Semiregular trees with minimal Laplacian spectral radius

Yükleniyor...
Küçük Resim

Tarih

2010-04-15

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

A semiregular tree is a tree where all non-pendant vertices have the same degree. Among all semiregular trees with fixed order and degree, a graph with minimal (adjacency/Laplacian) spectral radius is a caterpillar. Counter examples show that the result cannot be generalized to the class of trees with a given (non-constant) degree sequence.

Açıklama

The first author is supported by Turkish Academy of Sciences through Young Scientist Award Program (TÜBA-GEBİP/2009).

Anahtar Kelimeler

Graph Laplacian, Adjacency matrix, Eigenvectors, Spectral radius, Perron vector, Tree, Index, Graph in graph theory, Signless Laplacian, Algebraic connectivity, Adjacency matrices, Perron vectors, Spectral radii, Eigenvalues and eigenfunctions, Laplace transforms

Kaynak

Linear Algebra and Its Applications

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

432

Sayı

9
SI

Künye

Bıyıkoğlu, T. & Leydold, J. (2010). Semiregular trees with minimal laplacian spectral radius. Linear Algebra and its Applications, 432(9), 2335-2341. doi:10.1016/j.laa.2009.06.014