An essential approach to the architecture of diatomic molecules. 1. Basic theory
Yükleniyor...
Dosyalar
Tarih
2004
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
We consider the quantum mechanical description of a diatomic molecule of "electronic mass" m0e, "internuclear distance" R0, and "total electronic energy" E0e. We apply to it the Born-Oppenheimer approximation, together with the cast E 0em0eR02 ? h2 (we established previously), written for the electronic description (with fixed nuclei). Our approach yields an essential relationship for T0, the classical vibration period, at the total electronic energy E0e, i.e., T0 = [4?2/(?n1n2h)] ?gM0meR02; M0 is the reduced mass of the nuclei; me is the mass of the electron; g is a dimensionless and relativistically invariant coefficient, roughly around unity; this is a quantity associated with just the electronic structure in consideration; thus, it remains practically the same for bonds bearing similar electronic configurations; n1 and n2 are the principal quantum numbers of electrons making up the bond(s) of the diatomic molecule in hand; because of quantum defects, they are not integer numbers. The above relationship holds generally, although the quantum numbers n1 and n2 need to be refined. The related task is undertaken in our next article, yielding a whole new systematization regarding all diatomic molecules.
Açıklama
Anahtar Kelimeler
Light speed, Light (visible radiation), Relativity
Kaynak
Optika i Spektroskopiya
WoS Q Değeri
Scopus Q Değeri
N/A
Cilt
97
Sayı
5
Künye
Yarman, N. T. (2004). An essential approach to the architecture of diatomic molecules. 1. Basic theory. Optika i Spektroskopiya, 97(5), 730-737.