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Abstract 

 

In this research we examine the ability of West’s bubble test [1] in detecting speculative 

bubbles using Brock’s [2] intertemporal general equilibrium model of asset pricing as the 

basis for a simulation study.  In this setting, (1) the economy, by construction is efficient 

and produces the maximally possible amount of welfare for society, and (2) asset prices 

reflect the utility-maximizing behavior of consumers and the profit-maximizing behavior 

of firms.  We find that the West’s bubble test flag as “bubbles” in the simulated data yet 

the data is produced from an economy in which markets are efficient in welfare 

production.  
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1. Introduction 

 

The steep rises and following sudden declines in the real equity prices in the United 

States during the last three decades have attracted a lot of attention in the academia.  

Some researchers suggested that asset prices contain bubbles in addition to their 

fundamental values.  Theoretically, the equilibrium price of an asset is simply the present 

value of its expected future cash flows.  If market prices are driven by fundamentals, then 

fluctuations in equity prices should only reflect changes in their expected future 

dividends.  Are such movements in real equity prices during the last three decades really 

a reflection of changing market fundamentals or is it a result of self-fulfilling 

expectations that investors are willing to pay more for a stock today than its intrinsic 

value because they expect to be able to sell it even more in the future.   

A vast literature has emerged to study whether or not the observed volatility in equity 

prices is justified by fluctuations in expected dividends.  Shiller [3] argued that the ex-

post rational prices should be at least as variable as the observed prices because observed 

prices are based on expected dividends and do not have the variation introduced by future 

forecast errors.  However, Shiller [3] documents that observed prices are more volatile 

than the ex-post rational price series
1
.  Although Shiller [3] used his findings to argue 

about the validity of the present value model, other authors like Tirole [4], Blanchard and 

Watson [5] related Shiller’s [3] findings to the existence of rational bubbles. 

Prior research has hypothesized and examined bubbles that differ in nature. These can 

be classified, in general, as either exogenous or intrinsic bubbles based on if they are 

exogenous to or depend in a non-linear deterministic way on fundamentals. Exogenous 

bubbles are examined among others by Flood and Garber [7], Blanchard and Watson [5], 

                                                 
1
 See Akdeniz et al. [6] for a review.  
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and Flood and Garber [8], while papers analyzing intrinsic bubbles include Froot and 

Obstfeld [9] and Driffill and Sola [10].  

Several tests have been proposed in the literature for the presence of bubbles.
2
 Some 

of these require a specific parameterization of the bubble process; some investigate the 

stationary properties of price and dividend data and use unit root tests, autocorrelation 

patterns and cointegration tests. One of the tests that neither requires a specific 

parameterization of the bubble process nor uses integration/cointegration based analysis 

is West [1]. Due to its design, this test can - in principle - detect any bubble that is 

correlated with dividends. This is a desirable feature since overreaction to dividend news 

is argued to be an important factor contributing to the formation of a rational bubble 

(Shiller [11]). The test procedure involves sequentially testing the model specification 

and the no bubbles hypothesis.  In testing the latter, a set of parameters are calculated by 

two alternative methods. Under the assumption of no bubbles, the parameter estimates 

obtained from these two methods should be equal apart from sampling error, while in the 

presence of rational bubbles, the estimates should differ
3
.  

Although West’s test is considered to be a milestone test in detecting bubbles in data, 

it has been criticized in the literature in many ways
4
.  One such criticism involves the 

approximation used in calculating the test statistic. West’s test is similar to Hausman’s 

[12] test in that both are based on the comparison of two sets of estimates of the same 

coefficients.  However, as noted by Dezhbakhsh and Demirguc-Kunt [13], they differ in a 

major way. In Hausman, the coefficients of the equation of interest are estimated directly 

by using two different estimators.  In West, there is indirect estimation which involves 

                                                 
2
 See Gurkaynak [14] for a detailed survey of econometric tests of asset price bubbles. 

3
 See Casella [15] and Meese [16] for the applications of West’s test. 

4
 See Dezhbakhsh and Demirguc-Kunt [13] and Flood et al. [17]. 
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the expression of the coefficients of interest, namely the distributed lag coefficients, in 

terms of coefficients from Euler and dividend ARIMA equations. Since the relationship 

is nonlinear, the covariances of the distributed lag coefficients can only be approximated 

from the covariances of coefficients from Euler and dividend ARIMA equations. 

Dezhbakhsh and Demirguc-Kunt [13] argue that this approximation could exaggerate the 

chi-square statistic used by West, resulting in a rejection of the "no-bubble" hypothesis 

when there are no bubbles.
5
 

In the 1990s, some researchers have shifted their methodologies away from the above 

econometric analysis toward models of human psychology.  Thus, a new research area 

namely behavioral finance has emerged.   Behavioral finance has become a complement 

to the econometric analysis and many researchers have spent a lot of time and energy to 

explain anomalies in prices by using behavioral models
6
.  However, the econometric 

analysis of stock prices and their correspondence to efficient markets theory is still an 

interest of the recent research.   

Abreu and Brunnermeir [23] show that asset bubbles can persist despite the presence 

of rational arbitrageurs.  They argue that the resilience of bubbles can be attributed to the 

inability of the arbitrageurs to synchronize their selling strategies.  Heston et al. [24] 

present evidence for existence of bubbles from multiple solutions of the Black-Scholes-

Merton model and possibly infeasible arbitrageurs.  Pastor and Veronesi [25] calibrated 

the stock valuation model by introducing uncertainty in average future profitability and 

                                                 
5
 Another issue, as West [1] discusses in footnote 3, is that the test may not be consistent: “if there are 

bubbles, the asymptotic probability that the test will reject the null may not be unity, even though the two 

sets of parameter estimates will be different with probability one in an infinite sized sample.” This could 

result in a failure to detect bubbles when bubbles are present. 

