Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples

Yükleniyor...
Küçük Resim

Tarih

2022-03

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Araştırma projeleri

Organizasyon Birimleri

Dergi sayısı

Özet

Deep neural network (DNN) architectures are considered to be robust to random perturbations. Nevertheless, it was shown that they could be severely vulnerable to slight but carefully crafted perturbations of the input, termed as adversarial samples. In recent years, numerous studies have been conducted in this new area called ``Adversarial Machine Learning” to devise new adversarial attacks and to defend against these attacks with more robust DNN architectures. However, most of the current research has concentrated on utilising model loss function to craft adversarial examples or to create robust models. This study explores the usage of quantified epistemic uncertainty obtained from Monte-Carlo Dropout Sampling for adversarial attack purposes by which we perturb the input to the shifted-domain regions where the model has not been trained on. We proposed new attack ideas by exploiting the difficulty of the target model to discriminate between samples drawn from original and shifted versions of the training data distribution by utilizing epistemic uncertainty of the model. Our results show that our proposed hybrid attack approach increases the attack success rates from 82.59% to 85.14%, 82.96% to 90.13% and 89.44% to 91.06% on MNIST Digit, MNIST Fashion and CIFAR-10 datasets, respectively.

Açıklama

Anahtar Kelimeler

Adversarial machine learning, Deep learning, Loss maximization, Multimedia security, Uncertainty, Deep neural networks, Monte Carlo methods, Network architecture, Epistemic uncertainties, Learning models, Machine-learning, Neural network architecture, Random perturbations, Uncertainty analysis, Neural network

Kaynak

Multimedia Tools and Applications

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

81

Sayı

8

Künye

Tuna, Ö. F., Çatak, F. Ö. & Eskil, M. T. (2022). Exploiting epistemic uncertainty of the deep learning models to generate adversarial samples. Multimedia Tools and Applications, 81(8) 11479-11500. doi:10.1007/s11042-022-12132-7