these components in an assembly, running simulations for design testing and publishing the approved product model as a secured MDM agent. This paper demonstrates the capabilities of the RD-MDM platform on a fuel cell-battery hybrid vehicle design example.Yayın The routine design-modular distributed modeling platform for distributed routine design and simulation-based testing of distributed assemblies(Cambridge University Press, 2008-12-12) Eskil, Mustafa Taner; Sticklen, Jon; Radcliffe, ClarkIn this paper we describe a conceptual framework and implementation of a tool that supports task-directed, distributed routine design (RD) augmented with simulation-based design testing. In our research, we leverage the modular distributed modeling (MDM) methodology to simulate the interaction of design components in an assembly. The major improvement we have made in the RD methodology is to extend it with the capabilities of incorporating remotely represented off-the-shelf components in design and simulation-based testing of a distributed assembly. The deliverable of our research is the RD-MDM platform, which is capable of automatically selecting intellectually protected off the shelf design components over the Internet, integrating these components in an assembly, running simulations for design testing, and publishing the approved design without disclosing the proprietary information.