 
6
 There is a lot of research in this area that is impossible to summarize here.  The interested reader should 

refer to Thaler [18] , Shefrin [19, 20], Barberis and Thaler [21] and Vissing-Jorgensen [22].   



 6 

showed that the observed high volatility is not a sign of a bubble.  Ghezzi and Piccardi 

[26] propose a dividend valuation model by using Markov Chain and show their model is 

in accordance with the empirical data.  Nwogugu [27] criticizes the econometric models 

of asset pricing since they do not account for many facets of psychological behavior and 

decision making processes of agents.  Cunado et al. [28] argue that the conclusions of the 

existence of bubbles in econometric tests might be due to the sampling frequency of data.  

In a survey paper, Gurkaynak [14]   suggests that the econometric detection of asset price 

bubbles can not be achieved with a satisfactory degree of certainty, and concludes that 

the literature is still unable to distinguish bubbles from time varying and regime shifting 

fundamentals.   

In this study, we follow the argument of Dezhbakhsh and Demirguc-Kunt [13] and 

design an experiment to examine the ability of the West’s test to detect bubbles.  We 

simulated Brock’s [2] general equilibrium model of asset pricing to obtain equity price 

and dividend series to be used in place of actual data.  The simulated data are derived 

from a theoretical economic model, thus it does not contain any bubbles.  More 

specifically, in our setting, (1) the economy, by construction is efficient and produces the 

maximally possible amount of welfare for society, and (2) asset prices reflect the utility-

maximizing behavior of consumers and the profit-maximizing behavior of firms.  

Therefore the West’s test should not reject the no-bubble hypothesis in this set up.  

The rest of the paper is organized as follows:  In Section 2 we introduce the model and 

the simulation of the data.  Section 3 discusses the West test and its implementation and 

results of the tests and Section 4 concludes the paper. 
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2. Model 

2.1 The Growth Model 

The model we use as the basis for our study is the standard growth model with 

production, as specified in Brock [29].  This is a model of economic growth with an 

infinitely lived representative consumer.  In this section, we heavily borrow from Brock 

[29] and recapitulate the essential elements of the model: 

 

c xt it,
max          t

t
t

u c( )










0

                                                          (2.1) 

         subject to:          x x
t it

i

N





1

                                                                  (2.2) 

y f x
t it
1

( , )                                       (2.3) 

       c x y
t t t
                                                  (2.4) 

             c x
t it

 0                                                                     (2.5) 

   y
0
 historically given                                                            (2.6) 

 

where E is the mathematical expectation operator,  is the discount factor on future utility, 

u is the utility function of consumption, c
t
 is consumption at date t, x

t
is capital stock at 

date t, y
t
 is output at date t, f

i
is production function of process i plus undepreciated capital, 

x
it
is capital allocated to process i at date t, 

i
 is depreciation rate for capital installed in 

process i, and 
t
 is the shock parameter. Note that  

f x g x x
i it t i it t i it
( , ) ( , ) ( )    1 ,  

where g x
i it t
( , )  is the production function of process i.   
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The optimizer’s objective is to maximize the expected value of the discounted sum of 

utilities over all consumption paths and capital allocations
7
.  The working of the model, 

according to Brock [2] is;  

There are N different processes.  At date t it is decided how much to consume and 

how much to hold in the form of capital.  It is assumed that capital goods can be 

costlessly transformed into consumption goods on a one-for-one basis.  After it is 

decided how much to hold in the form of capital , then it is decided how to 

allocate capital across the N processes.  After the allocation is decided nature 

reveals the value of rt, and g x r
i it t
( , )  units of new production are available from 

process i at the end of period t.  But ixit units of capital have evaporated at the 

end of period t.  Thus, the net new produce is g x r
i it t
( , ) - ixit from process i.  The 

total produce available to be divided into consumption and capital stock at date 

t+1 is given by 

 

    g x r x x g x r x
i it t i it t i it t i it

i

N

i

N

( , ) ( , ) ( )    


  1
11

 

          




f x r y
i it t t

i

N

( , )
1

1

, 

where 

  f x r g x r x
i it t i it t i it
( , ) ( , ) ( )  1   

 

denotes the total amount of produce emerging from process i at the end of period 

t.  The produce yt+1 is divided into consumption and capital stock at the beginning 

of date t+1, and so on it goes. 

 

Note that Brock’s [2] notation for the shock parameter is “rt” whereas in this study shock 

parameter is denoted by “t ”.  For a full interpretation of the model see Brock [2].   

 

The main assumptions for this model are: 

(A1)  the functions u and fi are concave, increasing, twice continuously

differentiable, and satisfy the Inada conditions; 

(A2)  the stochastic process is independent and identically distributed; 

(A3)  the maximization problem has a unique optimal solution.    

                                                 
7
The x’s at date t must be measurable with respect to the xi’s through date t-1. 
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The first order conditions for the intertemporal maximization are: 

        
u c u c f x

t t t i it t
( ) ( ) ( , )

1 1
                                                   (2.7) 

    lim ( )
t

t

t t it
u c x

 
  

1
0                                                   (2.8)  

Equation (2.7) is the one that is used below to drive a numerical solution to the growth 

model.  Since the problem given by equations (2.1) to (2.6) is time stationary the optimal 

levels of  c
t
, x

t
, x

it
 are functions of the output level y

t
, and can be written as: 

  c g y
t t
 ( ) x h y

t t
 ( )  x h y

it i t
 ( )                                (2.9) 

The objective is to solve the growth model for the optimal investment functions, hi, to 

analyze the underlying implications of the asset pricing model.  The first two functions in 

equation (2.9) can be expressed in terms of these investment functions: 

    h y h y
i

i

N

( ) ( )



1

 

    c y y h y( ) ( )   

 

2.2 An Asset Pricing Model 

The asset pricing model in Brock [2] is much like the Lucas [30] model.  The main 

difference between these two models is that Brock’s [2]  model includes production, thus 

by incorporating shocks in with the production processes, it has the sources of uncertainty 

in the asset prices directly tied to economic fluctuations in output levels and hence in 

profits. 

The model is similar to the growth model.  There is one representative consumer 

whose preferences are given in equation (2.1).  On the production side there are N 
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different firms.  Firms rent capital from the consumer side at the rate r
it
 to maximize their 

profits: 

    
i t i it t it it

f x r x
,

( , )

 

1
  

Each firm makes its decision to hire capital after the shock, 
t
, is revealed.  Here r

it
 

denotes the interest rate on capital in industry i at date t and it is determined with in the 

model.  Asset shares are normalized so that there is one perfectly divisible equity share 

for each firm.  Ownership of a share in firm i at date t entitles the consumer to the firm’s 

profits at date t+1.  It is also assumed (as in Lucas [30]) that the optimum levels of asset 

prices, capital, consumption and output form a rational expectations equilibrium. 

The representative consumer solves the following problem: 

   max   t

t
t

u c( )
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subject to: c x P Z Z P Z r x
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         (2.11) 

     c
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                 r f x
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                                        (2.14) 

 

where P
it
 is price of one share of firm i at date t, Z

it
 is number of shares of firm i owned 

by the consumer at date t, and 
it
 are profits of firm i at date t.  The details of the model 

are in Brock [2].  The first order conditions yielding from the maximization problem are: 

    P u c u c P
it t t t i t i t   

  
( ) ( )( )

, ,
 

1 1 1
                                       (2.15) 

and 
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u c u c f x

t t t i i t t
( ) ( ) ( , )
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1 1 1
 

We use these first order conditions to get the prices for the assets.  Brock [29] shows that 

there is a duality between the growth model ((2.1)-(2.6)) and the asset pricing model 

((2.10)-(2.14)), and the solution to the growth model is also solution to the asset pricing 

model.  Once the solution to the growth model is obtained, the asset pricing functions can 

be solved for the prices for the assets by equation (2.15). 

Now define the dividends (profits) by: 

         
t it

i

N





1

 

and, define the return on each asset by: 

R
P

Pit

i t i t
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Define the profit, consumption and output functions by: 
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and the asset pricing functions by: 

   P y u c y u c Y y P Y y y
i i i
( ) ( ( )) ( ( ( , )))( ( ( , )) ( , ))         

Once we have the pricing functions we next define the return function 

       R y
p Y y y

p yi

i i

i

( )
( ( , )) ( , )

( )


  
 

From the first order condition (2.6), the return on each asset satisfies: 

 

 0 0 1( ) ( )t t itu c E u c R , 
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which is the efficiency condition from the growth model. By summing equation (2.6), we 

get that the return on the market portfolio satisfies: 

 

 0 0 1( ) ( )t t Mtu c E u c R  

 

and so it too is efficient.  This is one of the hypotheses of the CAPM, which in this model 

is a consequence of the optimizing behavior of the consumer. 

 

2.3 A Numerical Solution 

Except for a very special case of the utility and production functions, there is no closed 

form solution for the optimal investment functions. In order to analyze the properties of 

the solutions to the asset pricing model we must use numerical techniques instead.  

Akdeniz and Dechert [31] report the technical details of the numerical solution which we 

will not repeat here.  In this study we use that solution and explore the parameter space 

for solutions to the model that, to a certain extent, fit some of the stylized facts of asset 

markets. Our primary focus will be on the equity prices that come out of the Brock [2] 

asset pricing model.  For the solution and the computational details please see Akdeniz 

and Dechert [31] and Akdeniz and Dechert [32].  

 

2.4 Simulation 

Simulation is an invaluable tool that enhances researcher’s ability to analyze dynamic 

economic models.  It enables a researcher to investigate the empirical debates by 

employing those models in a laboratory environment by contemplating all possible states 

of an economy.  As a result, more and more economists have been using simulation 
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methods for analyzing empirical problems over the last two decades.  As Judd [33] points 

out, the computational methods provide a strong complement to economic theory for 

those problems that are not analytically tractable. 

In this section we present the functional forms and the parameter values that we used 

in the solution of the growth model.  It is a common practice in the literature to calibrate 

the model so that the model of the economy displays certain properties in common with 

actual economies.  In this study, we explore the parameter space for solutions to the 

model that, to a certain extent, fit some the stylized facts of asset markets.  We use 

Constant Relative Risk Aversion (CRRA) utility function,  

u c
c

( ) 




, 

where γ is the utility curvature parameter.  In keeping with the common practice in the 

literature we use γ = -1.00 for the value of the utility curvature parameter and we chose 

the value of the discount parameter, β, to be 0.97 in yearly units.  On the production side, 

firms are characterized by the Cobb-Douglas production functions:  

f x x x( , ) ( ) ( ( ))( )       1  

where x is the shock parameter in the production function.  We pick the value of δ to 

correspond to the values that agree with aggregate data.  We solve the Brock’s [2] model 

for eight states of the economy.  The parameters of the production function, α and θ are 

chosen randomly.   The values for α, θ and δ are reported in table 1.   

We solved Brock’s [2] model for three firms with the parameters reported in table 1.   

We simulated the economy to obtain 100-period stock price and dividend series for 5,000 

times.  In each simulation the computer picks a different state of the economy for each 
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period and yields a sample path of time series of 100 stock price and dividend series.  

Thus each one of the 100 period time series reflects a different realization of series of 

states of the economy.  In summary, each one of the time series consists of different 

possible stock price and dividend series for the market portfolio of three firms over a 

period of 100 years.   

 

 

3. Methodology 

 

 

3.1 West’s Model and Test 

Similar in the spirit to the specification test of Hausman [12], West’s test compares two 

sets of estimates of the parameters needed to calculate the expected present discounted 

value of a given stock’s dividend stream, with expectations conditional on current and all 

past dividends. 

Consider the Euler equation, which expresses current price in terms of next period’s 

price and dividend. 

)( 11   ttt dpEbp │ tI     (3.1) 

where  b is the real discount factor and tp and td are the real stock price and dividend in 

period t. tI  is the common information set of all investors in period t. If the transversality 

condition, nt

n

n
Epb 


lim │ 0tI , holds, then there is a unique forward solution to this 

equation, *

tt pp   

it

i

i

t Edbp 






1

* │ tI      (3.2) 
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This expression gives the so-called fundamental value of the stock. If the transversality 

condition does not hold, then any tp that satisfies  

ttt cpp  *  

where 1 tt Ecbc │ tI  

is also a solution. tc  is by definition a speculative bubble. 

An important feature of West’s method is the use of a particular subset of tI  to 

simplify estimation and testing. This information set, denoted by tH , consists of a 

constant and current and lagged dividends. Rewriting equation (3.2) using tH  as the 

conditioning information set results in the following equation: 

it

i

i

t Edbp 






1

* │ tH + it

i

i Edb 






1

( │ it

i

i

t EdbI 






1

│ )tH  

it

i

iEdb 






1

│ tH + tz       (3.3) 

The term itEd  │ tH  is the forecast of dividends given by the past history of dividends.  

West does not rely on any particular structural model for dividends. Assuming that 

dividends follow a stationary process, itEd  │ tH is calculated as the ARIMA forecast of 

itd  . The lag length q in the forecasting equation is determined empirically.  

1111 ......   tqtqtt ddd      (3.4) 

Given the stationarity of dividends, there is a closed-form expression for *

tp  in the 

form of a distributed lag on current and past td . The coefficients of the distributed lag 

are obtained indirectly by using Hansen and Sargent [34] formulas. These formulas 

express these coefficients as functions of the coefficients in the Euler and ARIMA 
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equations.  Hence this indirect method requires the estimation of the Euler equation and 

dividend ARIMA. If there is no bubble, then tp  will be equal to *

tp .  In this case, 

estimating a distributed lag of tp  on current and past td will give coefficients, m , 1 , 

…, 2qt , which will be same as  those in the distributed lag for *

tp  apart from sampling 

error.  

12111   tqtqtt wddmp  ......     (3.5) 

West method tests the equality of the two sets of distributed lag coefficients obtained 

from direct and indirect estimations as explained above. The existence of a bubble is only 

one possible factor that can lead to a discrepancy between the two sets of coefficient 

estimates. Since model misspecification rather than the existence of a bubble may also 

give rise to such a discrepancy, diagnostic tests are applied to see if the Euler and 

dividend ARIMA equations are consistent with the data. 

 

3.2 West’s Estimation Technique 

The estimation procedure contains the following steps: (i) identification of the order of 

dt’s ARIMA process; (ii) getting a consistent estimate of the constant ex ante discount 

factor, b, estimating the dividend process and the distributed lag of pt on dt; (iii) 

calculation of the variance-covariance matrix of the parameters; (iv) calculation of basic 

test statistic; (v) diagnostic tests performed on the equations estimated. 

The identification of the order of dt’s ARIMA process (i.e. lag length q) is based on 

the information criterion of Hannan and Quinn [35]. West’s procedure requires the 

estimation of equations (3.1), (3.4) and (3.5). Equation (3.1) is estimated by rewriting it 

as: 
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111 )(   tttt udpbp      (3.6) 

where )()( 11111   ttttt dpEbdpbu │ tI  

These three equations, i.e. equations (3.4), (3.5) and (3.6) are estimated by multiple-

equation generalized method of moments (GMM). The Euler equation has one parameter, 

while the dividend ARIMA and distributed lag each has q+1 parameters. The set of 

instruments is the same across equations and includes a constant and q current and past 

dividends. Thus, while the Euler equation is overidentified, the other two equations are 

just identified. 

