Neural network steering control algorithm for autonomous ground vehicles having signal time delay

dc.authorid0000-0002-3234-281X
dc.contributor.authorDinçmen, Erkinen_US
dc.date.accessioned2023-11-19T18:01:07Z
dc.date.available2023-11-19T18:01:07Z
dc.date.issued2024-03
dc.departmentIşık Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Makine Mühendisliği Bölümüen_US
dc.departmentIşık University, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineeringen_US
dc.description.abstractAn adaptive neural network–based steering control algorithm is proposed for yaw rate tracking of autonomous ground vehicles with in-vehicle signal time delay. The control system consists of two neural networks: the observer neural network and the controller neural network. The observer neural network adapts itself to the system dynamics during the training phase. Once trained, the observer neural network cooperates with the controller neural network, which constantly adapts itself during the control task. In this way, an adaptive and intelligent control structure is proposed. Through simulation studies, it has been shown that while a proportional-integral-derivative type steering controller fails to perform its control task in case of steering signal delay, the proposed control algorithm manages to adapt itself according to the control problem and achieves reference yaw rate tracking. The robustness of the control algorithm according to the signal delay magnitude has been demonstrated by simulation studies. A rigorous Lyapunov stability analysis of the control algorithm is also presented.en_US
dc.description.versionPublisher's Versionen_US
dc.identifier.citationDinçmen, E. (2023). Neural network steering control algorithm for autonomous ground vehicles having signal time delay. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 238(4), 720-736. doi:10.1177/09596518231199208en_US
dc.identifier.doi10.1177/09596518231199208
dc.identifier.endpage736
dc.identifier.issn0959-6518
dc.identifier.issn2041-3041
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85175958769
dc.identifier.scopusqualityQ2
dc.identifier.startpage720
dc.identifier.urihttps://hdl.handle.net/11729/5798
dc.identifier.urihttp://dx.doi.org/10.1177/09596518231199208
dc.identifier.volume238
dc.identifier.wosWOS:001094289400001
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakScience Citation Index Expanded (SCI-EXPANDED)en_US
dc.institutionauthorDinçmen, Erkinen_US
dc.institutionauthorid0000-0002-3234-281X
dc.language.isoenen_US
dc.peerreviewedYesen_US
dc.publicationstatusPublisheden_US
dc.publisherSAGE Publications Ltden_US
dc.relation.ispartofProceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive controlen_US
dc.subjectAutonomous vehiclesen_US
dc.subjectIntelligent controlen_US
dc.subjectNeural networksen_US
dc.subjectSignal delayen_US
dc.subjectSteering controlleren_US
dc.subjectYaw rate trackingen_US
dc.subjectAdaptive control systemsen_US
dc.subjectAutomobile steering equipmenten_US
dc.subjectControllersen_US
dc.subjectDelay control systemsen_US
dc.subjectProportional control systemsen_US
dc.subjectSteeringen_US
dc.subjectTiming circuitsen_US
dc.subjectTwo term control systemsen_US
dc.subjectAutonomous ground vehiclesen_US
dc.subjectSignal delaysen_US
dc.subjectSignal timeen_US
dc.subjectSteering controlen_US
dc.subjectYaw rateen_US
dc.subjectTime delayen_US
dc.subjectElectric vehicleen_US
dc.subjectStracking controlen_US
dc.titleNeural network steering control algorithm for autonomous ground vehicles having signal time delayen_US
dc.typeArticleen_US

Dosyalar

Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: