Graphs of given order and size and minimum algebraic connectivity
Yükleniyor...
Dosyalar
Tarih
2012-04-01
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Inc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The structure of connected graphs of given size and order that have minimal algebraic connectivity is investigated. It is shown that they must consist of a chain of cliques. Moreover, an upper bound for the number of maximal cliques of size 2 or larger is derived.
Açıklama
Anahtar Kelimeler
Algebraic connectivity, Graph Laplacian, Fiedler vector, AutoGraphiX, Trees, Algebra, Graph in graph theory, Signless laplacian, Connected graph, Fiedler vectors, Maximal clique, Upper bound, Linear algebra, Mathematical techniques
Kaynak
Linear Algebra and Its Applications
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
436
Sayı
7
Künye
Bıyıkoğlu, T. & Leydold, J. (2012). Graphs of given order and size and minimum algebraic connectivity. Linear Algebra and its Applications, 436(7), 2067-2077. doi:10.1016/j.laa.2011.09.026