The orthogonality conditions that the parameters in Euler, dividend and distributed 

lag equations should satisfy are as follows: 

0)ˆ(
1 1









bxpD
qT

tt

T

qt

t      (3.7) 
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T

qt

t DdD
qT
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11

1
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 tt

T

qt

t DpD
qT

 

where tD  shows the (q+1)1 vector of instruments,  i.e.  11  qttt ddD ,...., , 

11   ttt dpx , 
'

1 .... q  , 
'

1 .... qm    and T is the total 

number of time periods in the sample.
8
 

West’s procedure forms a linear combination of Euler equation moments before 

employing multiple-equation GMM estimation. This linear combination becomes the 

single moment that determines the coefficient estimate, b̂ . The coefficients of this linear 

                                                 
8
 The sample contains T observations. Since lagged dividends are used as explanatory variables T-q 

observations are used in estimations. 
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combination are obtained as follows. Let D be the (T-q) (q+1) matrix of stacked 

instruments and X  be a (T-q)1 vector of explanatory variables, 

where  1 Tq DDD ....  and TTqq dpdpX   ......11  

First, an initial estimate of b is obtained by two-stage least squares (2SLS). The 2SLS 

residuals are used to construct an estimator of the asymptotic covariance matrix of the 

Euler equation sample moments. The form for this covariance matrix, denoted by Sd, 

allows heteroskedasticity but no serial correlation. The linear combination of Euler 

equation moments that determines b̂  is obtained by using the elements of the 1 (q+1) 

vector   1
ˆ)(



 dSqTDX  as coefficients. 

Multiple-equation GMM stacks the sample moments of three equations into a 

(2q+3)1 vector. 

 

)ˆ(

)ˆ(

)ˆ(ˆ)(
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h

qT
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The weighting matrix in the multiple-equation GMM estimation is: 
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11

11

1

00

00

00ˆ)(
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qq

qq

qqd

I

I

SqT

W                                    (3.9) 

where 11  qqI  denotes a (q+1) (q+1) identity matrix. Given that each equation in the 

system is exactly identified, GMM estimator becomes the multiple-equation instrumental 
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variables (IV) estimator. Due to the block diagonality of 


 Th
, the estimator is just a 

collection of single-equation IV estimators. Since in the estimation of the dividend 

process and distributed lag explanatory variables serve as instruments, the coefficient 

estimates from multiple-equation GMM are identical to those from equation-by-equation 

OLS estimation. Moreover, discount factor estimate from multiple-equation GMM is 

equal to that from single equation GMM using a prespecified weighting matrix 

1
 dSW ˆˆ . 

After the estimation of parameters, their variance-covariance matrix is calculated. 

This requires an estimate of the asymptotic variance-covariance matrix of moments, 

denoted by S . The Bartlett kernel-based estimator of S, which allows heteroskedasticity 

and autocorrelation, is used: 

)ˆˆ(),(ˆˆ '

ii

m

i

miKS  
1

0     (3.10) 
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it
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ti hh
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where i is the i-th order autocovariance matrix, K is the Bartlett kernel and m is the 

Newey-West fixed bandwidth. Given the above Ŝ  and Ŵ  as defined before, the 

variance-covariance matrix of the parameters is: 

(3.12) 

 

where 
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E  equals D  led by one period, i.e. Tq DDE ....1  

The basic test statistic is calculated as follows. Under the null hypothesis of no 

bubbles, the regression coefficients in all equations are estimated consistently. When the 

direct and indirect estimates of the expected present discounted value parameters are 

compared, then they should be the same, apart from sampling error. Hence, the test is 

based on the following cross-equation restrictions on the coefficients in equations (3.4), 

(3.5) and (3.6), which are obtained by applying Hansen and Sargent [34] formulas: 

1110   )()( bbbm      (3.13) 
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Let )(R  denote these q+1 constraints. The null hypothesis is that 0)(R . The test 

statistic is calculated as: 
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The derivative of )(R is calculated analytically. Under the null hypothesis, the statistic 

is asymptotically distributed as a chi-squared random variable with q+1 degrees of 

freedom. 

As was discussed before, since model misspecification rather than the existence of a 

bubble may also give rise to a significant value of the test statistic, diagnostic tests on 

Euler and dividend ARIMA equations are performed to confirm that other sources of 

])([ 10 1

1  b
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misspecification are not present. The first diagnostic check examines serial correlation in 

the residuals of those two equations. Under rational expectations, the expectational error 

1tu should display no autocorrelation. Similarly, the innovation in the dividend ARIMA, 

1t , should also be serially uncorrelated, if the dividend process is not misspecified. 

Ljung-Box statistic is calculated for these two residuals. A second diagnostic test, 

Hansen’s [36] test of instrument-residual orthogonality, is performed on the Euler 

equation.   

J statistics=   
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  (3.15) 

Under the null hypothesis that the Euler equation is not misspecified, the test statistic is 

asymptotically distributed as a chi-squared random variable with q degrees of freedom. 

This test checks for the misspecification of the Euler equation due to expectational 

irrationality and time variation in discount rates that is correlated with dividends. 

 

3.3 Use of West’s Bubble Test with Simulated Data 

As was described in section 2.4, our initial data consists of 5,000 independent samples, 

each containing a price and a dividend series for 100 periods. For each sample, the 

stationarity of dividends is tested by using the Augmented Dickey Fuller test. Dividend 

series are non-stationary for 168 samples. A modified version of West test can be applied 

to samples with non-stationary dividend series, however since these cases represent a 

small portion of our data, the analysis will be based on samples characterized by 

stationary dividends. 
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To minimize the effect of model misspecification on our results, we filter the 

generated data based on the following two criteria. First, we eliminate the samples for 

which the value of lag length q in the ARIMA forecasting equation is less than two. This 

filter reflects the requirement that the information set, tH , consisting of current and 

lagged dividends contains useable information. Second, we eliminate those samples that 

could not pass the two diagnostic checks discussed before. Thus, we kept only those 

samples for which we are more confident that the rejection of the null hypothesis of “no 

bubble” does not result from certain factors other than bubbles. 

The use of these two filters eliminated 2,576 and 486 samples, respectively. The 

impact of the second filter is to a large extent due to the rejection of instrument-residual 

orthogonality condition (433 cases). Serial correlation in the residuals of the Euler and/or 

dividend ARIMA equations was detected in only 53 samples. This leaves 1,770 samples 

to be used in the analysis. These samples are grouped based on the value of lag length q 

in the ARIMA forecasting equation. Examining relative frequencies indicates that most 

of the samples, i.e. 1,595 out of 1,770, fall in one the following three groups: q=2, q=3 

and q=4.
9
 Therefore, in the remainder of the paper, only results for these three groups will 

be presented due to space limitation. 

The results of estimating equations 3.4-3.6 are shown in Tables 2-4. These tables 

contain descriptive statistics (mean, standard deviation, median, minimum, maximum, 

2,5
th

 percentile and 97.5
th

 percentile) both for relevant diagnostic test statistics and 

coefficient estimates across simulations. These diagnostic tests confirm that samples used 

in the analysis do not show misspecification. Besides descriptive statistics across 

                                                 
9
 Lag length groups for q between 5 and 12 contain 95, 39, 18, 8, 5, 5, 3 and 2, samples respectively. 
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samples, these tables indicate for each coefficient the number of estimations in which it is 

found statistically significant at 5 percent level.  

Table 2 presents the estimation results of Euler equation (3.6). Columns 4 and 5 give 

information on the two statistics used for diagnosis testing. Column 4 gives, the 

distribution of the first-order serial correlation coefficient of the disturbance. Across the 

three lag length groups,  median values vary from -0.021 to -0.044 . Given the sample 

size of 100, the usual 95 percent confidence band is ± 2/10 = ± 0.2.  Column 5 reports the 

distribution of Hansen’s [36] instrument-residual orthogonality test statistics. Across the 

three groups median values range from 2.46 to 5.50. The 5 percent critical values of this 

statistic for the three lag lengths are 5.99, 7.81 and 9.49, respectively. The figures in 

columns 4 and 5 indicate that the specification for Euler equation appears acceptable, 

since for all the samples used in the analysis the two diagnostic test statistics are below 

their 5 percent critical values. The discount factor b in three specifications has a mean 

value of 0.97 and it varies between 0.96 and 0.98. This agrees with the parameter value 

used in simulating the data. For the three lag length groups, all the coefficient estimates 

for b are found significant at 5 percent level (913, 482 and 200, respectively)  

Table 3 reports the results for dividend ARIMA equation (3.4). Column 8 shows 

descriptive statistics for the first-order serial correlation coefficient of the disturbance. 

Across the three lag length groups,  median values vary from -0.010 to -0.016. Column 9 

gives the distribution of the second serial correlation test, namely Ljung-Box Q(30) 

statistic for the residuals. Across the three lag length groups,  median values vary from 

19.478 to 21.596. It is distributed χ
2
(30). For 5 percent significance level the critical 

value is 43.77.  Overall, the figures in these two columns confirm that for all the samples 
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used in the analysis there is no evidence of serial correlation in the residuals of equation 

3.4. Columns 3-7 report the descriptive statistics for coefficient estimates. Both the mean 

and median values of the intercept as well as the coefficients of lagged dividends are 

positive in all the three lag length groups. The intercept is found significant at 5 percent 

level in all estimations, while for the other coefficients this occurs less frequently. 

Estimates of the final equation, the distributed lag of price on current and past 

dividends (3.5), are reported in Table 4. It is notable that, for the three lag length groups, 

the coefficients of dividends are found significant at 5 percent level in all estimations. For 

the three lag length groups, the median values of all coefficient estimates, except that of 

the intercept for the third group, are positive. 

The test of the null hypothesis that bubbles are absent is given in Table 5. The table 

reports the distribution of West’s test statistic. Under the null this statistic is distributed  

as a chi-squared random variable with q+1 degrees of freedom. For 5 percent significance 

level, critical values for χ
2
(3) , χ

2
(4) and χ

2
(5) are 7.81, 9.49 and 11.07, respectively.  For 

the three lag length groups even the minimum value of the test statistic exceeds the 

relevant critical value. In other words, for all the 1,595 samples used in the analysis the 

hypothesis that the absence of bubble is rejected.  

 

5. Conclusion 

In this study, we follow the argument of Dezhbakhsh and Demirguc-Kunt [13] and design 

an experiment to examine the ability of the West’s test to detect bubbles.  We simulated 

Brock’s [2] general equilibrium model of asset pricing to obtain equity price and 

dividend series to be used in place of actual data in West tests.  Specifically, we solved 
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Brock’s model for three firms by using parameter space that, to a certain extent, fit some 

of the stylized facts of asset markets.  In each simulation the process picks one of the 

eight different states of the economy for each period and yields stock price and dividend 

series for the market portfolio of three firms over a period of 100 years.   

We applied West’s test to 1,595 samples for which we are confident that the rejection 

of the null hypothesis of “no bubble” does not result from certain factors other than 

bubbles.  Although it is impossible to have bubbles in the simulated data by the design of 

the model, the West test flags for bubbles.  It is notable that even the minimum value of 

the West’s test statistic across simulations exceeds the relevant critical value.  In other 

words, for all the 1,595 samples the hypothesis that the absence of bubble is rejected.  

Our evidence is based on a particular parameter space, which was chosen to fit some 

of the stylized facts of asset markets. One can argue that the choice of some other 

parameter set might give different results.  However, providing evidence, even based on a 

particular parameter space, is sufficient to confirm that the rejection of the no-bubble 

hypothesis of West’s test is not necessarily an indication of the existence of a bubble.   

In interpreting our evidence, one should also consider other criticisms on West’s test. 

Flood et al. [17] raised two such points. Their first criticism is that in West the Euler 

equation is derived and tested for two consecutive periods, ignoring the issue that 

theoretically the relation should hold between any two periods in the future.  They argue 

that, as a result, the estimate of discount factor may be biased. Their second criticism is 

that West’s test may suffer from the so-called peso problem. In other words, investors in 

the market might attribute a small probability to an event that will have a large impact on 

the asset price. It may be the case that this event does not occur in the sample, while its 
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effect is reflected in prices. For the researcher, who does not know this perception of 

investors in the market it is the omitted variables problem. Although these criticisms may 

be relevant if one uses real data, they are irrelevant for our experimental design. First, our 

data is generated based on Brock’s model [2], which similar to West employs the Euler 

equation for two consecutive periods. Second, since we use a large number of simulated 

data rather than a single sample, the peso problem cannot be an issue.  

In conclusion, we believe that our evidence gives support to the criticism of 

Dezhbakhsh and Demirguc-Kunt [13] that the approximation used in calculating the test 

statistic in West, could exaggerate the chi-square statistic resulting in a rejection of the 

"no-bubble" hypothesis when there are no bubbles. 
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Tables 

 

Table 1 

Parameter Values Used in The Solution of The Growth Model 

State α1 α2 θ1 θ2 δ1 δ2 

1 0.60 0.50 0.32 0.24 0.16 0.12 

2 0.42 0.62 0.24 0.35 0.16 0.12 

3 0.54 0.44 0.16 0.23 0.16 0.12 

4 0.46 0.36 0.18 0.11 0.16 0.12 

5 0.37 0.48 0.29 0.19 0.16 0.12 

6 0.49 0.40 0.31 0.27 0.16 0.12 

7 0.40 0.52 0.22 0.26 0.16 0.12 

8 0.52 0.56 0.28 0.31 0.16 0.12 

 
Notes: α, θ and δ are parameters of the Cobb-Douglas production function, 

f x x x( , ) ( ) ( ( ))( )       1 . 
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Table 2 

Summary of Estimation Results-Euler Equation 

 

q  b     ρEuler       H 

     

2 Mean 0.969 -0.020 2.646 

 Std. Dev. 0.003 0.081 1.547 

 Median 0.969 -0.020 2.456 

 Minimum 0.960 -0.200 0.008 

 Maximum 0.977 0.198 5.989 

 2.5
th

 Percentile 0.964 -0.164 0.229 

 97.5
th

 Percentile 0.975 0.144 5.611 

 # sign 913   

     

3 Mean 0.969 -0.031 4.210 

 Std. Dev. 0.003 0.087 1.813 

 Median 0.969 -0.041 4.204 

 Minimum 0.960 -0.198 0.141 

 Maximum 0.980 0.194 7.797 

 2.5
th

 Percentile 0.963 -0.174 0.987 

 97.5
th

 Percentile 0.975 0.147 7.375 

 # sign 482   

     

4 Mean 0.968 -0.040 5.520 

 Std. Dev. 0.003 0.090 2.169 

 Median 0.968 -0.042 5.528 

 Minimum 0.960 -0.200 0.758 

 Maximum 0.979 0.192 9.484 

 2.5
th

 Percentile 0.962 -0.190 1.732 

 97.5
th

 Percentile 0.974 0.153 9.321 

 # sign 200   

 
Notes: The model is given by equation (3.6) in the text. This table summarizes the results of 1,595 

independent samples, each containing a price and a dividend series for 100 periods. These samples are 

grouped based on the empirically determined lag length, denoted by q, in the dividend ARIMA equation. 

Results are shown separately for lag length groups between two and four for convenience of reporting. 

These groups contain 913, 482 and 200 samples, respectively. b is the real discount factor. ρ is first order 

serial correlation of disturbance.  H denotes Hansen’s [36] test of instrument-residual orthogonality, it is 

distributed χ
2
(q). . # sign denotes the total number of samples in which a coefficient is significant at 5 

percent level. 

 

 

. 
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Table 3 

Summary of Estimation Results-Dividend ARIMA 

 

q  μ Φ1 Φ2 Φ3 Φ4   ρARIMA         Q(30) 

2 Mean 0.111 0.176 0.226   -0.015 22.059 

 Std. Dev. 0.023 0.087 0.078   0.022 5.965 

 Median 0.110 0.177 0.226   -0.016 21.596 

 Minimum 0.044 -0.039 -0.090   -0.084 8.050 

 Maximum 0.203 0.565 0.478   0.057 43.503 

 2.5
th

 Percentile 0.067 0.013 0.046   -0.056 11.879 

 97.5
th

 Percentile 0.160 0.346 0.383   0.031 35.931 

 # sign 913 476 680     

         

