Quasiconformal harmonic mappings related to Janowski alpha-spirallike functions

Yükleniyor...
Küçük Resim

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Inst Physics

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Let f = h(z) + g(z) be a univalent sense-preserving harmonic mapping of the open unit disc D = {z/vertical bar z vertical bar < 1}. If f satisfies the condition vertical bar omega(z)vertical bar = vertical bar g'(z)/h'(z)vertical bar < k, 0 < k < 1 the f is called k-quasiconformal harmonic mapping in D. In the present paper we will give some properties of the class of k-quasiconformal mappings related to Janowski alpha-spirallike functions.

Açıklama

Anahtar Kelimeler

K-quasiconformal mapping, Distortion theorem, Growth theorem, Coefficient inequality, Conformal mapping, Harmonic analysis, Distortion theorems, Harmonic mappings, Quasiconformal, Unit disc, Harmonic functions, Analytic function, Subordination, Multivalent functions

Kaynak

AIP Conference Proceedings

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

1602

Sayı

Künye

Aydoǧan, S. M. & Polatoǧlu, Y. (2014). Quasiconformal harmonic mappings related to janowski alpha-spirallike functions. Paper presented at the AIP Conference Proceedings, 1602, 779-784. doi:10.1063/1.4882574