Quasiconformal harmonic mappings related to Janowski alpha-spirallike functions
Yükleniyor...
Dosyalar
Tarih
2014
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Amer Inst Physics
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let f = h(z) + g(z) be a univalent sense-preserving harmonic mapping of the open unit disc D = {z/vertical bar z vertical bar < 1}. If f satisfies the condition vertical bar omega(z)vertical bar = vertical bar g'(z)/h'(z)vertical bar < k, 0 < k < 1 the f is called k-quasiconformal harmonic mapping in D. In the present paper we will give some properties of the class of k-quasiconformal mappings related to Janowski alpha-spirallike functions.
Açıklama
Anahtar Kelimeler
K-quasiconformal mapping, Distortion theorem, Growth theorem, Coefficient inequality, Conformal mapping, Harmonic analysis, Distortion theorems, Harmonic mappings, Quasiconformal, Unit disc, Harmonic functions, Analytic function, Subordination, Multivalent functions
Kaynak
AIP Conference Proceedings
WoS Q Değeri
N/A
Scopus Q Değeri
N/A
Cilt
1602
Sayı
Künye
Aydoǧan, S. M. & Polatoǧlu, Y. (2014). Quasiconformal harmonic mappings related to janowski alpha-spirallike functions. Paper presented at the AIP Conference Proceedings, 1602, 779-784. doi:10.1063/1.4882574