Drought analysis based on nonparametric multivariate standardized drought index in the Seyhan River Basin
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Drought is a detrimental natural hazard that is a threat to the social and ecological aspects of life. Unlike other natural hazards, drought occurs slowly and gradually, making it difficult to detect its formation, leading to severe consequences in the affected area. Therefore, precise and reliable monitoring of drought is crucial to implement effective drought mitigation strategies. Drought indices are significant tools for drought monitoring; single variable indices are quite frequently used in the literature to assess drought conditions. Although these indices are generally accurate at characterizing the specific type of drought they were developed for, they fail to provide a comprehensive representation of drought conditions. Hence, this study applies a nonparametric multivariate standardized drought index (MSDI) that integrates meteorological and hydrological drought to investigate the dynamics of drought events within the Seyhan River Basin (SRB). Trend analyses were conducted to detect any directional changes in the drought patterns within the SRB. Additionally, this study examined the potential effects of El Nino-Southern Oscillation events on the MSDI series to determine their impact on drought conditions in the SRB. The results indicate that the MSDI outperforms the single variable indices in characterizing drought conditions within the basin. The calculations conducted for 5 different time scales 1, 3, 6, 9 and 12-months showed satisfactory results in multivariate analysis of drought. Upon examining the trend analyses, MSDI series showed an insignificant negative trend in all stations within the SRB. The MSDI series was strongly influenced by Nino 3.4 and Arctic Oscillation (AO) indices while sunspot activities had a relatively weak impact on the MSDI series.