ComStreamClust: a communicative multi-agent approach to text clustering in streaming data
dc.authorid | 0000-0002-9619-8247 | |
dc.contributor.author | Najafi, Ali | en_US |
dc.contributor.author | Gholipour-Shilabin, Araz | en_US |
dc.contributor.author | Dehkharghani, Rahim | en_US |
dc.contributor.author | Mohammadpur-Fard, Ali | en_US |
dc.contributor.author | Asgari-Chenaghlu, Meysam | en_US |
dc.date.accessioned | 2022-09-01T07:59:23Z | |
dc.date.available | 2022-09-01T07:59:23Z | |
dc.date.issued | 2023-12 | |
dc.department | Işık Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering, Department of Computer Engineering | en_US |
dc.description.abstract | Topic detection is the task of determining and tracking hot topics in social media. Twitter is arguably the most popular platform for people to share their ideas with others about different issues. One such prevalent issue is the COVID-19 pandemic. Detecting and tracking topics on these kinds of issues would help governments and healthcare companies deal with this phenomenon. In this paper, we propose a novel, multi-agent, communicative clustering approach, so-called ComStreamClust for clustering sub-topics inside a broader topic, e.g., the COVID-19 and the FA CUP. The proposed approach is parallelizable, and can simultaneously handle several data-point. The LaBSE sentence embedding is used to measure the semantic similarity between two tweets. ComStreamClust has been evaluated by several metrics such as keyword precision, keyword recall, and topic recall. Based on topic recall on different number of keywords, ComStreamClust obtains superior results when compared to the existing methods. | en_US |
dc.identifier.citation | Najafi, A., Gholipour-Shilabin, A., Dehkharghani, R., Mohammadpur-Fard, A. & Asgari-Chenaghlu, M. (2023). ComStreamClust: a communicative multi-agent approach to text clustering in streaming data. Annals of Data Science, 10(6) 1583-1605. doi:10.1007/s40745-022-00426-4 | en_US |
dc.identifier.doi | 10.1007/s40745-022-00426-4 | |
dc.identifier.endpage | 1605 | |
dc.identifier.issn | 2198-5804 | |
dc.identifier.issue | 6 | |
dc.identifier.scopus | 2-s2.0-85133639965 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 1583 | |
dc.identifier.uri | https://hdl.handle.net/11729/4809 | |
dc.identifier.uri | http://dx.doi.org/10.1007/s40745-022-00426-4 | |
dc.identifier.volume | 10 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Dehkharghani, Rahim | en_US |
dc.institutionauthorid | 0000-0002-9619-8247 | |
dc.language.iso | en | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.relation.ispartof | Annals of Data Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | LaBSE | en_US |
dc.subject | Semantic similarity | en_US |
dc.subject | Stream clustering | en_US |
dc.subject | Topic detection | en_US |
dc.subject | Multi agent systems | en_US |
dc.subject | Semantics | en_US |
dc.subject | Social networking (online) | en_US |
dc.subject | Hot topics | en_US |
dc.subject | Multi-agent approach | en_US |
dc.subject | Social media | en_US |
dc.subject | Streaming data | en_US |
dc.subject | Text clustering | en_US |
dc.subject | COVID-19 | en_US |
dc.subject | Event detection | en_US |
dc.subject | en_US | |
dc.subject | Social networking | en_US |
dc.title | ComStreamClust: a communicative multi-agent approach to text clustering in streaming data | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- ComStreamClust_a_communicative_multi_agent_approach_to_text_clustering_in_streaming_data.pdf
- Boyut:
- 1.59 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: