Retinal disease classification using optical coherence tomography angiography images
dc.authorid | 0009-0000-3453-1502 | |
dc.authorid | 0009-0007-4212-5484 | |
dc.authorid | 0000-0002-8649-6013 | |
dc.authorid | 0000-0001-6309-4524 | |
dc.contributor.author | Aydın, Ömer Faruk | en_US |
dc.contributor.author | Nazlı, Muhammet Serdar | en_US |
dc.contributor.author | Tek, Faik Boray | en_US |
dc.contributor.author | Turkan, Yasemin | en_US |
dc.date.accessioned | 2025-08-15T11:38:41Z | |
dc.date.available | 2025-08-15T11:38:41Z | |
dc.date.issued | 2024 | |
dc.department | Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering | en_US |
dc.description | This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant Number 122E509. | en_US |
dc.description.abstract | Optical Coherence Tomography Angiography (OCTA) is a non-invasive imaging modality widely used for the detailed visualization of retinal microvasculature, which is crucial for diagnosing and monitoring various retinal diseases. However, manual interpretation of OCTA images is labor-intensive and prone to variability, highlighting the need for automated classification methods. This study presents an aproach that utilizes transfer learning to classify OCTA images into different retinal disease categories, including age-related macular degeneration (AMD) and diapethic retinopathy (DR). We used the OCTA-500 dataset [1], the largest publicly available retinal dataset that contains images from 500 subjects with diverse retinal conditions. To address the class imbalance, we employed k-fold cross-validation and grouped various other conditions under the 'OTHERS' class. Additionally, we compared the performance of the ResNet50 model with OCTA inputs to that of the ResNet50 and RetFound (Vision Transformer) models with OCT inputs to assess the efficiency of OCTA in retinal condition classification. In the three-class (AMD, D R, Normal) classification, ResNet50-OCTA o utperformed ResNet50-OCT, but slightly underperformed compared to RetFound-OCT, which was pretrained on a large OCT dataset. In the four-class (AMD, DR, Normal, Others) classification, ResNet50-OCTA and RetFound-OCT achieved similar classification a ccuracies. This study establishes a baseline for retinal condition classification using the OCTA-500 dataset and provides a comparison between OCT and OCTA input modalities. | en_US |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Aydın, Ö. F., Nazlı, M. S, Tek, F. B. & Turkan, Y. (2024). Retinal disease classification using optical coherence tomography angiography images. UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering, 884-889. doi:10.1109/UBMK63289.2024.10773610 | en_US |
dc.identifier.doi | 10.1109/UBMK63289.2024.10773610 | |
dc.identifier.endpage | 889 | |
dc.identifier.isbn | 9798350365887 | |
dc.identifier.scopus | 2-s2.0-85215510113 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 884 | |
dc.identifier.uri | https://hdl.handle.net/11729/6616 | |
dc.identifier.uri | https://doi.org/10.1109/UBMK63289.2024.10773610 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Turkan, Yasemin | en_US |
dc.institutionauthorid | 0000-0001-6309-4524 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | UBMK 2024 - Proceedings: 9th International Conference on Computer Science and Engineering | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Class imbalance | en_US |
dc.subject | Deep learning | en_US |
dc.subject | Image classification | en_US |
dc.subject | k-Fold Cross- Validation | en_US |
dc.subject | OCTA | en_US |
dc.subject | Optical coherence tomography angiography | en_US |
dc.subject | ResNet50 | en_US |
dc.subject | Retinal diseases | en_US |
dc.subject | Eye protection | en_US |
dc.subject | Optical coherence tomography | en_US |
dc.subject | Optical tomography | en_US |
dc.subject | Coherence tomography | en_US |
dc.subject | K fold cross validations | |
dc.subject | Optical- | en_US |
dc.subject | Angiography | en_US |
dc.title | Retinal disease classification using optical coherence tomography angiography images | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Retinal_Disease_Classification_Using_Optical_Coherence_Tomography_Angiography_Images.pdf
- Boyut:
- 1.97 MB
- Biçim:
- Adobe Portable Document Format
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: