Gluing formulas for volume forms on representation varieties of surfaces

Yükleniyor...
Küçük Resim

Tarih

2025-08-06

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Nature

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Let Σg,n be a compact oriented surface of genus g≥4 with n boundary components. Due to Witten, the twisted Reidemeister torsion coincides with a power of the Atiyah–Bott–Goldman–Narasimhan symplectic form on the space of representations of π1(Σg,0) in any semi-simple Lie group. In the present paper, we first obtain a multiplicative gluing formula for the twisted Reidemeister torsion of Σg,0 in terms of torsions of Σg1,1,Σg2,1, and boundary circle S1, where g=g1+g2 and g1,g2≥2. Then, by using Heusener and Porti’s results on Σg,n, we show that the symplectic volume form on the representation variety of Σg,0 can be expressed as a product of the holomorphic symplectic volume forms on the relative representation varieties of surfaces Σg1,1 and Σg2,1.

Açıklama

Anahtar Kelimeler

Reidemeister torsion, Representation variety, Volume form, Torsion, Spaces

Kaynak

Beitrage zur Algebra und Geometrie

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

Sayı

Künye

Erdal, E. D. (2025). Gluing formulas for volume forms on representation varieties of surfaces. Beitrage zur Algebra und Geometrie. https://doi.org/10.1007/s13366-025-00801-1