Semianalytical solution of unsteady quasi-one-dimensional cavitating nozzle flows

Yükleniyor...
Küçük Resim

Tarih

2014-06

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Unsteady quasi-one-dimensional bubbly cavitating nozzle flows are considered by employing a homogeneous bubbly liquid flow model, where the nonlinear dynamics of cavitating bubbles is described by a modified Rayleigh-Plesset equation. The model equations are uncoupled by scale separation leading to two evolution equations, one for the flow speed and the other for the bubble radius. The initial-boundary value problem of the evolution equations is then formulated and a semianalytical solution is constructed. The solution for the mixture pressure, the mixture density, and the void fraction are then explicitly related to the solution of the evolution equations. In particular, a relation independent of flow dimensionality is established between the mixture pressure, the void fraction, and the flow dilation for unsteady bubbly cavitating flows in the model considered. The steady-state compressible and incompressible limits of the solution are also discussed. The solution algorithm is first validated against the numerical solution of Preston et al. [Phys Fluids 14:300-311, 2002] for an essentially quasi-one-dimensional nozzle. Results obtained for a two-dimensional nozzle seem to be in good agreement with the mean pressure measurements at the nozzle wall for attached cavitation sheets despite the observed two-dimensional cavitation structures.

Açıklama

Anahtar Kelimeler

Evolution equations, Nonlinear bubble dynamics, Quasi-one-dimensional nozzle flows, Unsteady cavitating flows, Converging-diverging nozzle, Gas-bubbles, Shock-waves, Relative motion, Liquid, Dynamics, Equations, Mixtures, Fission

Kaynak

Journal of Engineering Mathematics

WoS Q Değeri

Q4
Q4

Scopus Q Değeri

Q2

Cilt

86

Sayı

1

Künye

Delale, C. F., Pasinlioğlu, Ş., Başkaya, Z. & Schnerr, G. H. (2014). Semianalytical solution of unsteady quasi-one-dimensional cavitating nozzle flows. Journal of Engineering Mathematics, 86(1), 49-70. doi:10.1007/s10665-013-9645-6