A novel similarity based unsupervised technique for training convolutional filters
dc.authorid | 0000-0001-9033-8934 | |
dc.authorid | 0000-0003-0298-0690 | |
dc.contributor.author | Erkoç, Tuğba | en_US |
dc.contributor.author | Eskil, Mustata Taner | en_US |
dc.date.accessioned | 2023-06-05T07:30:38Z | |
dc.date.available | 2023-06-05T07:30:38Z | |
dc.date.issued | 2023-05-17 | |
dc.department | Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering | en_US |
dc.department | Işık University, Pattern Recognition and Machine Intelligence Laboratory | en_US |
dc.description | This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 118E293. | en_US |
dc.description.abstract | Achieving satisfactory results with Convolutional Neural Networks (CNNs) depends on how effectively the filters are trained. Conventionally, an appropriate number of filters is carefully selected, the filters are initialized with a proper initialization method and trained with backpropagation over several epochs. This training scheme requires a large labeled dataset, which is costly and time-consuming to obtain. In this study, we propose an unsupervised approach that extracts convolutional filters from a given dataset in a self-organized manner by processing the training set only once without using backpropagation training. The proposed method allows for the extraction of filters from a given dataset in the absence of labels. In contrast to previous studies, we no longer need to select the best number of filters and a suitable filter weight initialization scheme. Applying this method to the MNIST, EMNIST-Digits, Kuzushiji-MNIST, and Fashion-MNIST datasets yields high test performances of 99.19%, 99.39%, 95.03%, and 90.11%, respectively, without applying backpropagation training or using any preprocessed and augmented data. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Erkoç, T. & Eskil, M. T. (2023). A novel similarity based unsupervised technique for training convolutional filters. IEEE Access, 11, 49393-49408. doi:10.1109/ACCESS.2023.3277253 | en_US |
dc.identifier.doi | 10.1109/ACCESS.2023.3277253 | |
dc.identifier.endpage | 49408 | |
dc.identifier.issn | 2169-3536 | |
dc.identifier.scopus | 2-s2.0-85160234955 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 49393 | |
dc.identifier.uri | https://hdl.handle.net/11729/5566 | |
dc.identifier.uri | http://dx.doi.org/10.1109/ACCESS.2023.3277253 | |
dc.identifier.volume | 11 | |
dc.identifier.wos | WOS:001006425600001 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | Science Citation Index Expanded (SCI-EXPANDED) | en_US |
dc.institutionauthor | Erkoç, Tuğba | en_US |
dc.institutionauthor | Eskil, Mustata Taner | en_US |
dc.institutionauthorid | 0000-0001-9033-8934 | |
dc.institutionauthorid | 0000-0003-0298-0690 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | IEEE Access | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Backpropagation | en_US |
dc.subject | Computer architecture | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Feature extraction | en_US |
dc.subject | Microprocessors | en_US |
dc.subject | Task analysis | en_US |
dc.subject | Training | en_US |
dc.subject | Unsupervised learning | en_US |
dc.subject | Extraction | en_US |
dc.subject | Job analysis | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Backpropagation training | en_US |
dc.subject | Initialization methods | en_US |
dc.subject | Labeled dataset | en_US |
dc.subject | Training schemes | en_US |
dc.subject | Unsupervised techniques | en_US |
dc.subject | Network | en_US |
dc.subject | Representation | en_US |
dc.subject | Neocognitron | en_US |
dc.title | A novel similarity based unsupervised technique for training convolutional filters | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- A_Novel_Similarity_Based_Unsupervised_Technique_for_Training_Convolutional_Filters.pdf
- Boyut:
- 3.47 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: