Gluing formulas for volume forms on representation varieties of surfaces
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Let Σg,n be a compact oriented surface of genus g≥4 with n boundary components. Due to Witten, the twisted Reidemeister torsion coincides with a power of the Atiyah–Bott–Goldman–Narasimhan symplectic form on the space of representations of π1(Σg,0) in any semi-simple Lie group. In the present paper, we first obtain a multiplicative gluing formula for the twisted Reidemeister torsion of Σg,0 in terms of torsions of Σg1,1,Σg2,1, and boundary circle S1, where g=g1+g2 and g1,g2≥2. Then, by using Heusener and Porti’s results on Σg,n, we show that the symplectic volume form on the representation variety of Σg,0 can be expressed as a product of the holomorphic symplectic volume forms on the relative representation varieties of surfaces Σg1,1 and Σg2,1.