Algebraic connectivity and degree sequences of trees
Yükleniyor...
Dosyalar
Tarih
2009-01-15
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Inc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
We investigate the structure of trees that have minimal algebraic connectivity among all trees with a given degree sequence. We show that such trees are caterpillars and that the vertex degrees are non-decreasing on every path on non-pendant vertices starting at the characteristic set of the Fiedler vector.
Açıklama
Anahtar Kelimeler
Algebraic connectivity, Graph Laplacian, Tree, Fiedler vector, Dirichlet matrix, Degree sequence, Graph in graph theory, Signless Laplacian, Graphs
Kaynak
Linear Algebra and Its Applications
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
430
Sayı
2-3
Künye
Bıyıkoğlu, T., & Leydold, J. (2009). Algebraic connectivity and degree sequences of trees. Linear Algebra and its Applications, 430(2), 811-817. doi:10.1016/j.laa.2008.09.030