Tweet sentiment analysis for cryptocurrencies
dc.authorid | 0000-0002-8649-6013 | |
dc.contributor.author | Şaşmaz, Emre | en_US |
dc.contributor.author | Tek, Faik Boray | en_US |
dc.date.accessioned | 2022-05-20T13:44:56Z | |
dc.date.available | 2022-05-20T13:44:56Z | |
dc.date.issued | 2021-10-13 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | Many traders believe in and use Twitter tweets to guide their daily cryptocurrency trading. In this project, we investigated the feasibility of automated sentiment analysis for cryptocurrencies. For the study, we targeted one cryptocurrency (NEO) altcoin and collected related data. The data collection and cleaning were essential components of the study. First, the last five years of daily tweets with NEO hashtags were obtained from Twitter. The collected tweets were then filtered to contain or mention only NEO. We manually tagged a subset of the tweets with positive, negative, and neutral sentiment labels. We trained and tested a Random Forest classifier on the labeled data where the test set accuracy reached 77%. In the second phase of the study, we investigated whether the daily sentiment of the tweets was correlated with the NEO price. We found positive correlations between the number of tweets and the daily prices, and between the prices of different crypto coins. We share the data publicly. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Şaşmaz, E. & Tek, F. B. (2021). Tweet sentiment analysis for cryptocurrencies. 2021 6th International Conference on Computer Science and Engineering (UBMK), 613-618. doi:10.1109/UBMK52708.2021.9558914 | en_US |
dc.identifier.doi | 10.1109/UBMK52708.2021.9558914 | |
dc.identifier.endpage | 618 | |
dc.identifier.isbn | 9781665429085 | |
dc.identifier.isbn | 9781665429078 | |
dc.identifier.isbn | 9781665429092 | |
dc.identifier.issn | 2521-1641 | |
dc.identifier.issn | 2768-0592 | |
dc.identifier.scopus | 2-s2.0-85125868484 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 613 | |
dc.identifier.uri | https://hdl.handle.net/11729/4345 | |
dc.identifier.uri | http://dx.doi.org/10.1109/UBMK52708.2021.9558914 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Şaşmaz, Emre | en_US |
dc.institutionauthor | Tek, Faik Boray | en_US |
dc.institutionauthorid | 0000-0002-8649-6013 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2021 6th International Conference on Computer Science and Engineering (UBMK) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | BERT | en_US |
dc.subject | Cryptocurrencies | en_US |
dc.subject | Random forest algorithm | en_US |
dc.subject | Sentiment analysis | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Costs | en_US |
dc.subject | Electronic money | en_US |
dc.subject | Random forests | en_US |
dc.subject | Social networking (online) | en_US |
dc.subject | Cryptocurrency | en_US |
dc.subject | Data cleaning | en_US |
dc.subject | Data collection | en_US |
dc.subject | Hashtags | en_US |
dc.subject | Labeled data | en_US |
dc.subject | Positive/negative | en_US |
dc.subject | Random forest classifier | en_US |
dc.subject | Decision trees | en_US |
dc.title | Tweet sentiment analysis for cryptocurrencies | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |