Forced Korteweg-de Vries-Burgers equation in an elastic tube filled with a variable viscosity fluid

dc.authorid0000-0002-7280-1363
dc.authorid0000-0001-8590-3396
dc.contributor.authorGaik, Tay Kimen_US
dc.contributor.authorDemiray, Hilmien_US
dc.date.accessioned2015-01-15T23:01:05Z
dc.date.available2015-01-15T23:01:05Z
dc.date.issued2008-11
dc.departmentIşık Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümüen_US
dc.departmentIşık University, Faculty of Arts and Sciences, Department of Mathematicsen_US
dc.description.abstractIn the present work, treating the arteries as a prestressed thin walled elastic tube with a stenosis and the blood as a Newtonian fluid with variable viscosity, we have studied the propagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method [Jeffrey A, Kawahara T. Asymptotic methods in nonlinear wave theory. Boston: Pitman; 1981]. We obtained the forced Korteweg-de Vries-Burgers (FKdVB) equation with variable coefficients as the evolution equation. By use of the coordinate transformation, it is shown that this type of evolution equation admits a progressive wave solution with variable wave speed. As might be expected from physical consideration, the wave speed reaches its maximum value at the center of stenosis and gets smaller and smaller as we go away from the center of the stenosis. The variations of radial displacement and the fluid pressure with the distance parameter are also examined numerically. The results seem to be consistent with physical intuition.en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationGaik, T. K. & Demiray, H. (2008). Forced korteweg-de Vries–Burgers equation in an elastic tube filled with a variable viscosity fluid. Chaos, Solitons and Fractals, 38(4), 1134-1145. doi:10.1016/j.chaos.2007.02.005en_US
dc.identifier.doi10.1016/j.chaos.2007.02.005
dc.identifier.endpage1145
dc.identifier.issn0960-0779
dc.identifier.issue4
dc.identifier.scopus2-s2.0-45849150396
dc.identifier.scopusqualityQ1
dc.identifier.startpage1134
dc.identifier.urihttps://hdl.handle.net/11729/281
dc.identifier.urihttp://dx.doi.org/10.1016/j.chaos.2007.02.005
dc.identifier.volume38
dc.identifier.wosWOS:000258023800029
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScience Citation Index Expanded (SCI-EXPANDED)en_US
dc.institutionauthorDemiray, Hilmien_US
dc.institutionauthorid0000-0001-8590-3396
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofChaos, Solitons and Fractalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonlinear-Wavesen_US
dc.subjectSolitary wavesen_US
dc.subjectViscous-fluiden_US
dc.subjectPressureen_US
dc.subjectAsymptotic methodsen_US
dc.subjectBurger's equationsen_US
dc.subjectCo ordinate transformationen_US
dc.subjectComposite mediumen_US
dc.subjectDifference equationsen_US
dc.subjectDifferential equationsen_US
dc.subjectDistance parametersen_US
dc.subjectElastic tubesen_US
dc.subjectElsevier (CO)en_US
dc.subjectEvolution equationsen_US
dc.subjectFluid dynamicsen_US
dc.subjectFluid mechanicsen_US
dc.subjectFluid pressuresen_US
dc.subjectFluidsen_US
dc.subjectHydrodynamicsen_US
dc.subjectKorteweg-de Vries equationen_US
dc.subjectLongwave approximation (LWA)en_US
dc.subjectMathematical transformationsen_US
dc.subjectNewtonian fluidsen_US
dc.subjectNewtonian liquidsen_US
dc.subjectNonlinear equationsen_US
dc.subjectPrestresseden_US
dc.subjectRadial displacementsen_US
dc.subjectReductive perturbation method (RPM)en_US
dc.subjectSolitonsen_US
dc.subjectThin-walleden_US
dc.subjectTubes (components)en_US
dc.subjectVariable coefficientsen_US
dc.subjectVariable viscosityen_US
dc.subjectVariations ofen_US
dc.subjectViscosityen_US
dc.subjectWater wavesen_US
dc.subjectWavesen_US
dc.subjectWave speedsen_US
dc.subjectPerturbation techniques
dc.subjectThin walled structures
dc.subjectCo-ordinate transformation
dc.subjectKorteweg-de Vries-Burgers equations
dc.subjectLong-wave approximation
dc.subjectProgressive wave solutions
dc.subjectReductive perturbation methods
dc.subjectVariable wave speed
dc.titleForced Korteweg-de Vries-Burgers equation in an elastic tube filled with a variable viscosity fluiden_US
dc.typeArticleen_US
dspace.entity.typePublication

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
281.pdf
Boyut:
597.18 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Publisher's Version