3 Mean 0.090 0.159 0.140 0.215  -0.009 20.600 

 Std. Dev. 0.021 0.090 0.093 0.071  0.021 5.807 

 Median 0.088 0.160 0.146 0.223  -0.010 19.883 

 Minimum 0.043 -0.127 -0.159 -0.113  -0.055 7.429 

 Maximum 0.189 0.476 0.404 0.363  0.054 43.436 

 2.5
th

 Percentile 0.058 -0.008 -0.063 0.022  -0.046 11.956 

 97.5
th

 Percentile 0.141 0.336 0.324 0.326  0.037 35.342 

 # sign 482 223 168 356    

         

4 Mean 0.081 0.152 0.107 0.123 0.181 -0.007 19.649 

 Std. Dev. 0.023 0.103 0.088 0.104 0.101 0.023 5.186 

 Median 0.077 0.153 0.113 0.136 0.205 -0.010 19.478 

 Minimum 0.038 -0.142 -0.103 -0.165 -0.144 -0.066 10.145 

 Maximum 0.167 0.426 0.339 0.339 0.334 0.054 38.564 

 2.5
th

 Percentile 0.048 -0.083 -0.068 -0.116 -0.097 -0.047 11.247 

 97.5
th

 Percentile 0.136 0.363 0.278 0.308 0.308 0.041 31.176 

 # sign 198 79 61 73 120   

 
Notes: The model is given by equation (3.4) in the text. This table summarizes the results of 1,595 independent samples, 

each containing a price and a dividend series for 100 periods. These samples are grouped based on the empirically 

determined lag length, denoted by q, in the dividend ARIMA equation. Results are shown separately for lag length groups 

between two and four for convenience of reporting. These groups contain 913, 482 and 200 samples, respectively. ρ is first 

order serial correlation of disturbance.  Q(30) is Ljung-Box Q statistic. it is distributed χ
2
(30). For 5 percent significance 

level, critical values for χ
2
(24) and χ

2
(30) are 36.42 and 43.77, respectively.  # sign denotes the total number of samples in 

which a coefficient is significant at 5 percent level. 
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Table 4 

Summary of Estimation Results-Distributed Lag 

 

q  m δ1 δ2 δ3 δ4 

       

2 Mean 1.681 12.415 11.029   

 Std. Dev. 0.712 1.831 1.934   

 Median 1.699 12.340 10.895   

 Minimum -0.715 6.527 4.922   

 Maximum 4.181 18.837 18.041   

 2.5
th

 Percentile 0.356 9.059 7.646   

 97.5
th

 Percentile 3.048 15.963 15.003   

 # sign 719 913 913   

       

3 Mean 0.449 11.525 9.864 8.689  

 Std. Dev. 0.676 1.373 1.349 1.363  

 Median 0.406 11.559 9.859 8.659  

 Minimum -1.250 6.493 5.462 4.851  

 Maximum 2.554 14.833 14.375 12.715  

 2.5
th

 Percentile -0.675 8.973 7.180 5.961  

 97.5
th

 Percentile 1.978 14.052 12.547 11.208  

 # sign 113 482 482 482  

       

4 Mean -0.181 10.548 8.890 7.460 6.598 

 Std. Dev. 0.681 1.133 1.127 1.089 1.169 

 Median -0.198 10.615 8.925 7.489 6.706 

 Minimum -1.969 7.338 6.208 4.592 3.832 

 Maximum 1.748 13.627 12.792 11.595 10.122 

 2.5
th

 Percentile -1.469 8.125 6.580 5.550 4.343 

 97.5
th

 Percentile 1.161 12.842 11.246 9.716 8.695 

 # sign 42 200 200 200 200 

 
Notes: The model is given by equation (3.5) in the text. This table summarizes the results of 1,595 

independent samples, each containing a price and a dividend series for 100 periods. These samples are 

grouped based on the empirically determined lag length, denoted by q, in the dividend ARIMA equation. 

Results are shown separately for lag length groups between two and four for convenience of reporting. 

These groups contain 913, 482 and 200 samples, respectively. # sign denotes the total number of samples 

in which a coefficient is significant at 5 percent level. 
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Table 5 

Summary of Estimation Results-West’s Test Statistic  

 

q   W 

   

2 Mean 118.934 

 Std. Dev. 72.471 

 Median 100.793 

 Minimum 23.588 

 Maximum 620.215 

 2.5
th

 Percentile 38.215 

 97.5
th

 Percentile 285.658 

   

3 Mean 217.464 

 Std. Dev. 138.962 

 Median 189.163 

 Minimum 35.560 

 Maximum 912.189 

 2.5
th

 Percentile 58.867 

 97.5
th

 Percentile 588.653 

   

4 Mean 254.676 

 Std. Dev. 167.444 

 Median 211.733 

 Minimum 46.103 

 Maximum 1,123.963 

 2.5
th

 Percentile 73.832 

  97.5
th

 Percentile 723.034 

 
Notes: This table summarizes the results of 1,595 independent samples, each containing a price and a 

dividend series for 100 periods. These samples are grouped based on the empirically determined lag 

length, denoted by q, in the dividend ARIMA equation. Results are shown separately for lag length 

groups between two and four for convenience of reporting. These groups contain 913, 482 and 200 

samples, respectively. Under the null hypothesis, West’s test statistics, denoted by W, is asymptotically 

distributed as a chi-squared random variable with q+1 degrees of freedom. For 5 percent significance 

level, critical values for χ
2
(3) , χ

2
(4) and χ

2
(5) are 7.81, 9.49 and 11.07, respectively. 

 

 

 

 

 

 


