El yazısı rakam sınıflandırması için gözetimsiz benzerlik tabanlı evrişimler
dc.authorid | 0000-0001-9033-8934 | |
dc.authorid | 0000-0003-0298-0690 | |
dc.contributor.author | Erkoç, Tuğba | en_US |
dc.contributor.author | Eskil, Mustafa Taner | en_US |
dc.date.accessioned | 2022-10-31T16:28:43Z | |
dc.date.available | 2022-10-31T16:28:43Z | |
dc.date.issued | 2022 | |
dc.department | Işık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.department | Işık University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering | en_US |
dc.description.abstract | Effective training of filters in Convolutional Neural Networks (CNN) ensures their success. In order to achieve good classification results in CNNs, filters must be carefully initialized, trained and fine-tuned. We propose an unsupervised method that allows the discovery of filters from the given dataset in a single epoch without specifying the number of filters hyper-parameter in convolutional layers. Our proposed method gradually builds the convolutional layers by a discovery routine that extracts a number of features that adequately represent the complexity of the input domain. The discovered filters represent the patterns in the domain, so they do not require any initialization method or backpropagation training for fine tuning purposes. Our method achieves 99.03% accuracy on MNIST dataset without applying any data augmentation techniques. | en_US |
dc.description.version | Publisher's Version | en_US |
dc.identifier.citation | Erkoç, T. & Eskil, M. T. (2022). El yazısı rakam sınıflandırması için gözetimsiz benzerlik tabanlı evrişimler. Paper presented at the 2022 30th Signal Processing and Communications Applications Conference (SIU), 1-4. doi:10.1109/SIU55565.2022.9864689 | en_US |
dc.identifier.endpage | 4 | |
dc.identifier.isbn | 9781665450928 | |
dc.identifier.isbn | 9781665450935 | |
dc.identifier.issn | 2165-0608 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://hdl.handle.net/11729/5101 | |
dc.identifier.uri | http://dx.doi.org/10.1109/SIU55565.2022.9864689 | |
dc.indekslendigikaynak | Scopus | en_US |
dc.institutionauthor | Erkoç, Tuğba | en_US |
dc.institutionauthor | Eskil, Mustafa Taner | en_US |
dc.institutionauthorid | 0000-0001-9033-8934 | |
dc.institutionauthorid | 0000-0003-0298-0690 | |
dc.language.iso | tr | en_US |
dc.peerreviewed | Yes | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.isversionof | 10.1109/SIU55565.2022.9864689 | |
dc.relation.journal | 2022 30th Signal Processing and Communications Applications Conference (SIU) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Convolutional neural networks | en_US |
dc.subject | Digit classification | en_US |
dc.subject | Unsupervised learning | en_US |
dc.subject | Convolution | en_US |
dc.subject | Backpropagation training | en_US |
dc.subject | Classification results | en_US |
dc.subject | CNN filters | en_US |
dc.subject | Convolutional neural network | en_US |
dc.subject | Fine tuning | en_US |
dc.subject | Handwritten digit classification | en_US |
dc.subject | Hyper-parameter | en_US |
dc.subject | Initialization methods | en_US |
dc.subject | Unsupervised method | en_US |
dc.subject | Object detection | en_US |
dc.subject | Deep learning | en_US |
dc.subject | IOU | en_US |
dc.title | El yazısı rakam sınıflandırması için gözetimsiz benzerlik tabanlı evrişimler | en_US |
dc.title.alternative | Unsupervised similarity based convolutions for handwritten digit classification | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- El_yazisi_rakam_siniflandirmasi_icin_gozetimsiz_benzerlik_tabanli_evrisimler.pdf
- Boyut:
- 1006.1 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Publisher's Version
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: